
A Review of Software-Induced Failure Experience

T.L. Chu, G. Martinez-Guridi, M. Yue, J. Lehner

Brookhaven National Laboratory, Upton, NY 11973 USA

Submiffed to the American Nuclear Society 51h Internafional Meeting on
Nuclear Plant Instrumentation Control and Human Machine Interface Technology

November 2006

Nuclear Science and Technology Division

Brookhaven National Laboratory
P.O. Box 5000

Upton, NY 11 973-5000
www.bnl.gov

Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

Tnts prepr nt 6 ~ntendeo for pub cat on .n a .ournal or proceed ngs S nce changes may be made before
pub callon n may no! be ate0 or reproa.ce0 w lhoul tne a~ tnor s perm.sslon

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party's use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof

A Review of SoftwareInduced Failure Experience

T. L. Chu, G. Martinez-Guridi, M. Yue, and J. Lehner
Brookhaven National Laboratory, Building 475C, P.O. Box 5000, Upton, New York, 11973, chu@bnl.gov

Abstract - We present a review of sofiare-induced failures in commercial nuclear powerplants (NPPs) and in several
non-nuclear industries. We discuss the approach usedfor coNecting operational events related to these failures and the

imights gainedfrom this review Inparticular, we elaborate on insights that can be used lo model this kind offailure in a
probabilistic risk assessment (PRA) model. We present the conclusions reached in these areas.

I. INTRODUCTION

LA. Background

As part of the research activities by the Nuclear
Regulatory Commission's (NRC) staff and its contractors
on the risk assessment of digital instrumentation and
controls (I&C) systems (which are part of the Digital
Instrumentation and Control Research Program) a review
of software induced failure experience was canied out.

The objective of this paper is to discuss software
failures, the approach used for collecting operational
events related to these failures, and to address several
issues related to software failures based on the insights
gained during the review of these events.

I.B. Motivation for Review of Software Failures

The NRC staff, its contractors, and a member of the
Advisory Committee on Reactor Safeguards (ACRS) [I]
concluded that, as part of the Digital I&C Research
Program, the following two tasks related to software
failure experience should be undertaken:

1. The databases containing software-induced failures
of technological systems should be reviewed, and
conclusions should be drawn regarding failure modes
and their eequency of occurrence.

In the literature on digital softwafe [2,3,4],
there are two main interpretations of the concept of
software failure. The "software-centric"
interpretation views "failure" as a property of the
software itself. In other words, the software is
considered in isolation, and not in the context of the
system or plant in which it operates. The "system-
centric" view proposes that the concept of software
failure is meaningful only when the software is
considered within a system. This approach is very
similar to the modeling of human performance; an
unsafe human act is considered meaningful only in
the system context within which it occurs, an
observation that has led the Office of Nuclear

Reactor Research (RES) to the development of the
concept of "error-forcing context' (EFC) [5] . The
NRC decided that the databases containing software-
induced failures should he analyzed to provide
insights into which of these two interpretations would
be the appropriate one to understand and treat these
failures.

2. Available methods for the identification of failure
modes and the assessment of the reliability of
systems that are software driven should be reviewed
critically. Their domains of validity should be
determined by examining their assumptions and
comparing them with the insights gained kom the
database review.

This paper addresses the fust task; the second one is
the subject of follow-up work at Brookhaven
National Laboratory (BNL).

I.C. Organization of Paper

The work carried out to address these comments is in
Sections I1 through IV. Section I1 presents a conceptual
model of software failures and their propagation in
complex engineered systems, as well as a scheme to
categorize software failures identified in operational
events ofthese systems. In this report, the terms
"complex engineered system," "complex system," or
"technological system" are used to represent a large set of
systems with a major function, such as a nuclear power
plant (NPP), or an airplane.

Sections 111 and IV discuss relevant software failures
in domestic commercial NPPs and in the non-nuclear
industries, respectively, including the approach used to
identify them, and insights gained during their review.
Section IV also includes a few events that took place at
foreign NPPs. Finally, Section V presents our
conclusions.

ll. APPROACH

We reviewed the software failure experience in
different industries and obtained insights on software
failures. The overall approach of this study is
summarized in this section.

