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One of the greatest challenges in evaluating reliability of digital I&C systems is how to obtain better failure rate 
estimates of digital components. A common practice of the digital component failure rate estimation is attempting to 
use empirical formulae to capture the impacts of various factors on the failure rates. The applicability of an 
empirical formula is questionable because it is not based on laws of physics and requires good data, which is scarce 
in general. In this study, the concept of population variability of the Hierarchical Bayesian Method (HBM) is applied 
to estimating the failure rate of a digital component using available data. Markov Chain Monte Carlo (MCMC) 
simulation is used to implement the HBM. Results are analyzed and compared by selecting different distribution 
types and priors distributions. Inspired by the sensitivity calculations and based on review of analytic derivations, it 
seems reasonable to suggest avoiding the use of gamma distribution in two-stage Bayesian analysis and HBM 
analysis. 1 

' This paper was prepared as an account of work sponsored by an agency of the LJnited States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for any third party's use, or the results of such use, of any information, apparatus, producf or process disclosed in this paper, or 
represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those 
of the U.S. Nuclear Regulatory Commission. 
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I. INTRODUCTION 

Many reliability prediction methods have been proposed. The methods of Military Handbook 217 [I] are the 
most widely used by the defense industry. The prediction method of Telcordia SR-332 [2] is similar to that of the 
military handbook, and has been used by the telecommunication industry. In these methods, at the component level, 
generic failure rates are modified by n factors representing the effects of quality, electrical stress, and operating 
temperature, etc. Tables of the n factors are provided without indicating how they were derived. If test data or field 
data is available, Bayesian analysis is performed. Reliability prediction methods based on the military handbook 
have been criticized for lack of accuracy and failure to address important factors that affect failure rates of digital 
components [3]. The Reliability Analysis Center (RAC) developed a new method [4] which addresses some of the 
criticisms and implemented it in a software tool called PRISM [S]. However, the RAC method still depends on use 
of empirical formulae. All these reliability prediction methods attempt to use empirical formulae to capture the 
variability of component failure rates due to many factors, e.g., operating temperature, temperature cycling, electrical 
stress, relative humidity, vibration level, duty cycle, and cycle frequency. A basic problem with the use of empirical 
formulae is that the formulae are not laws of physics and their applicability is limited. It requires extensive 
applicable data to estimate the parameters of the models. With good data, an empirical formula may be 
demonstrated to make good predictions, i.e., consistent with the data. On the other hand, its range of applicability is 
still limited to the cases with good data and its extrapolation to other situations may not be valid. If good data is 
available, then estimating failure rates using the data directly seems a reasonable approach. This paper describes 
such an approach based on the Hierarchical Bayesian Method (HBM) [6]. 

The concept of population variability has been used in two-stage Bayesian analyses of prababilistic risk 
assessments (PRAs) to estimate initiating event frequencies [7,8]. It has also been used in development of 
component failure databases [9,10]. The two-stage Bayesian analysis method is a special case of the more general 
HBM [S]. In this study, the HBM was applied to estimating generic failure rates of digital components using 
available raw failure data extracted from the PRISM software. The hierarchical Bayesian method captures the 
variability in failure rates due to the factors considered in the reIiability prediction methods of the defense industry. 
It generates generic component failure rates that can be further Bayesian updated if component specific failure data 
is available. The analysis consists of the procedures that follow: (1) data collection and grouping of the components 
to be studied; (2) Chi-square test of grouped data; (3) type and parameter selection of priors and hyperpriors used in 
HBM; and (4) population variability calculation and sensitivity analysis. The hierarchical method was implemented 
using Markov Chain Monte Carlo (MCMC) simulation. 

The remainder of this paper is organized as follows: the hierarchical Bayesian method is briefly presented in 
Section 2. Section 3 gives a detailed description of the application of the hierarchical Bayesian model to prediction 
of the failure rate of a digital component using the data extracted from the PRISM database. A software tool 
WinBUGS [l 11, which is capable of calculating population variation using MCMC simulation, is used to perform the 
computation. Sensitivity analyses are presented and discussed in Section 4. Conclusive remarks are given in 
Section 5. 

