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The TRANFT User’s Manual 

M. Blaskiewicz* 
BNL, Upton N Y  119‘73, USA 

The Fortran program T W F T  simulates transverse instabilities in circular accelerators using 
fast Fourier transform algorithms. It may be used for any particle type. Forces from transverse 
wakefields, longitudinal wakefields, and transverse detuning wakes are included, with linear trans- 
verse space charge forces included as a special case. This note describes the algorithms and their 
implementation in TRANFT. 

I. INTRODUCTION AND THEORY 

Coherent instabilities are of significant concern for a wide variety of planned and existing accelerators. The theory 
of these phenomena has been advancing steadily for decades [l-141 and, quite recently, a crucial piece of the puzzle for 
transverse instabilities was found [15]. A theoretical treatment involving all the relevant pieces appears very difficult 
whereas simulation using particle tracking is conceptually straightforward [16]. 

The algorithm involves single particle evolution and multi-particle kicks. First consider the single particle motion. 
The single particle longitudinal update €or one turn is given by 

Cl 5 = E + -[V(T) - K] + SE - ToE/T, 
mc2 
To77 - 
P2T0 

‘i = r+-€ 

where r is the arrid time of the particle with respect to the synchronous phase, E = 7 - 70 is proportional to  the 
energy deviation, 70 is the reference Lorentz factor for a particle of mass rn and charge q, V(T)  is the RF voltage, 
V, is the synchronous voltage due to both acceleration and radiation, /3 = u/c, TO is the revolution period, 71 is the 
frequency slip factor, SE is a quantum excitation random kick, T,. is the longitudinal radiation damping time, and the 
updated variables are ‘i and Z. 

Only one transverse variable is considered and it will be referred to as x. The single particle transverse update, 
without radiation, for one turn is 

I = xcos$+psin$ 
p = -xsin++pcos+ 

(3) 
(4) 

(5) 

where p is the transverse momentum variable, $0 is the on-momentum phase advance, and [ is the chromaticity. 
Transverse radiation damping and quantum excitation are also included, 

TO I = ---x+bz 
TX (6) 

TO P = --p+Sp, TX (7) 

where Tx is the transverse radiation damping time, and Sx and Sp are random variables. While equations (1) though 
(7) are written for one turn, TRANFT allows the user to choose the number of updates per turn. 

The multiparticle forces are associated with three Green’s functions that are referred to  as wake potentials. The 
longitudinal voltage is 

K(t) = - ws(T)&(t - T)dT, (8) 
-Tb I 
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where 3-6 is the bunch length, WS(7) is the longitudinal wale potential, and Ib(t) is the instantaneous beam current. 
Note that &(t) is the linear superposition of the current impulses from each of the individual macro-particles. The 
transverse voltage is driven by two terms. The short range term is 

where W ~ ( T )  will be called the detuning wake [17-191, W,(T) is the usual transverse wake potential, and D,(t) is 
the instantaneous dipole density. Note that Dz(t)  is the product of the instantaneous current and the instantaneous 
value of x.  

A second term in the transverse force is included to  account for multi-bunch effects. Each particle in the bunch 
receives the same transverse kick 

Where X = S D,(t)dt and P = s D,dt are the total dipole moments in x and p .  It is assumed that there are M 
identical, equally space bunches interacting with coupled bunch mode number s. In actual accelerators there is usually 
a gap in the bunch train. For rigid modes the growth rate for a symmetric fill is never smaller than the growth rate 
for a partial fill[20]. For an uneven fill and arbitrary modes, one can prove that the largest magnitude tune shift for 
the symmetric fill is never smaller than the largest magnitude tune shift in an  even fill[21]. With the typical error 
bars associated.with accelerator impedances the error incurred by using (10) is probably benign. 