By reviewing literature on software reliability, we
developed a model of software failures. It depicts the
process through which software faults are introduced
during the software life cycle stages. Failures occur as a
result of triggering events and may develop into
accidents. This model serves as a framework for
considering software's role in accidents. Section 1I.A
describes this model in detail. The model is also a
starting point for developing a software reliability model
of digital systems.

The software failure events were collected from a
variety of sources, as described in Sections 111 and IV. In
performing our review of software failure events, we also
carried out a literature review of software failure modes,
and developed a method for classifying software failure
events. The objective of the literature review was to
survey how software Failure Modes and Effects Analyses
(FMEA) have been performed, and identify the software
failure modes that others have found to make our list of
failure modes more complete. The approach is to review
a) papers that document the experience of performing
software FMEA, b) operating experience of software
failures, and c) papers on classifying software failure
modes and causes. Our classification method is based on
the failure modes, failure causes, and failure effects of the
software. The generic failure modes compiled in this
study are useful in performing a software FMEA, and the
failure causes are factors to take into consideration when
developing a software reliability model. Section 1I.B
provides more detail of the characterization and
categorization of the software failure events.

ILA A Sofhvare Failure Model

Digital systems have some unique features that make
them different 6om the analog systems and mechanical
systems that are typically modeled in PRAs. Most of
these unique features are essential parts of digital systems
and have a significant effect on the reliability of the
systems. Therefore, it is important to have methods and
tools that are capable of modeling these features.
Software is the most important feature of digital systems.
Accordingly, it is relevant to discuss the nature of

software failures to model the impact of software-related
failures in a PRA.

To gain a good understanding of the nature of
software failures, especially for events that have already
occurred, a conceptual model of the causes of these
failures, and the propagation of these failures in a
complex engineered system was developed, and is
presented in Figure 1.

Software is developed in several stages that transform
it from a concept into a code which is executed by a
computer processor. This development is usually called
software life cycle (SLC), and it is generally characterized
in terms of six main stages: system engineering and
modeling, software requirements analysis, software
analysis and design, code generation, testing, and
operation and maintenance. The upper part of Figure 1
(between the dotted lines) presents a simplified version of
the SLC.

At each stage of development, errors may be
introduced into the software. An example is that the
requirements analysis may be incomplete, such that a
requirement of the software is omitted. The earlier in the
SLC an error is introduced into the software, the more
severe and costly its impact is likely to be because the
error is expanded in subsequent stages of development.
For example, if an error is introduced during the stage of
"Requirements Analysis," the following stages will
implement the error, and most likely testing will not
reveal it; fming it would require revising the entire
activities of the SLC.

While the stage of "Testing" attempts to discover
errors so they are fixed, in practice it is difficult to
discover all errors. Accordingly, some undiscovered
errors may, and in many cases do remain in the software
when it becomes operational. This is particularly true for
large software that can contain tens or hundreds of
thousands of source code, and whose logic can be
complex.

Testing each possible path of execution would
require tremendously large resources in terms of time and
money, so in practice it may he prohibitive. In addition,
testing detects errors by observing that the results
obtained from certain inputs are inconsistent with the
requirements of the software; if the requirements are not
correct, testing will not be able to discover some of the
errors.

System
I

Requirements
E n g l n e e ~ g and 4

Analysis
Design Genaation

Modeling

Propagation of
Failure of Software

A

Operation &
Maintenance

1
Faults (Internal Causes

of Falure)

I
A 1 External Causes 1 1

of Failure:
Failure of

Human error

(mcluding CCF) Suppaning systems
Cyber security
External events

(including CCF)

Failure of System
Containing
software

Operating

Status of Complex 1 s;:z;d

avoided

Figure 1 . Model of Software Failures

Nevertheless, developing software according to high-
quality standards in each stage of the SLC is expected to
produce software that operates correctly, i.e., according to
its specifications, during most of its operation.
Accordingly, in general, an undiscovered error is in a
"dormant" or inactive state since the start of operation of
the software. A dormant error becomes "active" when it
is triggered by a specific set of conditions. Thus, a
software failure occurs when a dormant error becomes
active. In other words, software failure occurs as a result
of the combination of a dormant error and the specific set
of conditions that trigger this error. To simplify the
discussion in this report, a dormant or inactive error in the
software is called a software "fault."

Three important characteristics of a software fault
are:

1. It is specific to each design. Since each software is
developed by different teams which use somewhat
different approaches to the SLC, it will have its own
design-specific errors. Hence, the faults may be
triggered by different sets of conditions.