2. HIERARCHICAL BAYESIAN MODELS FOR FAILURE RATES DETERMINATION 

Bayesian estimation has been widely employed in PRAs to account for uncertainties. The uncertainties caused 
by a lack of knowledge can be expressed in terms of probability distributions using Bayesian estimation method. In 
a simple Bayesian analysis, Bayes's Theorem is applied to obtain a posterior distribution by updating the prior 
distribution of collected data. Often it is assumed that the data was collected from a single source. However, 
sometimes the data was collected from different sources, as is the case of the data of PRISM. The assumption of a 
single data source leads to a narrow posterior distribution because the source-to-source variation (population 
variation) is ignored. The two-stage Bayesian method [7] has been used to take into consideration the source-to- 
source variability [S, 9, 101. In this study, this variability is addressed by using the HBM [6] which is a more general 
approach. In the HBM, the prior distribution is developed in multiple stages of a hierarchical structure, i.e., the 
parameters of the prior distribution are also considered uncertain and can be modeled as a probability distribution 
function with, again, uncertain parameters. This process can be repeated until the last stage, where the prior 
distribution is called hyperprior with corresponding constant hyperparameters. It can be demonstrated that a HBM 
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model with 2 stages is the same as the two-stage Bayesian model. In two-stage analysis [7], a discretized probability 
distribution method is often used to solve the Bayesian equations. The HBM provides its own way of solving the 
model [6] .  

The population variation curve (PVC) is denoted as g(A), where A is the parameter we are interested in, e.g., 

failure rate. Usually it is assumed to be lognormal or gamma distributed with 8 representing the parameter vector. 

Data is collected from rn different sourceslplants whose failure rates Ai are random samples firomg(A). 

Obviously, 8 might consist of different variables depending on the assumption of the population variability 

distribution. Different prior distribution can be selected for each element of parameter vector 8 ,  e.g., 8 = [a, P] 
for a gamma distribution. The prior distributions of the parameters are called hyper prior distributions and denoted 

as no (8) . 

The posterior distribution of the uncertain parameter vector8 , i.e., the hyperposterior distribution, is required 
for PVC and can be calculated by applying the Bayes's Theorem in the multiple-dimensional form [S]: 

where L(E I 8) is the likelihood of the collected data. The likelihood function for a specific sourcelplant is 
m 

given as L,(Ei I 8) = [p(xi / ti, /Z,)g(Ai 1 6')d/Z,, where Ai is the failure rate of plant i, xi is the number of 
0 

(Ai ti ) J; e -4.4 
failures that took place in time period ti , and P(xi I ti, ;ti) = . The likelihood function for the entire 

xi ! 
set of the evidence is the product of the likelihood functions for the individual sources 

The expected PVC can be calculated using the hyperposterior distribution of@: 

which can be used as a generic informative prior distribution far a Bayesian analysis of the data collected for the 
same component from a specific sourcelplant. Due to the unclear identification of the sources of data of the PRISM 
software discussed in Section 3, it is not likely that the specific sourcelplant can be associated with the sources of 
data of the PRISM software. Therefore, the issue of double counting the same plant specific data does not apply. 
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Usually it is impossible to evaluate equation (3) analytically. The solution using Markov chain Monte Carlo 
(MCMC) simulation considers the posterior distributions of all the parameters of interest, i.e., Band Ai 's, and 

generates samples fi-om the joint posterior distribution by constructing a Markov chain that has the parameters of 
interest as its state space and taking samples from the conditional distributions of the parameters. More specifically, 
Gibbs sampling or the Metreopolis-Hastings algorithm can be used in MCMC implementation [6 ] .  

3. FAILURE RATES ESTIMATION OF DIGITAL COMPONENTS USING HBM 

3.1 DATA COLLECTION AND GROUPING 

PRISM [5] is a software tool developed by the Reliability Analysis Center (RAC) for assessing system 
reliability. It includes a failure rate database for both electronic and non-electronic components while a separate 
database contains the failure mode and mechanism distributions, which allows partitioning of failure rates into failure 
modes and mechanisms. The RAC databases share some of the data sources. The PRISM database can be 
considered an update of military handbook 217 [I], which is no longer actively maintained, with more recent data up 
to year 2000 and improvements in the reliability prediction method. 