11. ALGORITHMS 

All calculations, but wakefields, axe done to machine precision using straighforward implementations of the equations 
already introduced. As an example of the wakefield calculations consider the longitudinal voltage, equation (8). Taking 
the instantaneous current to  be a series of delta functions one obtains the first order approximation 

N 

where there are N macroparticles of charge 8. There are two problems with using (11) as it stands 1221. Firstly, since 
N is small compared to the actual number of particles within the bunch, there can be large statistical fluctuations 
in the applied voltage. This is especially worrisome since short range wake potentials tend to be very large. The 
net effect is that one can have a significant, unphysical, blow-up in the longitudinal emittance. The second problem, 
not fully unrelated to the first, is caused by the discrete time steps between updates. A typical particle makes a 
step 2nQsaT each turn, where Qs is the synchrotron tune and a, the rms bunch length. When length scales less 
than 27rQsur are important in the wake potential then it is possible for macro-particles to  pass each other without 
interacting via the short range wake. Both of these problems can be alleviated by convolving (11) with a smoothing 
function of characteristic scale AT 2 27rQsur and, since convolution is commutative and associative, we may consider 
a smoothed wake potential w S ( ~ ) .  This leads to a second approximation for the voltage that is physically reasonable 

To update the particles equation (12) needs to be evaluated for t = TI,. . . TN and a naive algorithm requires O(N2)  
operations. Instead of incurring this computational penalty, it was decided to use an approximate technique. First, 
a uniform grid of points spaced by 6t 5  AT/^ is generated. Next, the macroparticles are placed on the grid via linear 
interpolation. A fast Fourier transform (FFT) is applied, multiplied by the FFT of wS, and an inverse FFT completes 
the calculation of Vs,2. The total number of grid points is a power of 2 and the total grid length is at least twice the 
total bunch length to eliminate "phantom" of "ghost" forces [23]. There are two sources of error involved with this 
computation. The first is due to the application of linear interpolation in gridding the system and the second involves 
using numerical integration (via FFT) to evaluate the sums. The net effect is easily tested by cutting 6t in half and 
rerunning the simulation until. the answer converges. 
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111. IMPLEMENTATION AND USE 

The fortran source code resides in the file tranft .f and is liberally commented. Common blocks and some 
parameters are in tranft-c .f. The code employs some routines from numerical recipes[24]. Some small modifications 
were needed for the code to compi€e. The top of subroutine SORT2.FOR needs to be changed from 

SUBROUTINE SORT2 (N,RA ,RBI 
DIMENSION RA @?) , RB (N) 

to 

SUBROUTINE SORT2 (N , RA ,RB) 
DIMENSION RA (N) 

C NEXT DECLARATIONS FOR INTEGER TAG-ALONG ARRAY 
C BASED ON QUICKSORT 

INTEGER B ( N )  ,RRB 

The function ran3 (idum) needs to be changed from 

FUNCTION RAN3(IDUM) 
C IMPLICIT REAL*4(M) 
C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=O.,FAC=2.5E-7) 

PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=O,FAC=l.E-9) 
DIMENSION MA(55) 

to 

FUNCTION RAN3 (IDTfM) 
C IMPLICIT REAL*4(M) 
C PARAMETER (MBIG--4000000.,MSEED=1618033.,MZ=O.,FAC=2.5E-7) 

PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=O,FAC=I.E-9) 
common/ran3stuff/ MA(55),inextYinextp 

The subroutine fourk.for compiled without difficulty. The code may be obtained by contacting the author 
blaskiewicz@bnl.gov. The code has been tested with the intel fortran compiler if ort and the generic linux compiler 
g77. The compilation commands for Sort and g77 are 

ifort -0 tranft numrec.f tranft-f 
g77 -0 tranft numrec.f tranft.f 

where the t h e e  numerical recipes routines are in numrec . f and the executable is tranf t. 
TRANFT uses three input files. The file tranft . in  contains data with regard to the beam and the lattice while 

imped3. in con&m data with regard to collective forces. Numerically calculated wakefields can be incorporated via 
impedf iLe. dat. The three files are not entirely independent. A typical tranft . in is given by 

