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Abstract. I discuss recent progress in calculating quarkonia correlators and spectral 
functions on the lattice in relation with the problem of quarkonia dissolution at high 
temperatures and heavy quark transport in Quark Gluon Plasma. 

PACS numbers: 11.15.Ha, 11.10.Wx, 12.38.Mh, 25.75.Nq 

1. Introduction 

Heavy quarkonia play an important role in studying hot and dense strongly interacting 
matter. Beca.use of the heavy quark ma,ss quarkonia binding ca,n be understood in 
terms of the static potential. General considerations suggest that quarkonia could melt 
at temperatures above the deconfinement temperature as a result of modification of 
inter-quark forces (color screening). It ha.s been conjectured by that melting of different 
quarkonia states due to color screening can signal Quark Gluon Plasma formation in 
heavy ion collisions [I]. Many studies of quarkonia dissolution'rely heavily on potential 
models '[2, 3, 4, 5, 6, 71. However it is very unclear if such models are valid .at finite 
temperature [8]. 

The problem of quarlonium dissolution can be studied more rigorously in terms 
of meson (quarkonium) spectral functions. Lattice calculation of cha.rmonium s p e c h l  
functions appeared recently and suggested, contrary to potential models, that J / $  and 
qc survive at temperatures as high as 1.6Tc [9, 10, 11, 121. It ha,s been also found that xc 
melts at temperature of about l.lTc [ll, 12, 131. There are also prelimimry calculations 
of the bottomonium spectral functions [14, 151. 

2. Meson correlators and spectral functions 

In 1attice'QCD we calculate correlators of point meson operators of the form 

J H ( t ,  .> = G ( t ,  . ) rHq( t ,  (1) 
where l?H = 1,y5, yp ,  y5yp, ypyv and fixes the quantum number of the channel to scalar, 
pseudo-scalar, vector, axial-vector and tensor channels correspondingly. The relation of 
these quantum number channels to different meson states is given in Tab. 1. 
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Table 1. Meson states in different channels 

Most dynamic properties of a finite temperature system are incorporated in the 
spectral function. The spectral function a ~ ( p o , $  for a given mesonic channel H in a 
system at temperature T can be defined through the Fourier tra.nsform of the real time 
two-point functions D' and D< or, equivalently, as the imaginary part of the Fourier 
tra.nsformed retarded correlation function [l6], 

DG(z0, .'I = ( J H ( Z 0 ,  .'I, J H ( 0 , Q )  

Daze, .'I = ( J H ( 0 , R  J H ( Z 0 ,  .'I>, zo > 0 (4) 
The Euclidean time correlator calculated on the lattice 

GH(T,$ = S d 3 i e i ~ " ( T ~ J ~ ( . r , . ' ) J l i c 0 , ~ ) )  (5) 

is an analytic continuation of the real time correlator GH(T,$ = D'(-~T,$. 

correlators 
Using this equation and the Kubo-Martin-Schwinger (KMS) condition [16] for the 

D$(zo, 3) = D<(Zo + i /T,  .'), (6) 

one can relate the Euclidean propagator GH(T,$ to the spectral function in Eq. (2), 
through the integral representation 

To reconstruct the spectral function from the lattice correlator G(T, T )  this integral 
representation should be inverted. Since the number of data points is less than the 
number of degrees of freedom (which is O(100) for reasonable discretizat,ion of the 
integral ) spectral functions ca.n be reconstructed only using the Maximum Entropy 
Method (MEM) [17]. In this method one looks for a spectral function which maximizes 
the conditional probability P[alDN] of having the spectral function a given the data D 



Quarkonia correlators and spectral functions f rom lattice QCD. 3 

and some prior knowledge H which for positive definite spectral function can be written 
as 

1 
P[aIDH] = exp(--x2 + a s ) ,  

2 .  
where 

a ( w )  - m ( w )  - a ( w )  In( (9) 

is the Shannon - Janes entropy. The real function m ( w )  is called the default model 
and pammetrizes all additional prior knowledge about the spectral functions, such as 
the asymptotic behavior at high energy [17]. In order to have sufficient number of data 
points either very fine isotropic lattices [ll, 12, 151 or anisotropic lattices [9, 10, 13, 141 
have been used. 

3. Charmonia correlators and spectral functions 

The spectral function for pseudo-scalar charmonium spectral functions calculated on 
anisotropic lattice [13] is shown in Fig. 1. The first peak in the spectral function 
corresponds to qc( IS) state. The position of the peak and the corresponding amplitude 
(i.e. the area under the peak) are in good agreement with the results of simple 
exponential fit. The second peak in the spectral function is most likely t,he combination 
of several excited states as its position and amplitude is higher than what one would 
expect for pure 2s state. The spectral function becomes sensitive to the effects of the 
finite lattice spacings for w > 5GeV. In this w region the spectral functions becomes also 
sensitive to the choice of the default model. This is because only a very few data points 
in the correlator carry information about the spectral function in the region w > 5GeV. 