The RAC database denoted as RACdata in PRISM contains failure data records in the form of the number of 
failures in a number of operatinglcalendar hours. The RAC database sources are not completely specified and only 
identified in format such as "warranty repair data f5om a manufacturer." The failure records of a specific type of 
component, e.g., memory, are M e r  categorized according to sub-level component types, e.g., random access 
memory (RAM) or programmable read only memory (PROM); quality, e.g., commercial-grade or military-grade; 
environment, e.g., ground or airborne; hermeticity, e.g., plastic and ceramic; and time period that the data is 
collected, etc. In this study, the failure data of various digital components were extracted fi-om the RACdata 
database. It was decided, for each sub-level component, to group the failure records of different qualities, 
environments, hermeticities, and time periods. In general, the data is not strong, i.e., many failure records do not 
have any failures, and those that do often scatter widely. 

Table 1 lists the grouped failure records of a digital component. The definitions of sub-level component type, 
quality, and environment can be found in [I, 4, 51. The failure records were used in estimating the population 
variability curve of the generic component. The last c o l m  of the table lists the point estimates of failure rates of 
those failure records with at least one failure. The point estimate is simply the number of failures divided by the 
number of hours. It provides information on the possible range of the population variability curve. The point 
estimate information was used in estimation of hyperprior parameters. 

3.2 CHI-SQUARE TEST 

A Chi-square (X2 ) test was performed for the data of each sub-level component type to determine whether the 
failure records can be pooled and the population variability should be used to model the failure rates of the 
components. It has been a common practice in statistics and the definition of the test can be found in many 
references, e.g., [6].  A Chi-square test was performed on the component failure data in Table 1 and a X2 value of 
1448 1 was obtained. This indicates that for the data, the confidence is high that the failure records cannot be pooled, 
i.e., the failure records are samples from different failure rate sources and a population variability distribution should 
be used to model the variability in the failure rates. 

3.3 SELECTION OF HYPERPRIOR DISTRIBUTIONS 

In the hierarchical Bayesian analysis, different distribution types can be assumed for the failure rates and the 
hyperpriors. The parameters for hyperpriors were chosen based on the range of the point estimates of failure rates in 
the data set and the properties of the type of the distribution. The criterion we used for selecting the mean values of 
the prior parameters is that the maximum and minimum values of the point estimate failure rates lie within the 95& 
and 5& percentile of the distribution defined by the selected mean values. The software tool W i U G S  was used to 
create the model and to calculate the population variability distributions. The details of the WinBUGS can be found 
in [I 11 and will not be discussed here. 
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Table 1: Failure Records of a Digital Component Extracted from PRISM RACdata Database 

Quality 
Commercial 
Unknown 
Unknown 
Commercial 
Commercial 
Commercial 
Commercial 
Commercial 
Unknown 
Unknown 
Unknown 
Commercial 
Commercial 
Commercial 
Military 
Military 
Military 
Military 
Military 
Military 
Military 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
llnknown 
Unknown 
Unknown 
Unknown 
Unknown 
lJnknown 
Unknown 
Unknown 

Environment 
GB 
GB 
GB 
GB 
GM 
NIR 
GB 
GB 
GB 
GB 
GB 
GB 
GB 
GM 
NIR 
AIF 
AIF 
AIF 
GB 
GF 
NS 
AIU 
AUF 
AUT 
GB 
GB 
GB 
GB 
GF 
GF 
GF 
GF 
GF 
NS 
NSB 

Number of Failures 
12 
0 
0 
16 
4 
2 
28 
0 
80 
44 
0 
0 

188 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

54 
2 

0 
2 

332 
0 
0 
0 
0 

Number of Hours 
(*1.OE6) 
633.8929 
0.2600 
0.0625 

2597.365 
701.1615 
509.1 335 
22751 .I 8 

1105.13 
444.0000 
307.8874 
6.5937 
19.3613 

20069.9345 
692.6390 
149.2384 
0.0253 
1.8755 
11.3706 
0.7367 
53.6832 
29.2752 
0.2376 
1.5206 
1.3585 

