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Abstract 
. I review various strong field problems in field theory. I start with 

one of the earliest examples, a high 2 Coulomb field. I discuss tun- 
neling and thermally activated transitions in field theory. The latter 
problem may have applications to electroweak bar yogenesis. Finally, 
I discuss the Color Glass Condensate, a form of high energy density 
gluonic matter which controls the high energy'limit of. QCD, and the 
Glasma which it makes in the collision of high energy nuclei. 

1 High Z Atoms 
Atoms with electric charge 2 which is sufficiently large can induce sponta- 
neous pair production. This happens when the potential is large enough so 
that 

For such large fields, the Coulomb field of the nucleus can be shielded by 
spontaneous pair production. When m = V(l/m), Za = 1. there is indeed 
a singularity of the Dirac equation at this crtical value of the charge. Walter 
Greiner and colleagues were the first to understand that this singularity is an 
artifact of treating the charge in the Coulomb problem as pointlike. Indeed 
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Figure 1: (a) The singularities of the electron Green's function. (b) The 
singularities as Z increase. (c) The singularities after the field is strong 
enough to make pairs. 

the true singularity corresponding to pair production may be found by treat- 
ing the nuclear charge distribution as extended, and occurs. at a larger value 
of Za  In figure 1 a, the singularity structure of the electron Greens function 
is shown. The cuts correspond to the continuum of positrons and electrons. 
The poles are bound states of electrons. As the field increases, Fig. 1 b, the 
poles move corresponding to more deeply bound states. Above some critical 
Z, the lowest bound state moves into the second Riemanian sheet through 
the positron cut. It corresponds to a resonance in positron atom scattering, 
where a positron scatters from a permanently bound electron and annihilates, 
followed by spontaneous pair production in the supercritical field, which then 
results in a continuum positron plus an electron permanently bound to the 
atom. 

This supercritical field problem was to my knowledge first understood by 
Walter Greiner, and serves as the paradigm for many problems associated 
with the spontaneous decay of an unstable vacuum.[l] 

The Frankfurt group suggested Coulomb barrier energy heavy ion colli- 
sions to  test these ideas. The idea was that the ions would collide and stay 
close together long enough to produce pairs.[2] A program was established 
at GSI, and the results to date have in my opinion been inconclusive. 

2 



Muon Orbit - 1/& m p  

Figure 2: A high Z muonic atom surrounded by electrons with a captured 
muon. 

2 Strong Constant Electric Fields 
If there is a constant electric field of large enough extent, pairs will always 
be made in this and it will short itself out.[3] The criteria is that 

In QCD, this is taken as a model for how the color electric fields produce 
quark pairs, so that one can never see an unconfined color field. The electric 
field between source of color charge grows linearly in the absence of quarks 
which may short out the field. This has a consequence that the vacuum is a 
conductor of color electric charge (m is a quark gluon plasma). If one tries 
to separate a par of color charges to long distances, then they spontaneously 
generate a current between them which neutralizes their field. 
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Figure 3: Vacuum polarization to all orders in Za. 

3 Muonic Atoms 
Muonic atoms provide clean tests of &ED in high Z fields. This is because, 
as shown in Fig. 2, the muon can orbit far inside the first Bohr orbit of the 
electrons. This is because its mass requires that its deeply bound states be 
at distances of order r - l/Zarn,, and m, >> me Miklos Gyulassy and I 
got to know one another as graduate students because we were both working 
on the problem of vacuum polarization in these strong fields. At the time, 
there was a discrepancy between theory and experiment. It later turned out 
that the experiments were wrong. In any case, we both carefully recomputed 
the vacuum polarization and accounted for finite size of the nucleus. [4]-[5] 
This was also how both of us got to  know Walter, since he was the worlds 
expert on high Z atomic systems. 

The computation was not easy, and involved computing a loop diagram 
to all orders in the Coulomb field, as shown in Fig. 3. 
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4 The Bounce 
In field theory, one can imagine that for reasons of history, one is in the wrong 
vacuum. One can compute the rate of tunneling from the false vacuum into 
the correct one. If one uses the WKB approximation, the rate of tunneling is 
given by e-S, where S is the Euclidian action for the classical solution which 
takes one between the false vacuum, bounces off of the upside down potential 
corresponding to entering the true set of states associated with the correct 
action and returning to the also vacuum again.[6] 

Tunneling Through a Barrier 
The Bounce 

Figure 4: The bounce configuration. 

This prescription is easy to understand: The Euclidean action arises be- 
cause in tunneling, the Schrodinger wavefunction no longer oscillates, it ex- 
ponentially decays. therefore t + it. The equations of motion, F = mu, 
therefore correspond to an upside down potential, and one has motion in 
the forbidden region. The bounce solution is when inserted into the action 
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gives precisely twice the WKB factor associated with tunneling, and therefore 
describes the rate of false vacuum decay. 

