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Ongoing calculations on the QCDOC supercomputer at Brookhaven National Laboratory 
and the APEnext installation at the University of Bielefeld aim to determine the critical 
temperature of the QCD phase transition as well as the equation of state with almost realistic 
quark masses. We will discuss preliminary results of the quark mass and cut-off dependence 
of order parameters, susceptibilities, static quark potentials and the critical temperature in 
(2+l)-flavor QCD. All these quantities are of immediate interest for heavy ion phenomenology. 
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1 Introduction and Lattice Setup 

The calculations of the QCD pha.se diagram and bulk thermodynamic quantities from first 
principle give input for Heavy Ion Phenomenology, Cosmology and Astrophysics. In pa,rticular, 
it is mandatory to improve estimates on t.he critical temperature (T,) to make contact with HIC 
Phenomenology. Since for the critical energy density (E,) we have E, N T:, a small error on T, 
is important. Moreover, an interesting question is whether or not the freeze-out temperature in 
HICs is connected to T,. 

’ 

The grand ca.nonica.1 QCD partition function on the lattice is given by the integral 

where u is the lattice spacing, urn, and urns are the light and strange quark masses respectively 
(given in lattice units), N, and Nt are the number of lattice points in spacial and temporal 
direction. M is the fermion matrix and U are the gauge fields, located on the links between 
the lattice points. SG is the gauge part of the action and P is the coupling which controls the 
lattice spacing. The lattice action we use is especially designed for finite temperature QCD 
Simulations, where the lattice spacing is usually rather large. In the gauge sector we use a 
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Figure 1: The light quark and strange quark chiral condensate at (left) and its susceptibility (right) as a function of 
the coupling. The strange quark chiral condensate was multiplied with a factor 2 for better visibility. Calculation 
have performed with various values of the light quark mass but fixed strange quark mass. Lattice sizes are g3 x 4 

and lG3 x 4. 

(2 x 1)-Symanzik improvement scheme which eliminates all cut-off effects of order O(a2). For 
the fermions we use the staggered fermion formulation. On top of that we add an improvement 
term which restores the rotational symmetry of the free quark propagator on the lattice up to 
order O(p4) in the momentum '. In order to improve the flavor symmetry, which is violated in 
the staggered fermion formulation, we smear each link of the gauge field which is used in the 

. standard part of the fermion action by its surrounding three link staples (p4fat3). The p4fat3 
action was used for thermodynamical calculation earlier 213, reports of the ongoing project have 
been given by C. Jung4 and M. Cheng5 

We perform simulations with 2 light and one heavy quark flavor. The strange qua.rk mass 
is always fixed to the physical value, whereas the light quark mass is varied in the range of 
m,q = 0.05ms - 0 . 4 ~ ~ ~ .  The lattices have temporal extent Nt = 4,6, which corresponds at the 
critical temperature (T,) to a lattice spacing of a M 0.13 fm and 0.22 fm respectively. The 
lattice extent in spacial direction is N,  = 8,16,32. To determine the scale, we perform zero 
temperature simulations on 163 x 32 lattices. These calculations are being performed on the 
QCDOC computers at BNL and the APEnext insta.llation at the University of Bielefeld. 

2 Order Parameters and Susceptibilities 

Connected to chiral symmetry. breaking is the chiral condensate. In the staggered formulation 
of lattice QCD it is given by 

where MKS is the staggered fermion matrix. In the limit of vanishing quark masses the chiral 
condensate is an exact order parameter of the sponta.neous chiral symmetry breaking. Its ex- 
pectation value is non-zero below the critical temperature (T,) and zero above. At finite quark 
ma,Sses where the chiral symmetry is explicitly broken, the chiral condensate still signals the 
transition by a rapid change. In Fig. 1 we show the expectation value of the light quark chiral 
condensate ( (44))  and strange quark chiral condensate ((3s)) as function of the coupling /3 (left) 
and its susceptibility (right) on Nt = 4 lattices. Results on the chiral susceptibility on Nt = 6 