1500 I00 $0 12763 2 nturns,ndim,nwrite,iseed,nperturn nsls2 16 j u ly  06 
52.13 780.3 5871. -3.7e6 1300 1. 3 gammat,circ,gamma0,vrf,nharm,radh~,nharm2 
16.28 3.e-6 1.e-6 5. 5. 0 tunex,ampx,xinject,cbrom-init,chrom-final,dispavg 
15.e9 5.446e-4 1 5.e-12 4 1.e-10 -0.322 1000 pnumber,aatom,qatom,taupart,power,tauhat,phisynch,nturnon 
4000 1300 17 6.e-10 14.e-IO nresamp,mbunch,mode,tlob,thib 

The code reads only the numbers on the lines (free format) and the character strings to the right are the corresponding 
variables in the source code. No text is required, but the author h d s  it very helpful. For the case above nturns = 
1500 is the total number of turns simulated. The parameter ndim=l00 controls the number of macro-particles. Writes 
to the screen and output files are done every nwrite=50 turns. Setting nwrite to a negative number calculates more 
beam properties every I nwrite I turns and increases computional time. The random number generator is ran3 from 
numerical recipes[24] and iseed =I2763 is the random seed. Radiation damping and quantum excitation are always 
applied once per turn. All other algorithms are applied nperturn=2 times per turn. The comments nsls2 16 j u ly  
06 and trev = 2.60 us are reminders to the user. Additional lines after the input file are allowed too. 

The transition Lorentz factor is gammat, the machine circumference is circ meters. The central Lorentz factor of 
the beam is gamma0. The primary RF voltage amplitude is vrf volts and nharm is the primary harmonic number. For 

13.e-3 3.e-6 6.5e-3 5.4 tradperp,sigperp,tradlong,siglong trev = 2.60 us 
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stable motion, the product vrf *qatom is positive below transition and negative above. Since electron clouds are not 
included, switching the signs of vrf and qatom lead to  identical dynamics. The ratio of higher harmonic voltage to 
primary is radharm2 and nharm2 is the ratio of the higher harmonic to  the main haxmonic. For radharm2=0 there is 
no higher harmonic voltage and for radhaxm2=1. the RF voltage is cubic to  leading order in T about the stable fixed 
point. For values between 0 and 1 the amplitude of the second harmonic is modified but its phase is unchanged. 

The betatron tune is tunex and the average beta function is defined to be circ/ (2*pi*tunex) with pi = 3.141. . . . 
The rms transverse amplitude at average beta is ampx meters and the particle is (eventually) given a kick of amplitude 
xinj ect. The unnormalized initial and final chromaticities are chrominit , chromfinal and the simulation linearly 
interpolates in time between the two. This mimicks the rapid lattice changes that can accompany transition and 
one should set chrominit=chromfinal to  emulate steady state systems. The average dispersion referenced to the 
average beta is dispavg. It is best left 0. 

The actual, physical bunch contains pnumber particles of atomic mass aatom and atomic number qatom. Set 
aatom = me/mp for electrons. The wake potential smoothing is controlled by the parameter taupart. The smoothing 
employs a gaussiad function with equivalent length taupart = &% seconds. The initial bunch has half length 
tauhat seconds and its shape is controlled by power. The initial bunch is matched to  a linear rf force with shape 
[l - (t/ta~part)~]PO~~’. The synchronous phase is phisynch radians. Over the course of nturnon turns the rf is 
smoothly changed &om linear to a sum of appropriate sinusoids. The longitudinal wake field is smoothly turned on 
during this same time. Then, a transverse kick of amplitude xinject is given and both the transverse wakes are 
turned on. With radharm2 =I a surprisingly large number of turns can be required for nearly adiabatic rf turn on. 

The number of grid points used for the FFT is the smallest power of 2 that is at least as large as nresamp. The 
number of bunches used for coupled bunch modes is mbunch and mode is the mode number. This parameter is s in 
equation (10). To minimize problems with truncation the stable fixed point is at half an rf period T,.f/2. The interval 
used for the entire FFT domain is [tlob , thib] . The code will generate unmistakable warnings if the bunch leaves the 
calculation interval, or if the bunch gets too long. One gains no increase in accuracy by having thib - tlob greater 
than twice the bunch length, but a factor of 3 leaves a good safety margin without introducing a large computational 
overhead. 