2. It is unknown. By the nature of a fault, it is
undiscovered or hidden in the software until it is
triggered.

3 . The impact of a triggered fault is difficult to predict.
When the fault is triggered, the software may behave
in undesirable ways (failure modes), thus causing
undesirable impacts on the components of the system
associated with it. Since the fault is unknown, it is
difficult to predict in advance the impact of its
associated failure on the software and these
components.

Once the software is installed and becomes
operational, it is embedded in some system, and it
interacts with some environment, such as the components
of the system and operator actions. For example,
assuming that the Main Feedwater system (MFW) is
using software for its flow control, the software may
control a device, such as the flow control valves of the
MFW. Thus, general, software interacts with its
environment at four levels, depending on the level of
detail: the software itself, the device(s) controlled by the
software (e.g., the flow control valves of the MFW), the
system where the software and the device@) are
embedded (e.g., the MFW), and the complex engineered
system, such as the entire NPP.

At any particular time, the software, the device(s)
controlled by it, the system where the software is
embedded, and the NPP, are in a certain state. In general,
the state of the plant provides an overall context for the

operation of the software, the devices, and the systems.
For example, the input to the software will depend on the
state of the plant. Accordingly, software faults are
triggered by the input to the software; this input is
provided by the context (state) of the plant. The context
of the plant that the software "sees" is particularly
important because it may trigger a fault, thus causing a
software failure. The context that causes a software
failure has been named the "Error Forcing Context
(EFC)" by Garrett and Apostolakis [4], because, as its
name implies, it "forces" or activates the error.
Accordingly, the EFC is the set of conditions that trigger
a fault.

Software that was developed and is operated
according to a high-quality SLC is expected to initially
operate without failure. Any faults that may remain in the
software are not active; however, some time after the
software is installed and placed into operation, an EFC
may occur, thus causing a software failure by triggering a
fault. Once the software failure occurs, it may not be
evident to the plant staff, depending on such factors as to
whether the failure is automatically annunciated, and
whether the failure is significant to the operation of the
plant; a significant failure is expected to cause plant
changes that are noticeable by the plant staff. The failure
may remain hidden for some time, until it is discovered.

The propagation of a software failure to the higher
three levels (device(s), the system where the software is
embedded, and the NPP) also depends on the overall
context of the plant. For example, at the time of the
software failure, other components, trains, or systems may
be unavailable due to maintenance or testing, or standby
components may fail to operate on demand. Hence, the
software failure may combme with the unavailability of
other components, trains, or systems, thus propagating
throughout the plant.

In general, a software failure is propagated directly to
the device(s) controlled by the software (e.g., the flow
control valves of the MFW), which, in turn, may result in
degradation or failure of the associated system.
Depending on the overall context of the plant and the
tolerance to failures of the design of the software,
device(s), and system, the failure may propagate to the
overall plant.

Figure 1 presents the operating environment of the
software between the dotted lines. There is a rectangle
(roughly at the center middle) that represents the failure
of software which results kom the occurrence of the
overall context (arrow labeled "Error Forcing Context"
from the rectangle "overall context") triggering a fault(s)
in the software (arrow 6om the stage "Operation and
Maintenance" of the SLC). The potential propagation of

this failure is shown following the arrows downward.
Thus, the rectangle "Failure of Software" leads to the
rectangle "Failure of Device," and so on.

Several systems using software have redundant trains
(or channels). However, since the redundant trains (or
channels) of a system may have the same or similar
software, the failure of the software means that the
software in all trains fails, thus failing all trains. If this
common-cause failure (CCF) (included in the rectangle
"Failure of Software") occurs, it may cause a failure of all
the devices controlled by the software (included in the
rectangle "Failure of Device"), and a failure of the entire
system.

Given that a software failure occurs, it may he
possible to halt or mitigate its propagation by taking
automatic or manual recovery actions. In principle, such
recovery could be implemented at any of the 4 levels
previously discussed, i.e., at the software, device, system,
or complex system (e.g., NPP) level. For example, a
hypothetical software failure may have propagated to the
system level, hut recovery actions at this level stopped
such propagation, so the failure does not have a
significant negative effect on the overall nuclear plant.
For simplicity, Figure 1 depicts recovery only for the
highest level, i.e., the complex-system level. As shown
by this figure, the combination of a software failure that
propagated to the complex-system level with the overall
context may result in a hazardous condition that, if not
recovered, results in an accident.

