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1 Introduction

New developments in instrumentation have recently allowed photoemission mea-
surements to be performed with very high energy and momentum resolution.[1]
This has allowed detailed studies of the self-energy corrections to the lifetime
and mass renormalization of excitations in the vicinity of the Fermi level. These
developments come at an opportune time. Indeed the discovery of high tempera-
ture superconductivity in the cuprates and related systems is presenting a range
of challenges for condensed matter physics.[2] Does the mechanism of high T
superconductivity represent new physics? Do we need to go beyond Landau’s
concept of the Fermi liquid?[3] What, if any, is the evidence for the presence
or absence of quasiparticles in the excitation spectra of these complex oxides?
The energy resolution of the new instruments is comparable to or better than
the energy or temperature scale of superconductivity and the energy of many
collective excitations. As such, photoemission has again become recognized as
an important probe of condensed matter.

Studies of the high T superconductors and related materials are aided by
the observation that they are two dimensional. To understand this, we note
that the photoemission process results in both an excited photoelectron and a
photohole in the final state. Thus the experimentally measured photoemission
peak is broadened to a width reflecting contributions from both the finite lifetime
of the photohole and the momentum broadening of the outgoing photoelectron.
The total width T is given by [4]
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where I'j, is the width of the hole state, I'. the width of the electron state,
and v, and v, the respective perpendicular velocities. In a two dimensional
system with v, = 0, the width of the photoemission peak is therefore deter-
mined entirely by the inverse lifetime or scattering rate of the photohole, I',.
This observation offers the possibility that the technique may be useful as a




probe of the related scattering mechanisms contributing to the electrical trans-
port in different materials. Unlike other probes of these transport properties,
photoemission has the advantage that it is momentum resolving. In drawing
conclusions from such studies, it is important to remember that the single par-
ticle scattering rate measured in photoemission is not identical to the scattering
rate measured in transport studies, 7¢.. However with certain assumptions, the
two are approximately related and the transport scattering rate can be writ-
ten h/7e = h/7 (1 — (cos¥)) where i/ represents the single particle scattering
rate and (cos ) represents the average value of cos ¢ with 9 the scattering angle
[5, 6].

In the following sections we first review the photoemission process with par-
ticular reference to the role of coupling to many body excitations. We then ex-
amine in more detail the coupling to a variety of excitations including phonons,
charge density waves (CDW) and magnetic or spin excitations. Finally we re-
view studies of the high T materials with an emphasis on measurements of
self-energy effects. We note that our discussion is heavily concentrated around
our own work but recognize the many important studies that have been reported
by other groups.

2 The photoemission process

In photoelectron spectroscopy, a photon of known energy, hv, is absorbed and
the outgoing electron’s energy (hv—¢—ej) and angle are measured. These prop-
erties determine the binding energy ¢ and parallel momentum k| of the hole
left in the occupied valence bands.[7] Interaction effects, including for instance
Coulomb and electron-phonon, cause the sharp line spectrum of independent
electron theory, Ag(k,w) = Im Go(k,w) = Im 1/(w — exo — in), where €y repre-
sents a bare band dispersion, to evolve into Im 1/[w — exo — X(k,w)] where the
complex self-energy 3(k,w) contains the effects of the many body interactions.
The single-particle spectral function of the hole-state, A(k,w), then takes the
form

Eg(k,w)
[w—exo — Z1(k,w)]? + (Za2(k,w))?

Ak,w) x (2)

Thus the real part, % (k,w), gives a shift in energy and associated mass
enhancement, while the imaginary part Xa(k,w) gives the lifetime broadening
h/7k. Here 7y is the typical time before the hole state (w, k) scatters into other
states, (w’,k’). In the limit of w —0, the real part of the self energy may be
written as X (k,w) ~ —wAx with Ay representing a coupling constant describing
the coupling to excitations that scatter the hole from (w, k) to other states. The
process of coupling is illustrated in figure 1 where we consider coupling to a mode
described by an Eliashberg function, a?F. Here aF represents the product of
the density of states of the relevant excitation and a matrix element reflecting
the coupling strength.[8] For the present purposes, aF in figure 1(a) is simply
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Figure 1: An electron scattering from a mode with o F as in (a) will experience
a step function at the mode energy in the imaginary component of its self-energy,
ImY or X5, as in panel (b). A Kramers-Kronig transform of o will produce a
cusp function in the real part of the self-energy, ReX or 3; as shown in panel
(c). The X5 shown in panel (b) results in a spectral function having the form
shown in panel (d) above and below the mode energy. Panel 1(e) shows the
mass renormalization in the immediate vicinity of Ep.



represented by a single Gaussian peak at energy €2g. Coupling to such a mode
(at T = 0 K) will result in a broadened step function in the scattering rate or
imaginary part of the self energy, ¥5. The step function reflects the observation
that when the photohole has enough energy to create the mode (w > ),
scattering from the mode opens up a new decay channel, thereby shortening
the lifetime. The real and imaginary parts of the self energy are related via
causality through a Kramers Kronig transform. Thus the step function in 3o
results in a cusp function for ¥; (panel (¢)). Such an energy dependence of the
self energy affects the measured spectra in two ways. Above and below the mode
energy there will be a noticeable change in the spectral function as illustrated
in panel (d). Secondly, as noted above, the measured dispersion will be given by
exo + 21 (k,w). Thus with ¥; taking the form shown in panel (c), the dispersion
will display the mass enhancement observed immediately below the Fermi level
as presented in figure 1(e).

The intensity I(k,w) of photoelectrons measured as a result of the photoe-
mission process is given by

I(k,w) = |M[A(k,w) f(w) (3)

where M represents the matrix element linking the initial and final states in the
photoemission process, A(k,w) is the single particle spectral function given in
equation (2) and f(w) is the Fermi function which enters because the photoe-
mission process is restricted to excitation from occupied states. Modern pho-
toelectron spectrometers allow the simultaneous measurement of photoelectron
intensities from a finite range in both energy and momentum space. A typical
image is shown in figure 2.[9] The ability to obtain such images has led to the
development of new methodologies for the extraction of self-energies. As such,
the spectral response in figure 2 may be analysed by taking an intensity cut at
constant angle or momentum, the so called energy distribution curve (EDC) or
by taking an intensity cut at constant energy, a momentum distribution curve
(MDC). The former has been the traditional method, the latter is a new method
enabled by the new instrumentation. Let us consider the MDC method. If a
binding energy is fixed and in the limit of a momentum independent self-energy,
the spectral function (MDC) takes the simple form:

22 (u}())

Al wo) = [wo — €xo — X1 (wo)]? + [X2(wo)]?