Also shown in Fig.1 is the spectral function in the scalar channel from Ref. [13]. The 
1st peak corresponds to xCo( 1P) state. The correlator is more noisy in the scalar channel 
than in the pseudo-scalar one. As the results the xCo(lP) peak is less pronounced and 
has larger statistical errors. The pea.k position and the area under the peak is consistent 
with the simple exponential fit. As in the pseudo-scalar case individual excited states 
are not resolved and the spectral function depends on the lattice spacing and default 
model for w > 5GeV. Similar results have been found for the vector and axial-vector 
channels which correspond to J /$  a.nd xcl states respectively. 

We would like to know what happens to different charmonia states at temperatures 
above the deconfinement temperature T,. With increasing temperature it becomes more 
and more difficult to reconstruct the spectral functions as both the number of available 
data points as well as the physical extent of the time direction (which is l/T) decreases. 
Therefore it is useful to study the temperature dependence of charmonia correlators 
first. From Eq. (7) it is clear that the temperature dependence of charmonia correlators 
come from two sources: the temperature dependence of the spectral function and the 
temperature dependence of the integration kernel K(T,  w ,  T ) .  To separate out the trivial 
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Figure 1. Charmonium spectral function in the pseudo-scalar channel (left) and the 
scalar channel (right) at different lattice spacings and zero temperature from Ref. [13]. 
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Figure 2. The ratio G(T, T ) / G T e c o n ( ~ ,  T )  of charmonium for pseudoscalar channel at 
at a t 2  = 14.11GeV (left) and scalar channel at at a t 2  = 8.18GeV (right) at different, 
temperatures 1131. 

temperature dependence due to the integration kernel, following Ref. 
temperature we calculate the so-called reconstructed correlator 

[12] for each 

co 

G;.econ(T, T )  = dua(w,  T = o ) K ( T ,  w ,  T ) .  (10) 

Now if we assume that, there is no temperature dependence in the spectral function, 
then the ratio of the original and the reconstructed correlator should be close to one, 
G(T, T)/G,eco,(7-, T )  N 1. This way we can identify the cases when spectral function 
itself changes dramatically with temperature. This gives reliable information about 
the fate of charmonia states above deconfinement. In Fig. 2 we show this ratio for 
pseudo-scalar and scalar channels correspondingly calculated on anisotropic lattice [ 131. 
From the figures one can see that the pseudo-scalar correlators shows only very small 
changes till 1.5Tc indicating that the qc state survives till this temperature with little 
modification of its properties. On the other hand the scalar correlator shows large 
changes already at 1.16Tc suggesting strong modification or dissolution of the xCo state 
at this temperature. 

More detailed information on different charmonia states at finite temperature can be 
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Figure 3. Charmoiiia spectral function in the psuedosca1a.r channel at a t 2  = 
14.11GeV (left) and the scalar channel (right) at a t 2  = S.1SGeV for zero and finite 
temperature [13]. For finite temperature scalar channel two different default models 
are shown. 

obtained by calculating spectral functions using MEM. The results of these calculations 
are show in Figs. 3. Because at high temperature the temporal extent and the number of 
data points where the correlators are calculated become smaller the spectral functions 
reconstructed using MEM are less reliable. To tale into account possible systematic 
effects when studying the temperature modifications of the spectral functions we 
compare the finite temperature spectral functions against the zero temperature spectral 
functions obtained from the correlator using the same time interval and number of data 
points as available at finite temperature. We see that spectml function in the pseudo- 
scalar channel show no temperature dependence within the statistical errors. This is 
in accord with the analysis of the correlation functions. Also the spectral funct,ions 
show very little dependence on the default model. Similar conclusion has been made in 
Ref. [ll, 121 where correlators and spectral functions have been calculated on very fine 
isotropic lattices as well as in Ref. [lo] where anisotropic lattice have been used. The 
pseudo-sca1a.r spectral function was found to be temperature independent also in Ref. 
[9] where correlators of extended meson operators have been studied on anisotropic 
lattices. The study of the charmonium correlators with different spatial boundary 
conditions provides further evidence for survival of the 1s charmonia states well above 
the deconfinement transition temperature [HI. 

The sca.lar spectral function shows large changes at 1.16Tc which is consistent with 
correlator-based analysis. Also default model dependence of the scalar correlator is large 
above the deconfinement transition (c.f. Fig. 3, right). This means that the xco ('Po) 
dissolves at this temperature. Simi1a.r results for the scalar spectral function have been 
reported in [ll, 121. The results for the axial correlators a.nd spectral functions are 
similar to scalar ones [12] a.s expected. 

