Crystalline Beams At High Energies

J. Wei

Presented at the 10th Biennial European Particle Accelerator Conference (EPAC)
Edinburgh, UK
June 26 - June 30, 2006

June 2006

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CRYSTALLINE BEAMS AT HIGH ENERGIES*

Jie Wei1, Brookhaven National Laboratory, USA
Hiromi Okamoto, Shuta Ochi, Hiroshima University, Japan
Yosuke Yuri, Japan Atomic Energy Agency, Japan
Andrew Sessler, Lawrence Berkeley National Laboratory, USA
Shinji Machida, Rutherford Appleton Laboratory, United Kingdom

Abstract

Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, crystalline beams can only be formed at energies below the transition energy (\(\gamma_T\)) of the accelerators [2]. In this paper, we investigate the formation of crystals in a high-\(\gamma_T\) lattice that also satisfies the maintenance condition for a crystalline beam [3].

INTRODUCTION

For high-energy colliders, the luminosity is usually limited by the Coulomb interactions between particles of either the opposite beams (the beam-beam effect) or the same beam (intra-beam scattering) causing growth in the beam emittance. Beam cooling is often considered to reduce the emittance and enhance the luminosity performance. Crystalline-beam state is the ultimate state when the beam emittance approaches zero.

Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, present studies on beam crystallization is limited to very low energies, due partly to lack of effective cooling techniques at high energies, and partly to conditions that prohibits crystal formation above the transition energy of the accelerator ring [2]. In this paper, we explore crystal formation in ring lattices where the transition energy is made either much higher than the transverse tunes of the ring or imaginary.

CONDITIONS FOR CRYSTALLIZATION

The Hamiltonian of particles in an AG-focusing machine can be expressed in terms of the action-angle variables \(J_x\), \(J_y\) and momentum \(P_z\) as [4]

\[
\mathcal{H} = \nu_x J_x + \nu_y J_y + \frac{1 - \gamma^2 F_z}{2} P_z^2 + \mathcal{V}_C,
\]

(1)

where the transverse tunes \(\nu_x\) and \(\nu_y\) are positive for a stable machine lattice, \(\mathcal{V}_C\) is the Coulomb potential, and \(F_z\) is related to the normalized horizontal dispersion \(D\) as [4]

\[
F_z = \begin{cases}
D + DD'' + (D')^2 & \text{(bending section)} \\
DD'' + (D')^2 & \text{(straight section)}
\end{cases}
\]

(2)

The average value of \(F_z\) can be obtained as

\[
\langle F_z \rangle = \frac{\rho}{2\pi R} \int F_z dt = \frac{\rho}{2\pi R} \int_{\text{bend}} D dt \equiv \frac{1}{\gamma_T^2},
\]

(3)

where \(\gamma_T\) is the transition energy of the machine. For a stable crystalline beam, the Coulomb force must on the average provide focusing in the azimuthal direction,

\[
\mathcal{V}_C \approx \frac{k_s}{2} \bar{z}^2, \quad \text{for} \quad \bar{z} \ll \Delta_z,
\]

(4)

where \(k_s \geq 0\) is the effective Coulomb focusing strength. It can thus be seen from Eqs. 1 and 3 that the azimuthal motion will not be bounded if \(\gamma \geq \gamma_T\). Hence, the crystalline beam can not form when the beam energy \(\gamma\) is above the transition energy \(\gamma_T\). This is the so-called crystal formation condition or the first condition [2]. Eq. 1 also indicates that crystals may be formed if the transition energy is imaginary (negative momentum-compaction).

The second condition is on the crystal maintenance. The condition derived from the linear-resonance criteria states that the frequency of ring lattice variation seen by the circulating crystalline beam must not equal the sum of any two phonon frequencies of the crystal [5]. This condition is satisfied for beams of any density when the transverse phase advance across the lattice superperiod is less than \(\pi/\sqrt{2}\) (or \(127^\circ\)) [3, 5].