(4)

In the vicinity of the Fermi level we may approximate the bare dispersion with
a linear form such that exg = vo(k — kr) with vy the bare velocity. As has
been discussed in several papers,[10, 11, 12, 13] the MDC is then a simple
Lorentzian, centered at k,, = krp+[wo — X1(wo)]/vo and with the full width at
half maximum Ak = 2X9(wp)/vo. The self-energy can thus be simply extracted
from MDC peaks at any binding energy.

Noting that the measured or renormalized velocity v = vg/(1 + X), where,
as before, A\ represents the coupling constant, the equivalent EDC has a width
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Figure 2: Two-dimensional spectral plot showing the intensity of emission in
the (m, ) direction of the Brillouin zone as a function of w, the binding energy,
and kj|, the parallel momentum. The photon energy is 21.2 eV and the sample
temperature is 48 K. Clockwise from upper left, the insets show the region of the
Brillouin zone sampled in the experiment, a cross section through the intensity
at constant energy (w = 0) as a function of momentum (an MDC), and a cross
section through the intensity at constant angle or momentum (k = kp) as a
function of w (an EDC).
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If the real part of the self-energy displays no frequency dependence, the width
AF is directly related to the scattering rate. Both EDCs and MDCs will have
a Lorentzian line shape. However this is no longer true if the real part of the
self-energy is frequency dependent and particularly in the vicinity of a mode,
the width of the EDC, AE, will be strongly dependent on the renormalization of
the velocity. This can result in the EDC having a complex two peaked structure
that is more difficult to interpret.

AFE = vAk =

3 Electron-phonon coupling in metallic systems

In this section we focus on photoemission studies of electron-phonon coupling
in metallic systems. The electron-phonon coupling contribution, I'c_p, to the
total scattering rate may be calculated via the Eliashberg equation such that

5]
Ty (0, T) = 27k / A/ 02F () 20 (@) + (@ +w)+ F (W —w)]  (6)
0

where again o F is the Eliashberg coupling constant and f(w) and n(w) are the
Fermi and Bose-Einstein functions, respectively. I'._,, increases monotonically
with energy up to some cut-off defined by the Debye energy. At T = 0 K the
electron-phonon coupling constant is given by [§]

o0
2 /
A=2 / %,(w)dw’ (7)
0
Early photoemission studies focused on the observation that at higher temper-
atures, above approximately one third the Debye energy, equation (6) reduces
to I'e—pn = mAkpT. Thus a measurement of the width of a photoemission peak
as a function of temperature provides direct access to the coupling constant,
A. This approach has been used in several studies including a study of the
electron-phonon contribution to quasiparticle lifetimes of surface states on the
Cu(111) [14] and Be(0001) [15] surfaces. In the former case the electron-phonon
coupling constant for the surface, A = 0.14 was close to that measured for bulk
copper, A = 0.15. In the case of Be, the surface was found to have a dramatically
enhanced value of A = 1.15, which is to be compared with the bulk value of A =
0.24. Hengsberger et al. found a similar value, A = 1.18, for the electron-phonon
coupling parameter in the surface region of Be by measuring the velocity renor-
malization in the surface band.[16] However the most recent study of the same
surface reduced the value A to 0.7, a value obtained from a determination of the
rate of change of the real part of the self-energy,— (9%1/0w), in the vicinity of
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Figure 3: ARPES intensity plot of the Mo(110) surface recorded along the I'— N
line of the surface Brillouin zone at 70 K. Shown in the inset is the spectrum of
the region around kp taken with special attention to the surface cleanliness.

FEr. Enhanced values of A have led to speculation on the possibility of enhanced
superconducting transition temperatures in the surface region.[15]

The introduction of the new instrumentation in the nineties allowed the first
direct imaging of the mass renormalization due to electron-phonon coupling.
Fig. 3 shows an image of the spectral intensity excited from a two-dimensional
surface resonance in the I' -N azimuth of a Mo(110) crystal with the sample
held at 70 K.[17] The state shown in the figure corresponds to a surface reso-
nance which closes an elliptical hole Fermi orbit around the center of the zone,
T.[18] In the vicinity of the Fermi level there is a notable change in the rate
of dispersion, or mass enhancement, and a rapid change in the width of the
band. The self energy corrections resulting in these changes reflect three prin-
cipal contributions, electron-electron scattering, electron-phonon scattering and
electron-impurity scattering. These different contributions all add linearly to
give the total scattering rate I' such that

=T+ Fe—ph + Fimp (8)

In a Fermi liquid the electron-electron scattering term is given by ' (w,T') =
20 [(wkpT)? + w?] where, within the Born approximation, 26 = (7U?)/(2W?),
with U the on-site Coulomb repulsion and W the bandwidth of the state. As
noted earlier the electron-phonon contribution may be calculated via the Eliash-
berg equation, eq. (6). The final contribution in equation (8), impurity scat-
tering, is elastic in that the impurity atoms are considered to have no internal
excitations. Thus the scattering-rate, I';,p, is proportional to the impurity
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Figure 4: The photohole self-energy as a function of binding energy at 70 K.
The real part is obtained from the MDC-derived dispersion shown in the inset.
The imaginary part is obtained from the width of the quasiparticle peak. The
solid line is a quadratic fit to the high-binding energy data (w < 80 meV). The
dashed (dotted) line shows the calculated electron-phonon contribution to the
imaginary (real) part of the self-energy. The dashed line is shifted up by 26

meV.
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Figure 5: The peak width as a function of (a) temperature and (b) exposure
to background hydrogen, measured for two binding energies. For the exposure
dependence the sample was held at 70 K. Lines in (a) are calculated electron-
phonon contributions, shifted up by 26 meV to match the data. Lines in (b)
represent fits (see text for details).

concentration, but independent of energy and temperature. At sufficiently low
temperature, impurity scattering represents the dominant decay mechanism for
a hole close to Ep.