90.4280 
1.8878 

205.2583 
1.4060 
2.0275 

553.6315 
590.3949 
0.0080 
2.1 948 
2.0799 
0.0121 

Point Estimate Failure 
Rate 

(per million hours) 
1.89e-02 

There are no general rules about how to select the types of the priors and hyperpriors. Sensitivity calculations 
were performed by comparing different distributions and docrlrnented in Section 3. In the base case calctllation 
described here, it was assumed that the population variability distribution is lognormally distributed with 
parameters p and cr . The last column of Table 1 shows that the point estimate failure rates are approximately in the 
range of 1E-3 and 2E+O. Assuming that the range of 1E-3 and 2.0 is the 90% confidence interval of a lognormal 
distribution, the mean values of p and cr can be calculated using formulae: 

where a and b are the lower bound and the upper bound of the point estimate, respectively, i.e., a=1E-3, b=2.O. - - 
We have 0 ~ 2 . 3 1  and p =-3.1073. According to the HBM, the parameters p a n d 0  are also associated with 
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uncertainties. In the absence of any information concerning parameters p and o , the uncertainties can be addressed 
by M e r  assuming that p and o are uniformly distributed with lower and upper bounds equal to -7 and -0.1, and 1 
and 3.5, respectively. 

A WinBUGS analysis of the data in Table 1 resulted in posterior distributions of p a n d o  that are within the 
bounds of the uniform hyperprior distributions. This shows that the selected bounds of hyperprior distributions are 
reasonable. W d U G S  does not produce an output of the population variability distribution and only provides the 
characteristics of the posterior distributions of p a n d o  separately. It may not be accurate to simply use the 
calculated mean values of p and 0 to define a population variability distribution, because p and o are correlated. 
Instead, a trick was used to generate information of the population variability distribution, by adding an artificial 
failure record with no failures and very small operating hours in the data set. Such a failure record is not expected to 
introduce any significant bias in the results of WinB'IJGS, and its posterior distribution is effectively the population 
variability distribution. The estimated population variability distribution has a mean value of 0.33, and 90% 
confidence interval of 8.8E-5 and 0.51. This is the base case shown in Table 2. 

Table 2: Characteristics of Population Variability Distribution 

Base 

Case Mean 5th Median 95th Error 

Factor 

0.33 8.8E-5 7.2E-3 0.51 76 

LNLI-1000000 samples 0.3 9.5E-5 7.5E-3 0.46 69 

LNL2-3000000 samples 0.34 9.5E-5 7.4E-3 0.44 68 

LNG 0.32 8.90E-05 7.80E-03 0.47 73 

LUG 0.31 2.10E-04 1.10E-02 0.53 50 

0.09 3.4E-7 1.30E-02 0.41 1098 
GEG-100000 Samples 

GEL 0.11 l.lE-7 1.30E-02 0.52 2142 

GUU - 0.15 2.OE-8 1.30E-02 0.77 1962 -- 

4. SENSITIVITY CALCULATIONS 

A few sensitivity calculations were perFarmed using different distribution types, and different hyperprior 
distributions. The results of the sensitivity calculations are shown in Table 2 using different models described below, 
where L represents lognormal distribution, N the normal distribution, G the gamma distribution, E the exponential 
distribution, and U the uniform distribution. The first capital letter indicates the type of the distribution of the 
population variability curve, and the second and the last letter indicate the distributions of its parameters. 

LNLI- In this sensitivity calculation, the failure rate is assumed to be lognormal distributed with its parameters 
p and o distributed normally, and lognormally, respectively. That is, p - Normal (p, , a, ), and o - Lognormal 

( p, , o, ). The prior mean values of p and o were calculated such that the lognormal distribution based on the 
- - 

mean values has a confidence interval of 1E-3 and 2E+O. Using equation (4) we again have o =2.3 1 and p =- 
- - 

3.1073, i.e., p = p, = -3.1073 and o = 2.31. The standard deviation o f p  , i.e., 0, , was selected to be 15. 