In addition to the failures related to the faults
introduced in the software during its SLC, software may
also fail due to external causes or factors, as shown by
Figure 1. Based on the review of software failures
described in Sections 111 and IV, four main types were
identified:

1. Human error. A person may use the software in an
inappropriate way, such as using the software in an
operational environment for which it was not
designed, or may inadvertently input incorrect data
into the software.

2. Supporting systems. In general, the software that is
used to perform some function in a complex system,
such as controlling some device(s), requires several
supporting systems. These systems include other
software (e.g., an operating system), computer
hardware (e.g., a hard drive), electric power, and
possibly a system, such as a Heating, Ventilation and
Air Conditioning (HVAC) system, that controls some
variables, e.g., temperature, of the room(s) where the
computer system is located.

3. Cyber security. The operation of the software may
be jeopardized by cybernetic threats, such as viruses
and hacking activities. The software may he more
vulnerable if it is embedded in a computer which is
connected to a network because these threats can he
transmitted through the network.

4. Environment. Events such as fue, flooding, and
lightning also can jeopardize the operation of the
computer where the software is embedded.

Summarizing, the causes of software failure can he
classified into two major categories: 1) faults (called here
internal causes because they are associated with the
software itself) that are triggered by EFCs, and 2) the
external causes described above.

n.B Analysis and Characterization of Software
Failures

ILB. I Software Failure Mode

In general, a failure mode of a component is one way
in which the component fails. A component may have
several different failure modes. Software failure modes
are difficult to define because they depend on the level of
detail at which software failure is being evaluated and the
specific applications of the software. The failure may be
defmed in terms of the functions andlor implied functions
of the software. A narrowly defined function for a
particular software may lead to the conclusion that the
software never fails because it always does the narrowly
defined function. In our view, any deviation J?om the
expected hehavior, e.g., a violation of one of the
functions, can be considered a failure. Software failures
manifest themselves via behavior of hardware. Therefore,
software failure modes may be defined in terms of
hardware failure modes. For example, an actuation
system of a safety system has two types of failure modes,
failure to actuate on demand and spurious actuation. The
system level failure modes could be caused by either
software or hardware. For example, failure of
communication due to loss of synchronization is a lower
level software failure mode. In terms of the model of
software failures shown in Figure 1, the loss of
synchronization of communication processes associated
with several devices is a failure mode at a device level
which may develop into a system failure which impacts
the complex system.

The descriptions of the software failure events we
reviewed often are not detailed enough for us to identify
the specific software failure modes. Therefore, to identify
generic failure modes we performed a literature review of
a) papers on software FMEA performed in aerospace,

automobile, defense, and nuclear industries, and b) failure
experience in medical and nuclear industries.

From the review, we found the following problems
with the failure mode analysis methods: (1) failure modes,
failure causes, or failure effects are Gequently mixed up,
and confusing classifications are often given. Also,
failure modes, causes, or effects are often defmed
ambiguously, and sometimes they overlap or even are
contradictory; (2) the failure mode analysis is either
performed at the system level (software as an entity) or at
the element level (it performs one of the software generic
functions such as input or output) or a level that is not
clearly defined; (3) although some of the failure mode
classifications considered failure modes at different levels
of detail, more specifically at both system level and
element level, no classifications considered software as
extremely complex and each of the software elements
themselves conceptually can be considered as a software
system (software as an entity) which again consists of
many elements that can be functionally differentiated.
The process (and thus the corresponding failure modes of
the so-called "software system" and "software elements")
can actually be repeated until we reach the level where
enough information is available. From this point of view,
the software can be generally considered to be comprised
of a nested hierarchical structure of "software system"
and "software elements," and the failure modes should be
analyzed for these levels repeatedly to better understand
the failure modes of the software.

In an attempt to address these problems, we hereby
propose a software failure analysis Gamework that
involves definition of generic failure modes and causes.