The transverse radiation damping time is tradperp, called Tz in equation (6). The rms, equilibrium beam size at 
average beta is sigperp. The longitudinal radiation damping time is tradlong, called T,. in equation (1) and sigperp 
is the rms energy spread in units of y. Setting tradperp < 0 turns off radiation damping and quantum excitation. 

20. 212. 1.7e-8 0.0025 0. 0.5 slenx,slens,rhoe,bpipe,wstep,detunefrac uses beta weighting 
0 1.e-12 0. 0. wallinduct,twall,scimped,scabrat 
1 I npolex,npoles 
0 2.17e17 0.94ell 1.33ell transverse 1.e6 Ohm/m, 30 GHz, Q=1 
5.654#15 -3.26W15 9.425e10 1.632el.i longitudinal 30.e3 Ohm/m, 30 GHz, q=i 

A sample imped3. in is 

The first line defines all the resistive wall quantities. The effective length for the transverse impedance and trans- 
verse detuning wake is slenx meters. Remember that all quantities are referenced to the average beta func- 
tion circl(2 *pi * tunex) and that the relevant quantity for stability calculations is the beta weighted transverse 
impedance. The effective length for the longitudinal resistive wall.impedance is slens meters. The electrrical re- 
sistivity of of the wall material is rhoe ohm-meter. The transverse wake potential is calculated assuming a round 
pipe of radius bpipe meters. The transverse detuning wake is a fixed fraction detunef rac of the longitudinal wake. 
For vertical instabilities with a small vertical aperture and large horizontal aperture detunefrac = 0.5[18]. The 
parameter wstep is the value for the transverse step function wake in volts per coulomb per meter. 

The broad band wall inductance is wallinduct in Ohm-seconds. The very short range nature of this force warrants 
additional smoothing[25] and the rms length of the additional smoothing is twall seconds. The net voltage kick per 
turn is given by 

V = -wallinduct - 

where the subscript on the time derivative of the beam current denotes smoothing with a gaussian pulse of rws length 
twall seconds. For longitudinal space charge[26] 
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where the beam has relativistic parameters P,r, an rms (round) transverse size Ob in a round pipe of radius b and 
20 = 377Q. The magnitude of the direct, transverse space charge impedance is scimped in ohms per meter [26,27], 

Zocirc 
27r,82y2a2 

scimped = 

where a = 2Ub is the radius of a uniform equivalent beam[27]. The parameter scabrat = a/b is the ratio of the 
equivalent beam radius to the beam pipe radius and is used to calculate the coherent space charge force. The last 
components defined in imped3. in are the resonators. There are npolex transverse resonators followed by npoles 
longitudinal resonators. Each resonator is defined by 4 real (2 complex) numbers. The input parameters on each 
line are w,., wi in Ohms per second; and Q and w,. in inverse seconds. The wake potential vanishes for t < 0 and is 
Re(w,. + iwi) exp(-at - iw,.t) for t > 0. One may set either or both of npolex,npoles to  zero and neglect resonator 
contributions to that plane. 

The final input file is impedf ile . dat. The top few lines of such a file axe 

3.137e-12 -242 114 dtfile,nptfile,idexO 
-3.545098E-10 8.046247E+12 0 .OOOOOOE+OO 4.023123E-f-12 f ilex(k) yf iles(k) ,filed(k) 
-3.513726E-I0 4.601705E+12 O.OOOOOOE+OO 2.300852E-f-I2 

The file dehes  three arrays of nptf ile elements. The wakepotentials defined in these arrays are added to  those 
calculated above. Setting nptf i1e < 0 causes the subroutine to exit and no lines after the first are read. The array 
elements are spaced in time by dtf ile seconds. The index corresponding to time equals zero is index0. It is strongly 
suggested that at least one negative time be included, even if all wake potentials vanish at that time. The second line 
on contain the array elements. The first column is the time lag in seconds. While this column is ignored by the code 
the author finds it useful for comparison purposes. columns 2,3 and 4 are the additional values of W,, W, and wd. 

