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COMMENT ON THE HEALY'S SYMPLECTIFICATION ALGORITHM" 

W. W. MacKayt , BNL, Upton, NY 11973, USA 

Abstract 
For long-term tracking, it is important to have sym- 

plectic maps for the various electromagnetic elements in 
an accelerator ring. While many standard elements are 
handled well by modern tracking programs, new magnet 
configurations (e.g., a helical dipole with a superimposed 
solenoid[ I]) are being used in real accelerators. Transport 
matrices and higher terms may be calculated by numeri- 
cal integration through model-generated or measured field 
maps. The resulting matrices are most likely not quite sym- 
plectic due to numerical errors in the integrators as well as 
the fieldmaps. In his thesis[2], Healypresented a simple al- 
gorithm to symplectify a matrix. While the method is quite 
robust, this paper presents a discussion of its limitations. 

INTRODUCTION 
A nice algorithm for tweaking an almost symplectic ma- 

trix into a symplectic matrix has been given by Healy in 
his thesis[2]. In order to understand the limitations of 
the method, it is worthwhile to present a derivation of the 
method, particularly since it has sometimes been quoted 
incorrectly[3]. 

INVERSION FORMULAE 
Given two square matrices S and W of the same rank 

with S2 = -I where I is the identity matrix then 

(I - WS)S(I + SW) = (S + W)(I + SW) 
= ( S  - W)(I - SW) 
= (I + WS)S(I - SW). (1) 

A square 2 n  x 2 n  real matrix, My is symplectic in a par- 
ticular representation of the group S p ( 2 n ,  T )  with respect 
to the metric S, if it satisfies 

MTSM = S. (2) 

In accelerator physics we usually require S to be a block 
diagonal 2 n  x 2 n  matrix with 

(! -:) 
in the diagonal blocks. It is worth noting that S has the 
properties 

ST = S-' = - S ,  and S2 = -1. (4) 
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Theorem: 
form 

if and only if W is a symmetric matrix, and where S is 
the metric for the selected representation of the symplectic 
group. This statement must be qualified with the require- 
ment that 

A discussion of the restrictions will be given later. 

Proof: 

A symplectic matrix M may be written in the 

M = (I + SW)(I - SW)-', (5) 

II-SWl#O. (6) 

Show that if W is symmetric, then M is symplectic: 

M ~ S M  
= (I - wTsT)-1(1+ WTST)S 

= (I + Ws)-l(I- WS)S(I + SW)(I - sw)-l 
= (I + ws)-l(1+ WS)S(I - SW)(I - sw)-l 

x (I + SW)(I - sw)-1 

= s. (7) 

Therefore M is symplectic if W is symmetric. 
Now let us assume that W is not symmetric, so it can be 

written as the sum of symmetric and antisymmetric matri- 
ces: 

where P = PT and Q = -QT. 
W = P + Q ,  (8) 

M ~ S M  = s 

= (I- wTsT)-l(s + P  - Q - P - Q + W ~ S W )  
= (I -WTST)-l(I +WTST)S(I + sw)(I-Sw)-I 

x (I - sw)-l 

x (I - sw)-l 
= (I - WTST)-'[(S - WT)(I - SW) - 4Q] 

= S - 4(I- WTST)-lQ(I - SW)-l. (9) 

So assuming that the inverses in the last line exist then Q = 
0. (Actually the inverse (I - WTST)-l must exist if its 
transpose (I - SW)-' exists.) This proves the theorem. 

Given the symplectic matrix My form a new matrix 

v = S(I - M)(I + M ) - ~ .  (10) 

Then 

V+VM = S - SM. 
(S +V)M = S - V  

M = (S + v)-l(s - V). (11) 



Taking the transpose gives is symplectic and obviously has 11% MI = 0, so we cannot 
hope to construct a symmetric V in this case. 

(12) Consider the following perturbation of this matrix MT = (ST - VT)(ST +VT)-l ,  

and we can calculate the inverse via 

M-' = SMTST = S(ST - VT)(ST + VT)-'ST 
= ( I  - SV)(I  + s v ) - I .  (13) 

1 + 6  0 0 0 
0 1 - 6  0 0 

0 -1 0 
M = [  0 0 0 0 -1 

Inverting this yields 
Then 

M = ( I  + SV)(I  - SV)-', (14) 

which is identical in form to Eq. 5, so V = W. 

