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t . DISCLAIMER 

.This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, nor any of their contractors, subcontractors or their employees, 
make any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or any third party’s use or the results of such use of any 
information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of author’s expresses herein do not necessarily state to reflect 
those of the United States Government or any agency thereof. 
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UNIFYING THE MECHANISMS FOR SINGLE SPIN 
ASYMMETRIES IN HARD PROCESSES 

FENG YUAN , 
RIKEN BNL Research Center, Building 51 OA, Brookhaven National Laboratory, 

Upton, NY 11973 

By studying the single transverse-spin asymmetry the intermediate transverse 
momentum region in hard processes, Drell-Yan a,nd SIDIS, we demonstrated that 
the two mechanisms proposed to  explain the large SSAs are unified. 

Single transverse-spin asymmetry (SSA) in high energy hadronic scat- 
tering has a long history. The size of the observed asymmetries came 
as a surprise and has posed a challenge for researchers in this field1. 
Two mechanisms have been proposed in QCD to explain the the large 
size of SSAs: One is the so-called (naive) time-reversal-odd (T-odd) and 
transverse-momentum dependent (TMD) parton distributions2; and the 
other follows the collinear QCD factorization approach and presents the 
SSAs in terms of spin-dependent twist-three quark-gluon correlation func- 
tions (ETQS niechani~m)~5~. 

In our recent publications5, we demonstrated, at the first time, that 
these two mechanisms are unified, by studying the SSAs at intermedi- 
ated transverse momentum in semi-inclusive DIS (SIDIS) and Drell-Yan 
processes. In both processes, At large 41 N Q, the ETQS mechanism ap- 
plies, and the resulting SSA is of twist-three nature. At small 41 << Q, 
a factorization in terms of TMD parton distribution applies ', involving 
in case of the SSA the Sivers functions. If 41 is much larger than A Q ~ D ,  
the dependence of these functions on transverse momentum may be com- 
puted using QCD perturbation theory. At the same time, the result ob- 
tained within the ETQS formalism may also be extrapolated into the regime 
A Q ~ D  << q 1  << Q, and we demonstrated that the result of this extrapo- 
lation is identical to that obtained using the TMD approach 5 .  In this 
sense, we have unified the two mechanisms widely held responsible for the 
observed SSAs. 

1 
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In this talk, I will present the result for SIDIS. In single transverse-spin 
polarized deep inelastic scattering, the relevant leptonic tensor is defined as 
L p ” ( l ,  q) = 2 (Pl’” + Pl‘” - 9p’Q2/2), and the hadronic tensor W p ”  can 
be decomposed into W p ”  = C;+Fp”Wi 7.  In this study, are primarily 
interested in hadron production in an intermediate transverse momentum 
region, AQCD << P h l  << Q,  and we will investigate the limit P h i  << Q of 
the ETQS result. In that limit, VI alone provides the leading behavior, so 
that all other terms than VI will be neglected in the following discussions. 

After summing over the contributions from all diagrams, we find the 
transverse-spin dependent cross section can be written as, in the limit of 
AQCD << Phi Q ,  

L 

where 

with Zg (1 - E)x = z - X B .  

On the other hand, when P h l  << Q, we know that a transverse- 
momentum-dependent factorization applies 6. Following this reference, the 
differential SIDIS cross section may be written as 

‘where 4s and cjh are the azimuthal angles of the proton’s transverse po- 
larization vector and of the transverse momentum vector of the final-state 
hadron, respectively. F$$ has the following factorized form 6: 

FF$ = e: 1 d 2 i l d 2 p i d 2 x i i l  &lqT ( X B ,  kl) IMP (5) 
q=u,d,s, ... 
x B ( Z h , p l )  (S(xl))-’H$i (Q2) d2) ( z h i l  +$l +xi - 3 h L )  7 
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Figure'l. The  factorization arguments for  the consistency between the twa  mechanisms: 
left is a generic Feynman diagram in the twist-three quark-gluon correlation formalism; 
and the righ;t is the corresponding T M D  factorization f o r m  decomposed into different 
regions, (a) the Sivers function, (b) the fragmentaion function, and (e) the soft factor. 

h -+ 
where &J- is a unit vector in direction of PhJ-, and @ and qT are unpo- 
larized quark fragmentation function and the Sivers TMD quark distri- 
bution, respectively. We can compute the various factors in the factor- 
ization formula@) at hrge transverse momentum (& >> AQCD). The 
unpolarized quark fragmentation functions is expressed in terms of the k i -  
integrated one, 

where a(z) is the integrated quark fragmentation function and i = zh/z. 
Similarly, the Sivers function at large ki can also be calculated pertur- 

batively. Because it is (naively) time-reversal-odd, the only contribution 
comes from the twist-three quark-gluon correlation function TF. Carrying 
out the calculations accordingly, we find 

9 

where A has been defined in Eq. (3) and where ( = X B / X .  The Siver func- 
tion for the Drell-Yan process can be calculated similarly, which is found 
to be the same with an opposite sign5, as expected from its definition8. 
This sign difference comes from the different directions of the gauge links 
in the two processes: in DIS the gauge link arises from final-state interac- 
tions and runs to positive light-cone infinity, while in Drell-Yan it is due to 
initial-state interactions and goes to -co. 

In order to calculate the explicit Phi-dependence generated by the TMD 
factorization, we let one of the transverse momenta k ~ ,  pi, and X'J- be of the 

+ 
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order of & and the others much smaller. When x ’ l  is large, for example, 
we neglect zl and $1 in the delta function, and the integrations over these 
momenta yield either the ordinary quark distribution, or a k~ moment of 
the Sivers function. The latter is related to the twist-three correlation 9: 

In case X ’ l  is neglected in the delta function, one makes use of the relation 
J d2X’lS(Xl) = 1. Substituting the above equations into the factorization 
formula (5), it is easy to see that we reproduce the twist-three result in 
Eq. (3). This consistency can also be illustrated from the diagrams in Fig. 1, 
where we showed a generic twist-three Feynman diagram can be factorized 
into various factors in the TMD factorization formula (5), according to 
different momentum region of the radiated gluon: parallel to the polarized 
proton or the final state observed hadron, or soft. 

F. Y. is grateful to RIKEN, Brookhaven National Laboratory and the 
U.S. Department of Energy (contract number DEAC02-98CH10886) for 
providing the facilities essential for the completion of their work. 
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