- 2 
0, According to cr = exp(p, + -), the parameters o f o  , p, and o, , were selected to be -3.66 and 3, respectively. 
2 
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The confidence intervals of the posterior distributions of p and o are well within the confidence intervals of the 
hyperpriors. The characteristics of the population variability distribution are very similar to those obtained with 
uniform hyperprior distributions. The mean values of the LNLl model changed significantly with different sample 
size in WinBUGS. The mean value is 0.374 for 10,000 samples, 0.3025 for 100,000 samples, and 0.2946 for 
1,000,000 samples. Thus, the calculation converged for 100,000 samples. Note that w ~ ~ B u G S  does not provide a 
tool to check convergence and the only way to assure the convergence is to compare the results using different 
sample sizes. 

LNL2 This sensitivity calculation is the same as LNLl except that the prior distribution of o was changed to a 
narrower distribution (smaller variance) which still covers the confidence interval of the posterior distribution of o 
obtained in case LNLl. The resulting confidence interval of o is practically the same as that obtained fiom LNLI . 
The characteristics of the population variability distribution are close to those of the previous cases, except the mean 
value which deviates fiom that of the base by a larger factor. Sensitivity calculations were perfarmed using this 
model by changing the number of samples. The results show that the mean value varies significantly, i.e., fiom 0.49 
with 10,000 samples, to 0.22 with 100,000 samples (0.4 with 1,000,000 samples), while other characteristics do not 
change very much. It is easy to conclude that it has not converged. Using more samples was necessary for the 
simulation to converge. The mean value becomes 0.3361 for 3,000,000 samples and 0.3384 for more than 4,000,000 
samples. It is shown in Table 2 that the mean value, median, and 5% and 95% percentiles of the population 
variability are very close to each other using LNLI and LNL2 models once the convergence is achieved. 

LNG- This sensitivity calculation is the same as LNL,l except that o is assumed to be gamma distributed with 

mean equal to 2.31. The two parameters p, ando, are assumed to be 2.3 1 and 1, respectively. The resulting 

population variability distribution is close to those of other cases. 

LtJG- It is assumed that the failure rate is of lognormal distribution with parameters p and o . The parameters 

p and o are uniformly and gamma distributed, respectively. That is, p - Unif ( aI , bl ), and (7 - Gamma( a, ,8 ). 
The prior mean values of p and o are selected as -3.1073 and 2.3103 such that the lognormal distribution based on 

the mean values has a confidence interval of 1E-3 and 2. We choose a, =-7, b, =-0.1. The standard deviation of p , 
i.e., o, , is selected to be 15. The parameters o f o  , p, , and om, a =0.023 103, and P =0.01. The calculation 

results are also close to previous results. 

GEG- This sensitivity calculation assumes that the failure rate is gamma distributed. The mean values of its 
hyperpriors are selected as 0.44 and 0.87, such that the prior distribution of the failure rate has a confidence interval 
approximately between 1E-3 and 2 (between 0.001 and 2.0337). a is assumed to be exponentially distributed with 

mean of 0.44. P is assumed to be gamma distributed with parameters ap and Pp equal to 0.01 and 0.0115 (such 

that the mean of /?  is 0.01/0.0115=0.87), respectively. With this choice of hyperpriors, the posterior distributions of 
the hyper parameters are covered by the hyperpriors. However, the population variability distribution is significantly 
different fiom the previous models. 

GEL- It is assumed that the failure rate is gamma distributed with parameters of a a n d p ,  which are of 
exponential and lognormal distribution, respectively. The mean values of its hyperpriors are still 0.44 and 0.87. 
Lognonnal distribution parameters are -2.1393 and 0.25 for ,8 such that the mean of P is around 0.87. The mean 
value of the PVC is only slightly different fiom that of the GEG model but significantly different from those of other 
models. 

GUU- It is again assumed that the failure rate is of gamma distribution with parameters of a a n d p .  The 

parameters of a and f l  are both uniformly distributed, respectively. That is, a - Unif ( a, , b, ) and p - Unif 

(a,, b, ). We choose a, =0.1, bl =l ,  a, =0.1, and b2 =2. The calculation shows that the mean value of PVC is 
slightly larger than those of GEG and GEL models but much smaller than those of other models. 
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An inspection of Table 2 shows that the mean values of failure rate of gamma distributions, i.e., using models 
GEG, GEL, and GUU, are close to each other and smaller than the mean values calculated using other models. 