THE SYMPLECTIFICATION 0 0 0 2  
f 0 6 - 2  0 o\ ALGORITHM 

1 -6-2 0 
=3( 0 

The symplectification algorithm for an almost symplec- 
tic matrix M is to calculate V by the above Eq. 10 (assum- 
ing that 11 - MI # 0), then create a symmetric matrix 0 0 0 0  

V+VT W=- 
2 

which then may be used to calculate a new matrix 

M' = ( I  + S W ) ( I  - SW)-', (16) 

assuming that 11 - SW I # 0. This new matrix M' must be 
symplectic by the previous theorem, and it should be close 
to the original matrix M. Problems with the method arise 
in constructing V when M is an  exceptional^' matrix[4], 
i. e., 11 + MI = 0. This will happen when M has at least 
one eigenvalue equal to -1. If 11 - MI # 0, then since 
-M must also be symplectic, we can define the new almost 
symmetric matrix by 

While for nonzero values of 6 this exists and is symmetric, 
the limit of 9 blows up as 6 goes to zero, however 

( 0  0 0 0) 

Taking the limit gives back the unperturbed matrix 

1 0  0 0 
0 1  0 0 
0 0 - 1  0 
0 0  0 -1 

G = S ( I  + M ) ( I  - M)-' 

A .+.T 

(17) 

(18) 

lim M' = with 6-0 

w=- 
2 .  

M' = -(I + S G ) ( I  - S G ) - ' .  (19) as expected. 
Consider a different perturbation of the matrix M: 

Now we must have 11 - S G l  # 0, and 11 - MI # 0. 
/ 1 + 6  0 0 o \  

BREAKDOWN OF THE METHOD 
If M has at least one eigenvalue equal to +1, and another 

equal to -1 then 

O I 1 (27) M = I  n n -1 0 
0 1 + 6  0 

" ( i  0 

then J I -MI=JI+M]=O.  ' (20) 
and this method may not work. 2 + 6  0 0 0 

0 2 + 6  0 0 
0 0 0  i:: 0 0 0  

For an example of this, we must be considering a matrix 
for at least two planes, since the symplectic matrix must 
have pairs of eigenvalues equal to 1 and -1. The matrix 

9 = 

0 -1) 



Again for nonzero values of 6 this exists, but is antisym- 
metric so that 

/o 0 0 o\ 

This leads to M’ = I, so 

lim M’ = I # M, 
6+0 

which might be unexpected, and is quite different from the 
original unperturbed matrix. 

COMMENT ON AN ERROR IN REF. 3 
In Eq. 14.13 of Ref. [3], Iselin states that a symplectic 

matrix F = exp(SG) with a symmetric matrix G can be 
written in the form 

F = [I + tanh(SG/2)][1- tanh(SG/2)]-’ 
= (I + W)(I - w)-’, -+ Incorrect (31) 

where W is symmetric if and only if F is symplectic. This 
far second line is incorrect, and is probably just a typo. 
(Ref. [3] is only available in an unfinished draft, so we must 
be careful when using it as a source.) He should have re- 
placed W by SW in this equation. The middle part of the 
equation is correct in most cases and basically comes from 

l+tanh-)  X (1-tanh-) 5 -1 

2 2 
cash 2 + sinh 3: 

cosh W - sinh W 
ex = 

1 L 

(32) 
and the fact that Hamilton’s equations may be written in 
the form 

(33) 
d X  
ds 
- = -SCX = SGX, 

where 

(34) 

Hamilton’s equations give the general form of the genera- 
tors for this matrix representation of the symplectic group 
Sp(2n, r) with the metric S. For real z, Eq. 32 is analytic 
since I tanh(z/2) I < 1, however for complex z the hyper- 
bolic tangent can take on values of 1, so that Eq. 32 has 
poles. In the case where z = SG is a generator of a sym- 
plectic matrix, then the modified equation becomes 

eSG = [I + ta.nh(SG/2)][1- tanh(SG/2)]-’, (35) 

and this factorization will not wosk when tanh(SG/2) has 
an eigenvalue equal to I. We should also note that since 
tanh(z) = - tanh(-a) is an odd function it can be ex- 
panded as 

j = O  

so that 

= S tanh (7) 
2 

= [tanh ( y )  S] = [s tanh (?)IT (37) 

From this it should be obvious that the last part of Eq. 3 1 
should have been written as 

(I + S W ) ( I  - s w ) - l  (3 8) 

for symmetric W. 

S U O  AND SOm) MATRICES 
As an aside, it is perhaps worth mentioning similar inver- 

sion formulae for special unitary and orthogonal matrices. 
A special unitary matrix M must satisfy the formula 

M+M = I, (3 9) 

where the dagger represents the complex conjugate of the 
matrix. The corresponding inversion formulae are 

V = (I - M ) ( I  + M)-’ and (40) 
M = (I + V)-l(I  - V), (41) 

where V is antihermitian: V t  = -V. An almost anti- 
hermitian matrix V may be tweaked into an antihermitian 
matrix via the equation 

Special orthogonal matrices must satisfy the same for- 
mulae since they form a real subgroup of the special unitary 
matrices; in this case, the dagger just becomes the trans- 
pose operator. 
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