. lattices are shown in Fig. 2(left). The results have been interpolated in the coupling by using 
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Figure 2: The light quark chiral susceptibility as a function of the coupling measured on 163 x 6 lattices with 
three different light quark maSses (left). The zero temperature static quark potential in units of the Sommer 
scale. Results for different light quark masses and lattice spacings are plotted seem to fall on one universal curve. 

the multi-histogram re-weighting technique6. Since the coupling controls the lattice spacing a it 
thus also controls the temperature, which is given by T = 1/N&. Large couplings /3 corresponds 
to large temperatures T and small couplings to small temperatures. At the coupling where the 
condensate shows the most drastic change, the corresponding susceptibility peaks. We define 
the critical coupling Pc by the peak position of the chiral susceptibility. In Fig. 1, we compare 
results for different quark masses. The calculation with mq = 0.05rn, is roughly at the physical 
point. A clear dependence of the critical coupling (critical temperature) on the quark mass can 
be observed. The peak positions of the light quark and strange quark susceptibilities do however 
coincide within our statistical accuracy. Which indicates that chiral symmetry restoration for 
light and strange quark occurs at the same temperature. The strength of the transition decreases 
with increasing quark masses, this is reflected in a decreasing peak height of the susceptibilities. 

In Fig. 1 we also compare results form 83 x 4 and 163 x 4 lattices. Since we see almost no 
volume dependence the results suggest that the transition is in fact not a true phase transition 
in the thermodynamic sense but a rapid crossover. 

3 

On 163 x 32 lattices we calculate the zero temperature static quark potential for all, quark mass 
values at their corresponding critical couplings. The Sommer scale rg is defined as the distance 
where the derivative of the potential take a certain value, to be precise it is defined as 

Scale Sett ing and the Static Quark Potential 

The Sommer scale is often used to set the scale in lattice calculations, a phenomenological value 
is rg = 0.5 fm. In Fig. 2 (right), we plot the static qua.rk potentia.1 for different quark masses 
and lattice spacing in units of the Sommer since all results seem to fall on a universal curve, the 
static quark potential shows almost no quark mass or cutoff dependence. In order to remove 
short range lattice artifacts, we have used improved distances Timp in the Coulombic part of the 
potential. For our choice of the lattice action Timp is given by 

To estimate the systematic uncertainties of our potential fits, we perform various types of fits, 
e.g. different fit-ranges in r or different fit-forms (3 Sr; 4 params. fits). In our future analysis, of 
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Figure 3: The critical coupling as a function of the light quark mass (left) and the critical temperature as a 
function of the pion mass (right). The critical temperature as well as the pion mass are given in units of the 

Sommer scale. 

the critical temperature we will use the Sommer scale to convert our results form lattice units 
to physica.1 units. 

4 The Critical Temperature 

In Fig. 3 (left) we plot the critical coupling as function of the light quark mass. We find 
that Ap p,(Nt = 6) - p,(Nt = 4) = 0.13 - 0.14 is a,lmost quark mass independent. This 
independence if the cut-off effect from quark masses holds in leading order also for the critical 
Temperature as can be seen in Fig. 3 (right). Here we show T, in units of the Sommer scale 
as function of the pion mass mps (also in units of the Sommer sca.le). We perform a combined 
chiral and continuum extrapolation of T, by using the ansatz 

where bl and b2 are free fit parameters. This extrapolation leads to critical temperature in the 
chiral and continuum limit of T, M 185 MeV. The linear extrapolation in quark mass is on the 
one hand suggested by the data, on the other hand it is validated by the fact that one expects 
a critical point in the chira,l limit which is in the 0(4)-universality class. The leading order 
in the scaling behavior of the transition temperature is then given by T, N ( m - p ~ ) ~ . ' ,  which is 
sufficiently close to a linear scaling behavior. 
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