Figure 4 shows the measured Y5 of the Mo surface state as a function of
binding energy. The data points are extracted from the image of fig. 3 in
two ways, either from EDCs or from MDCs. The calculated electron-phonon
contribution to the self-energy is indicated in the figure. In the vicinity of the
Fermi level, the agreement between the calculation using the theoretical o> F
of bulk molybdenum.[19] and the experimentally measured widths is excellent.
There is a rapid change in the scattering rate up to the Debye energy at ~ 30
meV. At binding energies greater than this, the electron-phonon contribution
saturates. However, also shown in the figure is a quadratic fit to the measured
widths at the higher binding energies. The quadratic dependence is an indication
that electron-electron scattering, as in a Fermi liquid, plays an important role.
In a purely two dimensional system there should be a logarithmic correction to
the quadratic term.[20] Thus I'._. will be proportional to w?Inw. However the
simple quadratic fit works well as indicated in the figure because the surface
state shown in figure 3 is, as previously noted, a surface resonance with good
coupling to bulk states.[18] The quadratic fit is consistent with the prefactor
in the expression for I'._. having U~0.6 €V, as predicted for molybdenum,[21]
and W~1.3 eV the approximate bandwidth of the surface state. The measured
widths also have an energy-independent contribution due to scattering from
hydrogen impurity centers.[17]

The calculated real component of the self energy, ¥, derived through a
Kramers Kronig transform of 3 is also shown in figure 4 where it is compared



with the experimentally derived values. From ¥; it is possible to determine a
value for the electron-phonon coupling constant of 0.4 to be compared with the
bulk value of 0.42. As we have already noted the coupling constant can also be
derived from the temperature dependence of the peak widths. This is shown in
figure 5(a) for two different binding energies, w = 0 and w = 100 meV. By doing
linear fits to the experimental data points, values for the coupling constant of
0.52 and 0.35 are obtained respectively. These values are again close to the bulk
value.

The observation that the width of the quasiparticle peak always has a signif-
icant constant term indicates the presence of impurity scattering. It is known
that this surface state is very sensitive to hydrogen adsorption. Fig. 5(b) shows
how the width changes with the exposure to residual hydrogen. Note that it
saturates with exposure 6. If the scattering rate is proportional to the concen-
tration of adsorbed particles, the experimental points become a measure of the
concentration. Since the number of free adsorption sites decays exponentially
with exposure, the concentration of adsorbed atoms as a function of exposure
should change as ¢(f) = ¢y + ¢csat(1 — e P%), where p is the adsorption proba-
bility and cg (csqt) is the initial (saturation) concentration. The width of the
quasiparticle peak can be fitted with the same dependence (lines). It is notable
that extrapolation to zero exposure results in a residual width of 6 5 meV at
w = 0. Electron-phonon coupling contributes with ~ 5 meV for T=70 K. How-
ever, we should also note that there is some uncertainty in the initial coverage
due to the change in adsorption conditions between flashing the sample and the
measurement.

4 Studies of the dichalgogenides

The family of layered dichalcogenides provide a range of interesting phenomena
for study. These systems exhibit both charge-density wave (CDW) formation
and superconductivity.[22, 23] As shown in figure 6, the fact that the CDW
transition temperature decreases while the superconducting critical tempera-
ture, T¢, increases on going from TaSe; through TaS; and NbSes to NbSs
suggests that the two order parameters represent competing ground states. In-
deed, it has been found that in TaSs; and NbSes, T increases under pressure
while Topw decreases [24, 25] While these studies suggested that after CDW
order disappears, T¢c remains approximately constant, a more recent study of
NbSes indicates that as a function of pressure, T at first increases up to some
maximum vale and then decreases.[26] In NbS,, the system with no CDW order,
Tc is insensitive to pressure. Although various anomalies, including an appar-
ent anisotropy of the superconducting gap, have been observed, [27, 28, 29, 30]
it is generally believed that superconductivity in the dichalcogenides is of the
conventional BCS character, mediated by strong electron-phonon coupling [29].
However, consensus on the exact mechanism that drives the system into the
CDW state has still not been reached. Some authors [22, 23, 31, 32] argue, in
analogy with a Pierels transition in one- dimensional systems, that the CDW
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Figure 6: A comparison of the CDW transition temperature Topw and the
superconducting transition temperature T for the dichalcogenides plotted as a
function of the ratio of lattice parameters a/c.(Reproduced from Ref. [23])

transition is driven by a Fermi surface instability or nesting, with some portions
of the Fermi surface spanned by a CDW vector- gopw. In another scenario, the
CDW instability is induced by the nesting of van Hove singularities or saddle
points in the band structure if they are within a few kgTcpw of the Fermi
energy.[33]

The Fermi surface of the 2H dichalcogenides is rather complicated, being
dominated by several open (2D-like) sheets and one small 3D S(Se)-derived
pancake-like Fermi surface.[29] In such a situation, one may anticipate anisotropic
properties and in particular, an anisotropic electron-phonon coupling. The re-
sistivity anisotropy, of the order of 10-50, is much smaller than in layered oxides,
indicating a substantial inter-layer hopping.[34] Transport properties show rel-
atively small anomalies at Topw, suggesting that only a small portion of the
Fermi surface becomes gapped in the CDW state. In addition, the 2H dichalco-
genides become better conducting in the CDW state, indicating a higher degree
of coherence.

Several ARPES studies of the dichalcogenides have measured the form or
shape of the Fermi surface, the focus being on the identification of the appro-
priate nesting vector associated with the CDW. In figure 7 we reproduce the
results of a recent study showing the measured Fermi surfaces of both TaSes
and NbSes.[35] The figure also shows superimposed the results of a simple tight
binding fit by the authors of the study to the electronic structure.