This is a strong field problem, since for weakly coupled theories, a classical 
solution has a field which is of order l /g,  where g is the interaction strength. 
The weak coupling limit corresponds, to the classical many quanta limit, and 
the typical number of quanta are of order n - l /a .  False vacuum decay rates 
are therefore of order e-&/9'. 

5 Instantons and Sphalerons 
In gauge theories such as QCD, there is multiple vacuum degeneracy. This 
degeneracy is labeled by the Chern-Simons charge number NCS, as shown in 
Fig. 5. The various minima can all be mapped into one another by a gauge 
rotation. This gauge rotation has non-trivial topology. The internal space 
of the Yang-Mill field is mapped onto the coordinate space, and the winding 
number for this map is Ncs 

I V  

Q cs 

Figure 5: The energy of the as a function of NCS. 

At zero temperature, transitions are made by quantum tunneling as 
shown in Fig. 6 a. The tunneling is calculated by computing the Euclidean 
action in configuration space. The classical solution which makes the transi- 
tion between two vacuum configurations is called the instanton.171 The rate 
associated with this transition is exponentially small in the inverse coupling, 
R - e-K/g2 

At finite temperature, thermal excitation can allow transitions over the 
top of the barrier which separates the various minima, as shown in Fig. 6 
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b.[8]-[lo] The rate is e-Ebarrier/T The energy of the barrier is determined by 
computing a stationary but unstable solution to the equations of motions 
which correspond to the classical fields localized at the top of the barrier. 
Such a solution is called the sphaleron. The energy of this barrier is of order 
the typical dimensional scale of the theory, divided by g2. For example, 
in electroweak theory, this is of order Mwealc/aiwealc N 10 TeV. Note that 
there is always some high temperature where the rates of thermally activated 
transition become of order 1. 

a 

Q cs 

OCD or EW Instanton FiniteT Sphaleron Transitions 

b 

Figure 6: (a) The instanton. (b) The spheleron. 

In gauge theories, changes in topological charge result in anomalous vi- 
olation of conserved quantum numbers. To see this, look at Figure 7. The 
spectra of the Dirac equation is the same in both gauge related minima. It 
deforms continuously as we slowly move from one minima to the other and 
one level in fact crosses zero as we go over the maximum which separates 
the vacua. When the theory is quantized, negative energy states are filled, 
and positive energy states are empty. Positive energy states are interpreted 
as physical particles. We see from the figure that the deformation creates 
a positive energy state. Thus a particle has been made, like in the case of 
strong Coulomb fields. Such a particle production typically violates some 
underlying symmetry of the theory. In electorweak theory, it is baryon plus 
lepton number conservation. In QCD, it is helicity conservation. 
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Figure 7: The generation of an anomaly. 

6 The Color Glass Condensate and the Glasma 
In ultrarelativistic heavy ion collisiions, the density of gluons is very high. 
This requires the interactions strength, as << 1, becomes weak. The phase 
space density of gluons becomes large 

1 
N -  

d N  
dyd2pTd2rT as 

This has been described in much detail elsewhere.[ll]-[12] I will not review 
this here, except to say that these gluons make a highly coherent conden- 
sate of strong color fields (characterized by a small interaction strength). 
The computation of properties of this condensate involves treating the Color 
Glass field as strong, and doing small fluctuations on top of this field. This 
lets one compute quark production in analogy to how Walter computer pair 
production long ago for strong Coulomb fields. [13] 

It also turns out that in collisions, strong longitudinal electric and mag- 
netic fields are produced, [14]-[16] The decay of these fields is the physics 
of the Glasma, a state intermediate between the Color Glass Condensate 
and the Quark Gluon Plasma. Such a Glasma might be responsible for early 
thermalization reported at RHIC. It also has a large density of Chern-Simons 
charge, which might manifest itself in CP or P odd observables. 
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It has also been suggested that the effects of rapid. thermalization, such as 
strong elliptic flow patterns, may also be associated with the Glasma. This 
is because the Glasma contains a highly coherent strong gluon field. The 
interactions with this field are very rapid, and of the order of the time it 
takes light to travel the saturation distance scale t - . lFm/c .  This might 
take place by various instabilities of the classical equations which describe 
the evolution of the Glasma.[17] 

7 Summary 
The study of strong fields in quantum theory has become a rich and robust 
field. From a personal perspective, what is better is that it gave me a chance 
to get to know and become friends with Walter, Miklos, Horst and the young 
people Walter. has produced at Frankfurt. 
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