The vector correlator, however, has temperature dependence different from that 
of the pseudo-scalar cha.nne1 [19]. This is due to the fact that the vector current is 
conserved and there is a contribution to spectral functions at very small energy w E 0 
corresponding to heavy quark transport [20, 211. The transport peak in the spectral 
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Figure 4. Bottomonia correlators (left) spectral functions (riglit) in pseudo-scalm 
channel for different temperatures from Ref. [14]. 

functions can be written a.s [20] 

where q = T / M / D  with D being the heavy quark diffusion constant. Furthermore 
xs(T) is the charm or beauty susceptibility and A4 is the heavy quark ma.ss. To the 
first approximation the transport contribution to the spectral function gives rise to a 
positive constant contribution to the correlator Glow(7) 21 xs(T)T2/M [20] resulting in 
an enhancement of the finite temperature correlators relative to the zero temperature 
ones, in agreement with the lattice data presented in [19,22]. Finite value of the diffusion 
constant D will give rise to some curvature in Gzm(7). The smaller the value of D is, 
the larger is the curvature in Glow(7). Thus extracting GI,,(T) from lattice data and 
estimating its curvature can give an estimate for D. This, however, requires very precise 
lattice data which are not yet available [20]. 

4. Bottomonium correlators and spectral functions 

Bottomonium correlators and spectral functions have also been studied using anisotropic 
[14] as well as very fine isotropic lattice with lattice spacing a-' = 9.72GeV [15]. 
These studies, however, are far less detailed than the charmonium studies presented 
above and are still preliminary. In Fig. 4 the temperature dependence of the ratio 
G/G,,,,, is shown for pseudo-scalar channel at different temperatures calculated using 
anisotropic lattices. This ratio shows almost no temperature dependence till 2.3Tc. 
This is expected as the pseudo-scalar 1s bottomonium state, the q b ,  is much smaller 
than the corresponding charmonium state, thus survives till much higher temperatures. 
Also shown in Fig. 4 is the pseudo-scalar function at different temperatures. The first 
pea.k corresponds to the q b  state and survives above the deconfinement temperature in 
agreement with the analysis of the correlation functions. Other peaks a.re artifacts of 
the finite lattice spacing aiid MEM analysis. 
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Figure 5 .  Bottomonia correlators (left) spectral functions (right) in scalar channel 
for different temperatures from Ref. [L4]. 

An interesting question is what happens to 1P bottomonia states. They have sizes 
similar to the 1s charmonia states and thus are expected to survive in the deconfined 
phase till temperatures of'about 1.5TC. In Fig. 5 I show the temperature dependence of 
G/G,,,,, in the sca*lar channel corresponding to ~ 6 0 .  As one can see from the figure the 
scalar correlator shows dramatic change across the deconfinement temperature and its 
behavior is similar to the behavior of the scalar correlator in the charmonium case. Also 
shown in Fig. 5 is the bottomonium spectral functions in the scalar channel. Contrary to 
the pseudo-scalar channel the scalar spectral function shows significant changes above 
the deconfinement temperature and therefore it seems that the xb stsate is strongly 
modified or even dissolved at 1.15Tc < T < 1.5Tc. Lattice calculations presented in 
Ref. [15] show similar results. In particular, they also show large increase of the scalar 
bottomonium correlator and strong modification of the corresponding spectml function. 

5 .  Conclusions 

In this contribution it has been shown how lattice calculation can provide information on 
quarkonia properties at finite temperature. The temperature dependence of the pseudo- 
scalar correlators as well as the spectral functions extracted using MEM shows that the 
1s charmonia states exist as a resonance in the deconfined phase till temperatures as 
high as 1.5Tc. On the other hand lattice calculation show that the 1P charmonia states 
dissolve at T N l.lTc. Study of the bottomonia at finite temperature is also in progress 
[14, 151. It should be stressed that all lattice calculation discussed so far have been done 
in quenched approximation, i.e. neglecting the effect of sea quarks. To make contact 
with heavy ion experiments certainly the effect of the sea quarks has to be included, but 
computationa.lly this is very expensive. Recent attempts to study charmonia properties 
at finite temperature in full QCD (i.e. with sea quarks) are reported in Ref. [23]. The 
findings of Ref. [23] are consistent with the quenched results. 

Recent studies of quarkonium properties at finite temperature using potential model 
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claim agreement with the lattice data [ 5 ,  6, 71. The dissociation temperature of different 
quarkonia states quoted in these studies and defined as temperature where binding 
energy becomes zero is indeed significantly higher than before. However, potential 
models with screened potential also predict modification of quarkonia properties, which 
in turn lead to chmges in the spectral function and correlators. Such changes are not 
observed in the lattice correlator [21, 241. Thus it is not clear at the moment whether 
modification of quarkonia properties at finite temperature can be understood in terms 
of a screened temperature dependent heavy quark potential. 
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