Because of the hierarchical structure of so-called
"software system" and "software element," it is more
appropriate to separately define the software failure
modes (SFMs) at these two levels. One of the difficulties
in defining a generic software failure mode is that it
cannot be defined according to its intended functions
because every software has its particular function.
Therefore, we introduced the failure modes Gom the
viewpoint of the dynamic execution process of software
without being distracted by specific functions of the
software. More importantly, this dynamic running
process exactly reflects the behavior of software when it
is observed, i.e., the observed failures of the dynamic
process are indeed the failure modes.

process of software execution. M-I represents
malfunction of software in its execution which includes
two sub-modes:

1. M-I-I Sofmare stalls: In this failure mode the
software fails and stops generating output, e.g.,
software runs into infinite loop and stops generating
outputs, and deadlock between processes.

2. M-1-2 Sofmare runs as usual but with wrong outputs:
In this failure mode, the software continues running
but generates incorrect output, e.g., software accepts
incorrect inputs and generates wrong outputs.

If the software failure mode is M-I-I, it is relatively
easy to discover since it ceases all other functions except
maybe the one it is performing. Identification of M-I-2 is
more difficult as it appears normal. Usually, it is too late
to save the overall system from failure for failure mode
M-I-2. These failure modes can be found in Table I,
where SFM represents system failure mode, and EFM
represents element failure mode which will be illustrated
below. In Table I, each SFM is further expanded into two
system level failure modes depending on whether or not
the failure is clearly indicated, e.g., via an error message.
The system failure modes SFM-1 and SFM-2 are actually
M-1-1, SFMJ and SFM-4 are M-1-2, and SFM-5 is M-II.

M-I1 represents problematic, confusing, or poor man-
machine interface (MMI) designs. It includes misleading
commands to the user, incomplete or incorrect display of
information due to software problems, missing alarms,
and non-conservative output. In this case, the software
performs its intended functions successfully but
contributes to human errors or the software fails to
display the information correctly. This failure mode is
not found in our literature review. However, this type of
problem has been found in many software failure events
and is too important to exclude. Another reason to
consider this as a failure mode is that an alternate
interface design is very likely to prevent the same
accident 6om occurring.

The above system level failure modes represent a
natural way of considering software failure modes at the
highest level. Often, more detailed failure modes are
necessruy and useful. In order to conduct detailed failure
analysis, we introduce software element failure modes
(EFM) based on the observation that usually software can
be divided into five elements which perform generic

The following software SFMs are inspired by the
work in [6] and are defined according to the dynamic

1.4BI.I' I . Sofi\vme System and Sofiuarc I:lr.mcnt Failure \lodes
1 Software System Failure Modes (SFM) ' .- - Software Elements Failure Modes(EFM1 . - - - - - - - - - -. - - -,

1 1 I SFM- I : Halt/abnormal termination I Sofrware Elements: 1 1
M-1-1

EFM-I: INPUT
EFM-2: OUTPUT
EFM-3: COMMUNICATION

SFM-3: Runs with evidentlv EFM-4: RESOURCE ALLOCATION
wrong results EFM-5: PROCESSING
SFM-4: Runs with wrone results - 1 that are not evident Generic Failure Modes ofSoftware Elements:

I 1. Timinglorder failure,
2. Interrupt induced failure,
3. Omission of a required function or attribute,

SFM J: problematic, 4. Unintended function or attribute in addition to intended functions and

or less informative interface attributes,
5. Incorrect implementation of a function or attribute, I I
6. Data error which cannot be identified and hence is not rejected by
software logic.

functions of the software. Generally, software takes input overall system; and C-1-2 Using problematic or outdated
data kom hardware. A pre-processing may be performed standardslpolicies.
during the data input process. The input data will then be
processed, and the output data is sent out. During the C-II. Software requirement analysis: The failure
execution of the software, resources are required, such as causes include incomplete or incorrect requirements of
memory and CPU, and communication may occur software. An example is that certain functions which the
between different software processes. Hence, a software software should perform were not specified (and thus not
may be functionally subdivided into the following coded in the software). Typical example causes include:
elements: NPUT, OUTPUT, COMMUNICATION, C-11-1 Conditions that might impact on a specific function
RESOURCE ALLOCATION; and PROCESSING. Table are not taken into account, e.g., exception condition is not
I lists generic failure modes for the five software specified; C-11-2 Missing functions: desired functions are
elements. These failure modes are applicable to all the not specified in the requirements; and C-11.3 Incorrect
software elements. In addition, each element has some specifications: desired specification exists, but is
unique failure modes; these specific failure modes can be incorrect.
classified as one of the six generic failure modes listed in
Table I. C-111. Software analysis and design: Failures include