Considering more practical aspects of cooling a high-temperature beam and the need to suppress linear resonances over the whole density and temperature region, a more stringent version of the second condition is that the transverse phase advance across the lattice superperiod is less than \(\pi/4\) (or \(90^\circ\)) [6, 7].

HIGH-\(\gamma_T\) LATTICES

3-cell Missing-dipole Lattice

A conventional method to achieve small or negative momentum-compaction (high or imaginary \(\gamma_T\)) is to use modules of three FODO cells with missing dipole in the middle cell (Fig. 1 [8, 9]). The horizontal phase advance of about \(90^\circ\) per cell excites the dispersion oscillation so
that high dispersion occurs only at locations of missing dipole (Eq. 3). However, this lattice is not suitable for beam crystallization since the phase advance (~270°) across the module is much higher than 127°.

MOLECULAR-DYNAMICS RESULTS

We evaluate the formation and stability of crystalline beams with various types of lattices using the molecular-dynamics (MD) computer simulation. With the 3-cell missing-dipole lattice, only 1D crystalline string may be formed. In the following, we discuss three cases of the negative-bend lattice: imaginary-γT with combined-function magnets and phase advance per cell below 90°; high-γT with combined-function magnets and phase below 90°; and high-γT with separate-function magnets and phase above 90°.

24Mg^+ ions of various densities are stored in rings each consisting of 12 superperiods. Positive and negative bends are of equal bending radius. Strong, tapered cooling is applied [12]. If a crystalline state is reached, the cooling force is removed to test the stability of the formed crystal.

Imaginary-γT Lattice

Lattice functions of each of the 12 ring superperiods is shown in Fig. 3. The ring circumference is 84 m. The phase advances per cell are μx = 87° and μy = 87°. The tunes (μx, μy) are (2.9, 2.9). The transition energy is imaginary, γT = i23.

Fig. 4 shows a stable, multi-shell (3D) crystal formed at energy γ = 1.45 with a line density of 2.1×10^7/m. Formation of stable 3D crystals becomes increasingly difficult for higher beam energies. When γ is higher than the horizontal tune μx of the ring, only 2D crystals are formed. Due to reduction of the effective horizontal focusing (effective focusing strength is μx^2 - γ^2 in the horizontal and μy^2 in the vertical directions under the smooth approximation [5]), the zig-zag structure extends in the horizontal plane. Fig. 5 shows a stable, 2D crystal formed at γ = 5.5 with a line density of 1.6×10^6/m.
Figure 4: A multi-shell crystalline beam formed with the lattice in Fig. 3 with $\gamma = 1.45$ and density 2.1×10^7/m.

Figure 5: A 2D zig-zag crystalline beam formed with the lattice in Fig. 3 with $\gamma = 5.5$ and density 1.6×10^6/m.

High-γ_T, Low-tune Lattice

With a structure similar to Fig. 3, a high-γ_T lattice is used for the MD study. The phase advances per cell are $\mu_x = 88^\circ$ and $\mu_y = 85^\circ$. The tunes (ν_x, ν_y) are $(2.9, 2.8)$. The transition energy is real, $\gamma_T = 102$. The crystal properties are similar to those formed with the imaginary-γ_T lattice.

High-γ_T, High-tune Lattice

Fig. 6 shows a lattice with separate-function positive and negative bending and defocusing magnets. The phase advances per cell are $\mu_x = 96.6^\circ$ and $\mu_y = 90.3^\circ$ exceeding the 90$^\circ$ value. The tunes (ν_x, ν_y) are $(3.21, 3.01)$. The transition energy is real, $\gamma_T = 165$.

The crystal properties are similar to those formed with lattices of cell phase advance below 90$^\circ$. At a high energy, stable 2D structures in the horizontal plane are formed at $\gamma = 9$, much higher than the transverse tunes.

DISCUSSIONS AND SUMMARY

We develop low-momentum-compaction lattices that would allow the formation of crystalline beams at high energies (γ higher than the machine tunes). Lattices containing negative bending are adopted to keep the transverse phase advance per lattice superperiod below $\pi/\sqrt{2}$.

REFERENCES