Our own study of TaSey [12] found, as in earlier studies, [36, 37, 38]that the
hole pocket at the center of the zone remains ungapped even in the CDW state.
However the studies of the electronic states forming this Fermi surface found
strong evidence of the formation of the CDW state as shown in figure 8. The

11



(a) 2H-TaSe, (b) 2H-NDbSe,

Figure 7: Ep-ARPES intensity maps of (a) 2H-TaSe2 and (b) 2H-NbSez, mea-
sured in the normal states at 125 and 65 K, respectively (hv =100 eV). Raw
data are shown in the upper right quadrants. The rest of the data is obtained
by mirror symmetry operations. The intensity value at each & point is normal-
ized by the intensity integrated over the occupied transition-metal d bandwidth
(~400 meV). The darker grayscale indicates higher photoemission intensity. The
small-dotted hexagons are the Brillouin-zone scheme for the 3 x 3 superlattice.
Short and long dashed lines: Simulated Fermi contours of two transition-metal
d-derived bands. Solid lines in the lower right quadrants: Umklapp shifted
Fermi contours. (reproduced from Ref. [35])
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Figure 8: The photoemission intensity in the CDW state (7' = 34 K) as a
function of binding energy and momentum along the line indicated in the inset
by the double-headed arrow. The intensity is represented by a false color map,
with yellow and white representing the highest intensity. The dispersing state
is a part of the hole like Fermi surface S¢, centered at I'. This Fermi surface
is not gapped in the CDW state. (b) EDCs, measured for several momenta as
discussed in the text.

figure shows the photoemission intensity, recorded in the CDW state at T = 34
K, as a function of binding energy and momentum along the line through the
two-dimensional Brillouin zone indicated in the inset of the figure. A band is
observed crossing the Fermi level at a point on the hole-like Fermi surface S¢,
centered at I'. The Fermi surface of dichalgogenides is double walled, suggesting
that every band should be split into two.[36, 37] Indeed, in our own study [12]
we detected both bands and observed that the splitting, as well as the relative
intensity of the two bands, is strongly dependent on momentum, photon energy,
polarization and surface quality. In some circumstances, only one band can
be observed. However, when both bands are well resolved, they show similar
behavior in the vicinity of the Fermi level and similar self-energy corrections.
Therefore the presence (or absence) of the second band would appear irrelevant.
The most remarkable feature in figure 8 is the "kink” in the band’s dispersion,
accompanied by a sharpening in the vicinity of the Fermi level. The figure also
shows EDC cuts through the intensity at constant momenta. In this energy
range, the EDCs show a two-peaked structure, behavior that is again charac-
teristic of the interaction of the photohole with some excitation of the system
with energy range limited approximately to the energy scale of the kink. As
discussed earlier and presented in equation (4), the real and imaginary com-
ponents of the self-energy, ¥;(w) and Yo(w), can be extracted directly from
a momentum-distribution curve. The fitting is possible without imposing any
particular model for the interaction. The non- interacting dispersion in figure 8

13
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Figure 9: MDCs, measured at different binding energies (symbols), fitted with a
momentum-independent spectral function (solid lines) as discussed in the text.
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Figure 10: Self-energies extracted from MDCs for several temperatures (solid
symbols). Results for 3o obtained from EDCs are shown as open symbols.

may be approximated with a second-order polynomial that coincides with the
measured dispersion at & = kr and at higher binding energies, close to the
bottom of the band: thus ¥; = 0 for w = 0 and for w < —200 meV. Figure 9
shows several MDCs with corresponding fits. In contrast to the lineshapes in
figure 8(b) for EDCs, the lineshapes in figure 9 are approximately Lorentzian
at low binding energies developing an asymmetry at higher binding energies.
The latter asymmetry mostly reflects the quadratic term in the non-interacting
dispersion. The advantage of using MDCs in the analysis is obvious in that the
self-energies are more dependent on energy than on momentum.

The results of the fitting procedure, which produces pairs of ¥; and 3o for
every MDC are shown in Fig. 10 for several temperatures. 5 as obtained by
fitting EDCs when the latter have a Lorentzian lineshape are also included. The
real part of the self-energy is concentrated in the region of binding energies less
than 150 meV. At the lowest temperature, it has a maximum at a binding energy
of ~ 65 meV, approximately coincident with the value corresponding to the
sharp drop in ¥s. Such behavior is indicative of the scattering of the photo-hole
from some collective excitation or "mode” of the system. The striking similarity
with the behavior observed in ARPES studies of a photo- hole interacting with
phonons [16, 17] would point to the electron-phonon coupling as the source of
this behavior. However this would imply the presence of ~ 70 meV phonons in
the CDW state where the highest calculated and measured phonon frequency
is ~ 40 meV.[39] The measured temperature dependence of the self-energy also

15
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Figure 11: The photoemission intensities in the CDW state at T= 10 K for
several momentum lines indicated in the schematic view of the Brillouin zone
(lower left panel) by the dark-gray lines. The light-gray lines represent Nb-
derived Fermi sheets. The nine Fermi points are numbered. The MDC derived
dispersions are represented by full circles. The high-energy part of the disper-
sions is fitted with a second-order polynomial (dashed lines), and the low energy
part is fitted with straight lines.

argues against phonons. With increasing temperature, the peak in ¥; loses its
magnitude and the structure shifts to lower energies. At a temperature of 111
K, only a small peak is left at a binding energy of ~ 30 meV and this survives
in the normal state to at least 160 K. The latter peak may be of the same
CDW origin, but may also be caused by conventional electron-phonon coupling,
since it is within the range of the phonon spectrum. At low temperatures the
imaginary part of the self-energy or scattering rate shows a sharp reduction
for binding energies lower than 70 meV. As the temperature increases, this
reduction becomes less pronounced.

In a more recent photoemission study,[35] it has been suggested that the
higher energy “kink” observed in TaSe; is associated with a band folding as-
sociated with the CDW transition. However it is important to note that the
study of Rossnagel et al.[35] was at a lower energy resolution and the authors
reported a lack of observation of causality, i.e. no defined relationship between
the measured real and imaginary parts of the self energy. This differs from the
results of the studies discussed here and shown in figure 10. We believe that
the high-energy kink is closely related to the CDW gap, either in a conventional
way, where the kink will shift from phonon frequency 2 to Q+ A, where A, rep-
resents the (CDW) gap that opens in the final state at scattering vector ¢, or in
a more exotic way, where a new excitation, or a fluctuation of magnitude of the
CDW order parameter, couples to holes and produces the mass enhancement.