Making the substitution nwrite = -5 in tranft . in and leaving all else unchanged produces the following on the 
screen 

CblaskiewQblaskiew r041$ ../tranft 
nresamp,nfft 4000 4096 
eta = 3.6795126E-04 
synchronous voltage = 1170918. 
amp of de/e = 6.1927512E-03 
synchrotron frequency = 3626.553 
revolution period = 2.602735l.E-06 
reference beta function = circ/(2*pi*tunex) = 
tbin/sigtsmooth= 9.7915158E-02 

7.628292 

zcbm = (3.5463145E+15 , -4.6984043E+15) 
Im(Q) for cold bunches = 2.2852253E-03 
dpwake for I meter offset with step wake = I 
6.1044420E-18 
Oide-Yokoya intensity factor for electrons I = 1.4685191E-14 
avgchrom, chrom, avgtune = -5.8565885E-03 5.000000 5.6935042E-02 
kturns,np,loglO(csfull),coherecs 0 31428 -1.074E+01 2.3233-14 
avgchrom, chrom, avgtune = 4.956137 5.000000 0.2799785 
kturns,np,loglO(csfull),coherecs 5 31428 -1.074E+OI 2.449E-14 

The code was run in the subdirectory r04 with the executable residing in the directory above. All input and output 
files are in r04 making this an easy way to keep track of several runs. The &st line of output shows that the number 
of samples used for the FFTs has been raised to 4096. The second line is the frequency slip factor 77 = l/y$ - l/y2. 
Line 3 gives the first harmonic synchronous voltage in volts. Line 4 is the maximum, fractional energy deviation for 
the initial distribution. Next comes the synchrotron frequency in Hz and the revolution period in seconds. Next is 
the reference beta function for transverse coherent kicks. Next is the ratio of bin length to  the rms of the gaussian 
smoothing length. The parameter zcbm is the sum of the wakes in equation (10). Next is the imaginary part of the 
tune one expects if the bunches are rigid. The variable dpwake is the kick in p from transverse wakefields. The last 
message before entering the update loop is the Oide-Yokoya intensity factor 1[13] in MKS units. 

With nwrite < 0 the betatron tunes of the individual particles are calculated. To simplify notation consider a 
single particle and let xk,pk be its coordinates at the end of turn L. For purely linear motion xk+l = azk + bph and 
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pk+i = cxk + dpk, where a, b, c, d are constants. Now consider the sum 
m+G1 

r(a, b, C, d) = (xk+i - axk: - b ~ k ) ~  + h+i - a k  - dpk)2 . (15) 
k=m+l 

Minimizing I’ simultaneously with respect to a, b, c and d gives a least squares fit to the transfer matrix best describing 
the particle between turns m + 1 and m + t - 1. Given the transfer matrix the single particle tune q satisfies 
2cos(2nq) = (a + d)/(ad - bc). The sign of q is the same as the sign of b. In TRANFT t = Inwritel - I and m is 
an integer multiple of nwrite. Taking correlations between 6 and q yields the chromaticity. On the fist turn, 0, the 
arrays are not full so the data are meaningfull only for kturns > 0 . The setpoint chromaticity is also displayed. 
Iu all cases the turn number (kturns) and number of macroparticles (np) are displayed. There are also two quantities 

which allow the user to monitor the progress of a transverse instability. The parameter csfull is the average over 
particles of x2 + p 2 .  This parameter includes information about the emittance as well as any coherent motion. The 
parameter coherecs is tailored to be a sensitive indicator of instabfity. Let %(t), and p(t)  be smoothed average values 
of x and p as the bunch passes and let I ( t )  be the smooth current pulse, then 