It is our experience in the HBM analysis of many different digital components that when assuming the failure 
rate is gamma distributed, the resuilts tend to vary significantly with different values on the hyperparameters. This is 
consistent with the experience of the review of the SKI Data processing methodology [12], where a difference of a 
factor of 5 was observed using different hyperparameter values for gamma distribution. It was recommended that a 
lognormal distribution be used as a prior distribution instead in [lo]. Bunea et al. [lo] pointed out that the likelihood 
of a and p of gamma distribution has no maximum and is asymptotically maximal along a ridge, and improper 
hyperpriors do not always become proper when Bayesian updated [12]. As a result, a finite rectangle truncation of 
a a n d p  can not be defined to contain most of the hyperposterior mass, and diEerent choices could significantly 
shift the region in which the population variation is localized. This observation is very interesting and we would like 
to fbrther illustrate it theoretically by elaborating on Hofer's derivation [13]. 

If we assume that the failure rate is gamma distributed, the likelihood function of Equation (2) becomes [I0,13]: 

Hofer [ I  31 also demonstrated that an expansion of the individual terms in equation (4) is: 

far a >> x i ,  p >> t i .  The likelihood function in Equation (4) can thus be rewritten as: 

From equation (5), we can see that the likelihood function becomes the likelihood of a common incident rate 
model for large cx and p . To find the maximum value of the likelihood function, we take the derivative of (5) with 

a C x i  
respect to-. The maximum value of (5) occurs at - = - and converges to the asymptote that can be 

P s Cti 
a 

obtained by putting the value of- into (5) for larger a a n d p  . Hofer used this derivation to show the common 
P 

incident rate effect when a and p become large, but this also indicates that the likelihood function is improper and 

the result may not be different fiom the calculation performed by simply pooling all data together if a and /? are 
allowed to take an large values in numerical evaluations. 

Although it is possible that the hyperposterior might become proper by selecting the hyperpriors carefully [lo], 
improper hyperposterior is clearly a major drawback of choosing a gamma prior distribution. Moreover, the fact that 
the likelihood function reduces to a common incident rate function shows the tendency of eliminating the population 
variability, which makes the whole Bayesian update meaningless. Therefore, it appears reasonable to suggest not to 
use gamma prior distributions in either HBM or two-stage Bayesian method. 

On the other hand, using a lognormal distribution as the prior, the likelihood does peak. It is easy to select the 
truncation limits for the prior parameters p and 0 such that the peak of the likelihood is contained. Different 
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choices of prior parameters might have only very minor effects on the results as long as the peak is contained. The 
mass of the population variability can be captured easily withii the lu and o rectangle. This explains the significant 
gaps of numerical results for gamma and lognormal priors although we carefully selected prior parameters for both 
models. 

5. CONCLUSIONS 

The hierarchical Bayesian method was used to estimate the failure rates of digital components using the data 
collected in the PRISM database. The hyperpriors and their parameters were carefully selected, often by performing 
sensitivity calculations. The population variability curves obtained using the MCMC method are very wide with 
very large error factors. This is mainly due to the large variability in the different sources of data. A close inspection 
of the grouped data, which can be found in [14], shows that (1) in all the tables of the failure data, the time periods of 
the data collected differ ffom each other significantly. It is always true that the number of hours of operation of the 
military grade components is very short compared to those of commercial grade components; and (2) most of the 
data of military grade components does not have any failures in the time period it was collected. This is possibly 
because of the short time period that data was collected for the higher quality military grade components. 
Ftlrthermore, the failure rates could be very high if any failure occurs due to the extremely short time period. A real 
challenge for the failure rate prediction is the collection of the better data. 

The analytic work by Hofer et al. provided an explanation of the difficulties with using the gamma distribution 
in two-stage Bayesian analysis [lo], and our HBM analysis. The use of gamma distribution in such modeling should 
be re-considered. 
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