Studies of the related system NbSes show somewhat different behavior.[40]
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Figure 11 shows the photoemission intensity, recorded at T =10 K, as a func-
tion of binding energy and momentum along three different momentum lines
in the Brillouin zone. Nine Fermi crossings are included: three pairs on the
double-layer split Fermi sheets centered around I' and three crossings on the
split sheets centered at the K point. A characteristic change in the quasipar-
ticle velocity ("kink”) can easily be identified in all crossings. The kinks are
also accompanied by a sharp change in the quasiparticle widths at the ”kink”
energy. These observations are again indicative of (bosonic) excitations inter-
acting with the quasiparticles. Compared to TaSes, the excitation spectrum in
the CDW state is limited to significantly lower energies. It also appears that
the kink is not unique; its strength and energy depend on k, being different for
different crossings. The band dispersions in the figure are determined from the
peak intensities of MDCs fitted to the spectra. As shown in the figure, the high-
energy part of the extracted dispersion can be fitted with a parabola that crosses
through kr , whereas the low energy part (w < 15 — 20 meV) is fitted with a
straight line. Assuming that the parabola represents the ”non-interacting” dis-
persion, then the slopes of these two lines at w = 0 may be used to directly
extract the coupling constant, again using the expression A = vy/vp — 1 with
vo the "non-interacting” or bare Fermi velocity and vp the renormalized one.
The "non-interacting” parabolas are subtracted from the measured dispersions
to extract ¥q(w). The results are shown in Fig. 12(a) for several crossings
from Fig. 11. X;(w) gives the same coupling constant A = —(9%;/0w)g, but
also provides additional information about the spectrum of excitations inter-
acting with the quasiparticles. It is obvious from Fig. 12(a) that not only is
the magnitude of ¥ (w) different for different states, but also the peaks are at
different energies, ranging from ~ 13 meV to ~ 35 meV. Various experimental
and theoretical studies have shown that the phonon spectrum is fully consis-
tent with these energies, with acoustical phonon branches lying below w ~ 12
meV, and optical branches spanning the region 15 < w < 40 meV.[41] Shifts of
the ¥;(w) maxima would further suggest that some electronic states are cou-
pled predominantly to acoustic modes while others couple more strongly to the
optical modes, even though the states are sometimes very close in momentum
(compare points 4 and 5, for example). A strong k-dependence of ¥ would
complicate the MDC line-shape in the energy region where the momentum de-
pendence exists. It is interesting that in spite of these differences in ¥, the
resulting coupling constant does not vary much, A ~ 0.85 £ 0.15, within the ex-
perimental uncertainty. The only exception is the inner K-centered sheet (point
6 in figure 11), where A ~ 1.9+ 0.2. This seemingly too large coupling constant
is however in good agreement with the large measured value of linear specific
heat coefficient, v ~ 18.5 mJmol 'K~2, [27, 42] which is proportional to the
renormalized density of states (DOS) at the Fermi level, N(0)(1+)), through
v = (1/3) 7%k%4 N (0) (1 + ). Band structure calculations give the "bare” DOS
N(0) ~ 2.8 states eV~! unit cell™*,[29] suggesting A ~ 1.8. However even this
might be an underestimate as v measures an average over the Fermi surface,
weighted by the DOS. A similar value for A is obtained from c-axis optical con-
ductivity [43] suggesting that the c-axis transport is probably dominated by the
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Figure 12: (a) Real parts of self-energies, ReX, extracted from measured disper-
sions from Fig. 11 for several Fermi points. Temperature dependence of %1 (w)
for (b) NbSe; for point 1 from Fig. 11 and for (¢) TaSes near the same region
on the I'-centered Fermi surface reproduced from figure 10 for comparison.

K-H centered cylinders with largest warping.

It is instructive that in TaSes the CDW gap opens up in the same region
of the Fermi surface,[35, 37, 44] while the I'-A centered Fermi cylinders remain
ungapped, and gain coherence in the CDW state.[12] It therefore seems plausible
that both the superconductivity and the CDW state originate from the inner K
sheet and are driven by strong electron-phonon coupling. This seems to be in
line with the original suggestion of Wilson [31] that the self-nesting of the inner
K sheet drives the CDW in the 2H-dichalcogenides. A lack of CDW gap on the
I' centered sheets in all the 2H-dichalcogenides studied in ARPES suggests that
these sheets support neither the self-nesting nor the nesting which would mix
them with the K-centered sheets. In particular, a proposed f-wave symmetry
for the CDW gap [23] may be ruled out. The relative strength of the CDW
and superconducting ordering is determined by the nesting properties of the
inner K cylinder, while the upper limit for 7 (when the CDW is destroyed by
applying pressure, for example) is given by A. Nesting weakens with increasing
3D character (increased warping with kz) under pressure and on moving from
TaSes to NbSy. The coupling constant, A increases from TaSes to NbSes and
is only weakly pressure dependent. ARPES studies of NbSes,[30] [45] [46] have
shown no evidence of a CDW gap suggesting that the nested portion of the
Fermi surface is small and not sampled. However as there is a non-trivial kz-
dispersion or warping in this material, it is possible that the in-plane kr might
be tuned into a nesting configuration and that the gap opens only near certain
kz. Note that the energy splitting between the double walled sheets is larger
for K-centered sheets. A similar k-dependence is also expected for the interlayer
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hopping, t, that produces the warping. Additionally, as the Fermi velocities
are larger for I'- centered sheets, it is reasonable to expect that the in-plane kp
varies with k; much less on the I'-cylinders than on the K-cylinders (the change
in the in-plane Fermi momentum is approximately given by Akp o t)/vp).
The measured Fermi surfaces centered at I' are too large at the sampled kz,
and are therefore not expected to ever reach the self-nesting condition 2kp =
qcpw- On the other hand, the inner K-centered sheet seems to be very close to
producing the required nesting. It is interesting to note that according to STM
studies,[47] the CDW gap is large (Acpw ~ 35 meV) and should be easily
measurable in ARPES. The overall electronic properties in NbSey are much
less sensitive to the CDW transition than in TaSes. Even the CDW induced
structure in the self-energy that existed in TaSes is absent in NbSey. Both the
"kink” and the scattering rate are remarkably insensitive to the CDW (See Fig.
12 b), an observation that is consistent with the relative positions of NbSey and
TaSe; in figure 6.