J dtl(t) [?C2(t) +p2( t ) ]  
bunch coherecs = 

J 
bunch 

Along with writes to the screen there are 8 output files. The wake potentials in various forms are in w . out, z. out, 
and ws.out. The raw wake potentials before smoothing are in w.out. There are 4 columns: the time, W,(T), WS(7), 
and Wd(r). All are in MKS units. The file z.out contains the Fourier transforms of the wake potentials and the 
frequency window used for smoothing. Defining Fourier transforms as 

03 

P ( f )  = / F(t) exp(2nift)dt, 

the columns are f in Hz, Be(&,), Im(@,), exp(-a[fta~part]~), Re(ws) ,  Im(ms), Be(&d), and Im(&d) all in 
MKS. The final wake field file is ws .out. This file contains the smoothed wake potentials in the same format as 
w-out. 

A note concerning the resistive wall quantities is in order. Only the simplest low frequency approximations for 
resistive wall quantities have been used, resulting in continuum forms that have singularities of various types. The 
transverse resistive wall wake is taken to  be 

--oo 

where 20 = poc = 376.74Cl is the impedance of free space, Lx = slenx, b = rpipe, p = rhoe, and H(T)  is the 
Heaviside function. The value of W, assigned to time n6t is 

This guarantees that the low frequency impedance behaves correctly and that the smoothed quantities converge 
rapidly to their continuum values. When the pipe radius or beta function vary with machine azimuth the appropriate 
value for L, = slenx satisfies 

where ,8 = circ/(2 *pi * tunex) is the average beta function. The longitudinal resisitve wall wake potential it taken 
to be 
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where L, = slens. W,(T) has a functional near T = 0, but it is trivial to integrate as long as r = 0 is not one of the 
end points. The code does this in exact analogy to  equation (18). The analog of equation (19) is 

(21) 

Two output files describe the instantaneous dynamics of the beam. The file res. den is over written every lnwrite I 
turns and contains gridded data. The file tran.ful1 is over written every Inwrite I turns if nwrite < 0. Both are 
always written when the simulation ends. There are 8 columns of data in res. den. The first column is arrival time 
in seconds, with T,f/2 corresponding to the stable synchronous phase. The second column is the instantaneous line 
density normalized to be equal to the number of macroparticles in [t - taupart/2,t + taupart/2] , which is useful 
for judging the statistical accuracy of the simulation. Columns 3 and 4 are 5(t) and p(t)  in meters, as defined in 
equation (16). Column 5 is the instantaneous current in amperes. Column 6 is the value of the kick to p due to W,, 
column 7 is the longitudinal kick due to  W, in units of y, and column 8 is the detuning kick. Multiplying column 8 
by --nperturn/4~ yields the tune shift due to wd as a function of longitudinal position within the bunch. 

The second Ue describing instantaneous dynamics is tran.full. The f is t  4 columns are x,p,t,e for each of the 
macroparticles, They are ordered in t. Column 5 is the betatron tune of the particle. Trust this only if nnrite < 0 
and Inwritel << 1/Q8. The last column is the kick in y due to the RF voltage. 

There are 3 files containing a summary of the beam dynamics over the whole simulation. The file tim.out has 
three columns. The first is the time, the second is the average value of x and the third is the average value of p, all in 
MKS. The file spec.out contains the Fourier transform of tim.out. The first column is frequency in tune units, the 
second and third columns are the real and imaginary parts of the FFTs of tim. out. The FFT is of < 2 + ip > so the 
tune is resolved on the full span between 0 and 1. The last output file is csmon.out, has 8 columns. Column 1 is the 
turn number. Column 2 is < x2 +p2 > averaged over the beam. Column 3 is the log base 10 of column 2. Co€umn 
4 is coherecs deked  in equation (16). Column 5 is the rms bunch length in seconds. Column 6 is the rms energy 
spread in units of y. Column 7 is the effective synchrotron tune defined using the ratio of the rms energy spread to  
the rms bunch length. Column 8 is < t > averaged over the bunch. 
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