5 Magnetic systems

In magnetic systems, aside from phonon scattering, the possibility also exists
for scattering from spin excitations. Such effects have been found in photoemis-
sion studies of gadolinium[48] [49] and of iron.[50] The spin dependent electronic
structure of these materials has been studied with spin-resolved photoemission.[51]
However there has only been one such study with sufficiently high energy reso-
lution to examine in detail the spin resolved self-energy effects. That is a study
of gadolinium.[49]

The ground state of gadolinium is ferromagnetic with a Curie temperature
Tc of 293 K. The (0001) surface of this material has been shown both theoret-
ically [52] and experimentally [53] to support a surface state derived from the
Gd 5d orbitals. The state, which is spin polarized through an exchange interac-
tion with the localized 4f orbitals has an important history and indeed it was
spin-resolved photoemission studies of the surface state that finally confirmed
that the surface moments were ferromagnetically aligned with the bulk of the
material.[54]

Figure 13 shows spectral density maps recorded from the clean Gd(0001)
surface in the I'X azimuth at two different temperatures.[48] The EDC width of
the surface state at a binding energy of ~ 170 meV increases as the temperature
is raised from 82 K to 300 K. The increase reflects a reduction in the lifetime
of the photohole as a result of increased electron-phonon and electron-magnon
scattering at the higher temperature. In the low temperature plot, the state has
a width approximately constant until the angle of emission exceeds 5°. At this
point, according to calculated band structures,[52] the surface state leaves the
bulk band gap and begins to resonate with bulk bands. This accounts for the
increased broadening or reduced lifetime. Figure 14 shows the width of the peak
as a function of temperature and also shows a fitting to the data points using the
expression given in equation (6). The latter results in a value of A ~ 1.0 for the
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Figure 13: Upper panel: Spin-integrated spectral response for the Gd(0001)
surface as a function of binding energy and angle of emission measured from the
surface normal. The sample 7" is 300 K and the incident photon energy is 21.2
eV. Lower panel: As above but now the sample 7" is 82 K.
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Figure 14: The full width-half maximum (FWHM) of the majority spin peak as
a function of T'. The solid line indicates a fit to the data using Eq. (6) as given
in the text.

electron-phonon coupling constant, which may be compared with a value of 1.2
(bulk, spin averaged), extracted from the measured specific heat,[55] using the
calculated density of states and assuming only electron-phonon renormalization,
and a theoretical value of 0.4 (also bulk and spin-averaged) obtained in a spin-
polarized calculation of the electron-phonon coupling constant.[56] At the low
temperatures indicated in figure 13 the state is predominantly majority spin.
The electron-phonon coupling parameter may be written as A = Ng(I2)/M (w?)
where Ng represents the spin-projected density of states at the hole binding
energy, (I2) is the Fermi surface average of the electron-phonon matrix element,
M is the atomic mass and (w?) is an average phonon frequency. Wu et al. have
calculated an enhanced magnetic moment in the Gd surface layer.[52] Using
their calculated majority and minority spin densities in the surface layer, one
obtains A ~ 1.15 and 0.25 for the surface majority and minority spin electron-
phonon coupling, close to the value A = 1 derived from the plot of figure 14 and
again assuming that the latter is dominated by the majority spin channel.

The results of a spin resolved photoemission study of the same surface
state held at T = 20 K are illustrated in Fig. 15.[49] As noted earlier, both
experiment[54, 57] and theoretical calculations [52] indicate that the surface
state should be 100% majority spin, reflecting parallel alignment of the surface
and bulk moments. The coexistence of both spin components at the same energy
in figure 15 is therefore an intrinsic property of the surface state arising from a
combination of spin-orbit and spin exchange processes. A simple model yields
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Figure 15: Spin-resolved photoemission spectra recorded from the Gd(0001) sur-
face at 20 K. The upper and lower spectra represent the emission in the majority-
and minority-spin channels, respectively. The lines indicate Lorentzian fits to
the spectra superimposed on appropriate backgrounds. The inset shows the
relative intensities in the two spin channels.

a polarization P = A/,/AZ2 + &2 for each quasiparticle state. With a spin-orbit
parameter ¢ = 0.3 eV and an exchange splitting A = 0.7 eV at 0 K, we get a
spin-orbit induced mixing R = (n*/n~) = (1-P)/(14+P) ~ 5%. Here n* and
n~ represent the number of electrons with spin-up and spin-down, respectively.
R increases to 8% at T=150 K as the exchange splitting between the occupied
and unoccupied surface states gets smaller.[58]

Fitting the spectra in figure 15 with Lorentzian line shapes shows that the
minority spin peak has a larger width than its majority spin counterpart, 116
meV as opposed to 86 meV. Removing the contribution from the experimental
resolution, these widths become approximately 105 meV in the minority spin
channel and 70 meV in the majority channel. Electron-phonon, electron-magnon
and electron-electron scattering each give distinct spin dependent contributions
to the scattering rate. Electron-electron scattering by exchange processes favors
the two holes in the final state being of opposite spin.[59] From consideration
of the total density of states in the spin channels, we estimate the scattering
rate from this process to be equal for a majority spin hole and a minority spin
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hole. The electron-phonon and impurity scattering rate are proportional to
the density of states at the hole binding energy for the same spin while the
electron-magnon rate is proportional to the density of states for the opposite
spin. Since the majority-spin density of states is large while the minority-spin
part is small, impurity and electron-phonon scattering should be more important
in the majority spin channel. The observation that the minority spin channel is
broader suggests electron-magnon scattering is the dominant decay mechanism.
At T=0 K, the minority-spin component of a photo-hole can scatter to the
majority spin component of a hole state higher in the surface band by emitting a
spin wave (tilting the spins of the localized f-electrons). The corresponding spin-
flip process is not available to the majority-spin component of the photo-hole
at T'=0 because the localized f-spins have saturated magnetization and are not
able to tilt upwards when the hole tilts down. At higher temperatures, inelastic
scattering can occur back and forth between the two spin channels mediated
by the emission or absorption of magnons, but the minority-spin component
always has the higher density of final states to scatter into. An approximate
treatment[60] using the “s — f ” Hamiltonian[61] found the result

for the decay of the minority (]) spin component due to spin flip scattering
with magnon emission. Here J is the s — f exchange parameter giving the
exchange splitting 2J5 = 0.65 eV measured for the surface state,[58] m* =
1.21m, is the effective mass measured for the surface band, and P’ (1)= 0.87
is the experimentally measured majority component of the band. With S =
7/2 and a = 3.6 A, h/7(]) ~ 0.095 eV. Conversely, replacement of P'(1) by
P'(l) =1— P'(7) gives h/7(]) =~ 0.014 eV for the majority spin component.
Thus at low T, the majority spin channel is dominated by electron-phonon
scattering whereas the minority spin channel is dominated by electron-magnon
scattering. Based on the relative spin-dependent densities of states it is possible
to provide estimates of the contribution of phonon scattering in the two spin
channels. These would be 46 meV in the majority spin channel and 10 meV in
the minority spin channel, leaving approximately 10 meV in each channel due
to impurity scattering, probably from hydrogen as in the case of molybdenum
discussed earlier.

It is interesting to note that when looking at unoccupied states the converse
should be true.[62] At low temperatures, an electron added to an unoccupied
minority spin band should decay preferentially via phonon scattering and an
additional excited electron in a majority spin band should decay preferentially
via magnon scattering.

Although non-spin resolved, another study has examined the possibility of
scattering from spin excitations in the ferromagnetic material iron.[50] In studies
of the Fe(001) surface Schafer et al identified a mass renormalization up to a
binding energy of 120 meV. The latter energy was too large to be associated
with phonons (Debye energy, p ~ 39 meV) and thus the authors identified the

h/r(1)
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A Superconductivity

X

Figure 16: A schematic phase diagram showing the different ground states en-
countered in the cuprates as a function of temperature and doping. (b) The
atomic layout of the copper oxygen planes that are thought to be responsible
for the superconductivity in the cupartes.

self-energy corrections with scattering from spin excitations.

6 Studies of the High 7> Superconductors

In this final section we discuss studies of the high T superconductors and
related compounds. As we have already noted, these materials discovered in
1986 [63] have presented and continue to present some of the biggest chal-
lenges in materials science today. ARPES with high energy and momentum
resolution has emerged as one of the leading techniques for the study of such
materials. Indeed it was the drive to understand the high T superconduc-
tors that led to a renaissance in the use of ARPES. The technique has made
many important contributions to our understanding of these materials including
measurements of the anisotropy of both the superconducting gap [64] [65] and
the normal state “pseudogap”. [66, 67] More recently, the discovery of a mass
renormalization,[9] evident in the dispersion in the vicinity of the Fermi level of
the cuprate, BisSroCaCusOs.ys, has led to renewed speculation about the ori-
gin of high temperature superconductivity and the possibility that the observed
renormalization reflects coupling to some boson involved in the pairing.

Before discussing the renormalization effects in more detail we first review
some aspects of the high T superconductors. It is generally accepted that
the superconductivity in the cuprates evolves from a parent insulating state by
doping carriers into the 2-dimensional CuQOs planes. With half-filled band, the
ground state of the parent compound is an antiferromagnetic Mott insulator.
With doping, the systems move from the antiferromagnetic state through to
a regime where superconductivity is possible. The commonly accepted phase
diagram for the cuprates is shown in figure 16(a). The materials exhibit super-
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conductivity in the region under the dome. However in the underdoped region a
gap or “pseudogap” is observed in the normal state at temperatures well above
the superconducting transition temperature, T¢. At optimal doping correspond-
ing to the maximum T¢ the materials are considered non-Fermi liquids in the
normal state. The structure of the Cu-O plane is shown in figure 16(b). In the
superconducting state the order parameter has d-wave symmetry. In terms of
the Cu-O plane, the d-wave symmetry is reflected in the gap being maximum
in the copper oxygen bond direction and non-existent in the direction along
the diagonal or copper-copper direction. The latter corresponding to the (7, )
direction of the Brillouin zone is commonly referred to as the nodal direction
and the former in the (,0) direction of the Brillouin zone as the anti-nodal
direction.

The first photoemission studies of the high T superconductors [68] [69]
identified the copper d-bands and in the case of YBagCu3Og., a Fermi level.[68]
With improved crystals the superconducting gap was identified [70] followed by
measurements of the anisotropy of the gap in the a-b plane associated with the d-
wave symmetry.[64, 65] These studies were extended to similar measurements of
the anisotropy of a pseudogap observed in the normal state in the underdoped
materials.[66, 67] There have also been a number of studies of the spectral
function in the vicinity of the (r,0) direction. In the superconducting state this
is characterized by a “peak dip hump” structure similar to that in the vicinity
of the gap in a BCS like superconductor. As such, the observation has promoted
considerable discussion along the lines of the BCS mechanism. Reviews of much
of this and previous work have been presented elsewhere.[71, 72]

In the present discussion we focus our attention on studies of the nodal
region, primarily because a mass renormalization observed in spectra recorded
in that direction has all the hallmarks of the mass renormalizations that we
have discussed in earlier sections in this chapter. However, while we restrict
our discussion to this region, observations in the nodal direction clearly have
implications for observations throughout the zone.

The first high resolution study of the electronic structure in the nodal di-
rection revealed a new feature, a mass enhancement of the low energy excita-
tions immediately below the Fermi level.[9] The relevant spectral intensity plot
has been shown earlier in figure 2. With certain assumptions about the non-
interacting dispersion, the authors reported an increased effective mass m* such
that m*/my, ~ 1.6 where my represents the observed mass at higher binding
energies. This observation has potentially important implications for the mech-
anism driving high T superconductivity and an obvious question is whether or
not it points to a BCS like mechanism whereby the electrons or renormalization
and associated "kink” have become central issues in subsequent ARPES work
with considerable controversy regarding their source.[73, 74, 75, 76, 77] Are they
related to the presence of spin excitations or do they reflect an interaction with
phonons or indeed any other collective mode? In the case of the cuprates, this
is not an easy issue to resolve as the various energy scales are nearly identical.
However, there is broad agreement on the experimental observations.

All studies agree that the “coupling” is largest in the underdoped regime
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Figure 17: Upper panels: two dimensional photoemission intensities observed
from (a) underdoped (UD), (b) optimally doped (OP), and (c) overdoped (OD)
samples. The superconducting transition temperatures are indicated. Lower
panels: the dotted lines indicate the MDC deduced dispersions for both the su-
perconducting (blue dots) and normal states (open red diamonds) corresponding
to the different samples in the panels above.

as is evident in the spectra of figure 17.[76] By coupling we mean, as discussed
above, that the measured velocity is decreased compared to the bare velocity
in the absence of coupling. However it has also been noted that the measured
Fermi velocity shows little variation as a function of doping.[76] [78] Thus the
biggest change is not in the measured velocity, rather it is in the assumed bare
velocity, i.e. the “bare” velocity is largest in the underdoped regime. This is
counterintuitive in that the underdoped regime is more insulating like and one
would naively anticipate that the velocity would be less. Experimentally the
observation of constant Fermi velocity is evident in spectra obtained from both
the BiaSraCaCusOgys [76] and Lo, Sr, CuOy [78] families. It is also reproduced
in certain theoretical calculations.[79]

In examining the mass enhancement some groups have focused more closely
on the associated “kink” in the dispersion and suggested that its presence at
a similar energy in studies of all of the different cuprates is an indication of
coupling to a phonon mode.[75] Indeed neutron studies do indicate the presence
of phonon modes at similar energies.[80] The authors of these studies have also
suggested that an “unconventional isotope effect” is an indication of the role
of phonons in that the substitution of O'® for O'6 results in a change in the
velocity of the higher energy electrons as opposed to the lower energy electrons
in the vicinity of the Fermi level.[81] If the phonons play any role in the su-
perconductivity, this observation is again counterintuitive. However we note
that subsequent attempts to reproduce this effect have failed.[82] More recently,
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Figure 18: Fermi surface of a doped cuprate system (solid arcs) and the anti-
ferromagnetic Brillouin zone of an undoped insulator (dashed line). Regions on
the Fermi surface (”Hot spots”) that can be joined by the double ended arrow
representing the antiferromagnetic wave-vector ( 7, 7) can be strongly coupled
to antiferromagnetic fluctuations .

proponents of the phonon scenario have used the maximum entropy method
(MEM) to extract an Eliashberg function, o®F.[83] The results of this study
suggest a multimode structure for the phonon spectrum. While this is a dis-
tinct possibility we note that the analysis is also controversial at the present
time.[84, 85]

There are several observations that argue against phonons as the source of
kink. Firstly, we note that certainly in the optimally doped materials the resis-
tivity is perfectly linear down to the superconducting transition temperature.
A linear resistivity can be associated with phonon scattering. However, as was
noted with respect to equation (6) earlier, this linearity extends down to ap-
proximately one third the Debye energy. In the case of Lo_,Sr,CuQOy4, T¢ is
approximately 40 K. Multiplying by a factor of three would correspond to a
Debye energy of 10 meV, which is certainly too low to give the observed “kink”
in the photoemission spectrum at 70 meV. As such, if phonons are involved, the
mechanism is certainly not describable using the standard Eliashberg approach.
Further, the measured scattering rates do not saturate at energies above the
kink energy as would be expected on the basis of the Eliashberg equation if the
kink reflected the Debye energy. Rather they show a continuous variation to
higher binding energies suggesting that some form of electron-electron scattering
plays an important role.

An alternative scenario would suggest that the mass enhancement reflects
coupling to the spin excitations in the system. Such a coupling is expected to
be strongest in the anti-nodal or (m,0) region reflecting the observation that the
spin excitations are described primarily by the scattering vector Q = (m, ),
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Figure 19: ¥; as a function of binding energy for the superconducting (blue
dots) and normal states (open red diamonds) for the UD69, OP91, and OD55
samples. The solid lines through the normal state data represent MFL fits to
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Figure 20: Temperature dependence of ¥ (w§®) from the nodal line for an under-
doped sample with T. = 69K (black squares) compared with the temperature
dependence of the intensity of the resonance mode observed in INS studies of
underdoped YBasCusOg¢44, Tc = 74 K (Ref. [90]) (gray circles).

which couples the antinodal regions as shown if figure 18. However certain
behavior in the nodal region would appear to carry the hallmarks of such an
interaction. Examining figure 17 it is possible, with certain assumptions about
the bare velocities, to extract representative doping dependent real components
of the self energy, 3;. These are reproduced in figure 19 where for each doping
level the ¥ corresponding to the superconducting state is compared to the ¥,
corresponding to the normal state.[76] Certainly in the underdoped and opti-
mally doped regimes there is a marked difference in the spectra on entering the
superconducting state. Similar behavior has been observed elsewhere both in
ARPES studies[12, 86] and in optical conductivity studies.[87] The changes in
31 can be measured as a function of temperature as indicated in figure 20. From
the latter figure we see a reasonably sharp onset around the superconducting
transition temperature. Again similar data has been obtained in a more re-
cent study reported by Terashima et al[88] Many properties of the high T¢
superconductors show a similar temperature dependence including the devel-
opment of a sharp coherent peak in the (w,0) direction,[89] the development
of the superconducting gap at the Fermi surface and the rearrangement of the
spin susceptibility associated with the formation of a magnetic resonance mode
in the superconducting state.[90] All of these changes are identified with the
electron channel. As we have noted above, it is less clear that such a marked
temperature dependence exists in the phonon spectrum. Several authors have
therefore associated the changes observed in ¥; with changes observed in the
spin susceptibility, pointing to scattering from spin excitations as the source
of mass renormalization.[11, 76, 88, 91] This is consistent with the observation
that the coupling appears much stronger in the underdoped regime, a region
where the spin excitations are more pervasive. Further the effects become more
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pronounced on moving away from the nodal direction towards the (m,0) direc-
tion. This is evident in the measured momentum dependence of the change in
the Fermi velocity on entering the superconducting state[92] and is consistent
with the observation that the spin excitations are described primarily by the
scattering vector @ = (m, 7) coupling the antinodal regions.

7 Summary and outlook

The new experimental developments combined with new analysis methods have
allowed photoemission to become a powerful probe of the collective excitations
in condensed matter systems. We can anticipate that such studies will continue
and be extended to an ever larger array of new materials. We can also anticipate
that the experimental capabilities will be improved. However this will not be
easy. The total energy resolution in any experiment is influenced by the energy
spread in the incident light beam and the resolving power of the electron spec-
trometer. These each present a challenge but not an insurmountable challenge.
The temperature of the sample and also the quality of the sample surface will
also be reflected in the measured peak widths. These contributions are intrinsic
and represent more of a challenge. It will be challenge to get the sample much
below 1 K but getting to low temperatures is worth the effort. It is a simple
matter to show from equation (6) above that in the limit of 0 K the Eliashberg
function, o F, is simply related to dAde(w) where Ak(w) is the width of an MDC
at binding energy w. The problems associated with sample surface quality will
be somewhat alleviated in experiments that are less surface sensitive such as
the new laser based techniques.[93, 94]
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