failure to include desired functions of software, and
ILB.2 Software Failure Cause adoption of improper algorithms, methods, or structures

of individual parts of the software. Timing interaction
We reviewed the papers on software FMEA and the between data and processes is more critical for real-time

software failures events, and developed the categories of digital systems. For non-real time systems,
software failure causes listed below. The first six communication failure between multiple processes might
categories (C-I to C-VI) are internal causes related to the also be caused by this issue. Some of the general causes
stages of the SLC described in Section 1I.A. The last at this stage are: C-111-1 Calculation, C-111.2 Algorithm,
category (C-VII) gives external causes. Problems with C-111-3 Logic, C-111.4 Data handling (manipulation other
documentation may become a failure cause at each stage than computation), C-111-5 Fault tolerance, C-Ill-6
of SLC. A list of documentation problems is shown in Interface, and C-111-7 Temporal fault.
Table A.21 in [7] and they are not explicitly listed here.

C-IV. Code generation: The failure causes may
C-I. System engineering and modeling: An example introduce the errors, commonly known as bugs, in the

of failure is that a developed software cannot be software because the software was not coded as intended.
integrated into the overall system. Some typical example Thus, it does not function as expected in certain situations
causes are: C-1-1 incompatibility between software and even if there is no problem with previous stages of

development, such as "requirement analysis." Examples

of typical causes of failure include: C-IV-I Typo: mis-
spelled variables, incorrect variables usage, e.g.,
referencing wrong data variable; and C-IV-2 Functions
not coded although designed.

C-V. Testing: Testing itself should not introduce
failures, hut grossly insufficient or inappropriate testing
before the release of the software will leave other causes
undiscovered. Some of the causes are: C-V-I Incomplete
test plan andlor test procedures; C-V-2 Test plan was not
implemented or executed appropriately; C-V-3 Regression
test was not performed on modified software; C-V-4
Untested for different running environments that might be
encountered; C-V-5 No validation before initial release;
C-V-6 No validation on software changes; and C-V-7
Quality assurance plan problem.

C-VI. Operation and maintenance: The failures can
be caused by modifications of the software. Some ofthe
typical causes include: C-VI-I Improper upgrades of
software because of wrong procedures; C-VI-2 Failure to
upgrade related systems including both software or
hardware, such as incompatibility between upgraded
software and the existing hardware; C-VI-3 Software
configuration plan, maintenance plan, and product support
plan problems after the installation or upgrades; C-VI-4
Software configuration management prohlem; C-VI-5
System administration, e.g., incompatible operating
system caused software failure.

C-VII. As discussed in subsection II.A, the external
causes are Human error, Supporting Systems, Cyber
Security, and Environment. Failure cause C-VII should
not be considered a pure software failure. The failure of
the software was caused by hardware or human behaviors
beyond the software capability. However, it is listed as a
software failure cause because this represents dependence
of software on its operating environment.

The internal causes introduce software faults in one
or more of the SLC stages. These faults do not
necessarily cause immediate failure. Software fails due to
either faults being triggered by an error forcing context or
external causes.

IILA. Approach

Relevant operational events associated with software
failures in domestic NPPs were identified to gain insights
into the nature of these failures in terms of such
characteristics as the specific cause of failure of the
software, the associated error-forcing context, and any
dependent failures, such as common cause failures.

The main approach for identifying software failures
in domestic NPPs was to use the NRC's "Licensee Event
Report (LER) Search System." The search for LERs was
conducted according to the following guidelines:

A) At the time of this study, the LER Search System
contained the LERs from January 1, 1984 through
December 3 I , 2005. This range of 22 years was
searched for software failures.

B) All plants that operated during this period

C) All modes of operation of the plants, such as power
operation and shutdown.

D) Since the LER Search System does not directly
distinguish failures related to software, a search was
conducted to identify those LERs containing the
keyword "software" in the LER's abstract and title.
This was considered to be an efficient way of
identifying LERs that are potentially associated with
software failures. This search yielded 175 LERs.

Each of the 175 LERs potentially associated with
software failures was individually reviewed to assess
whether a software failure actually occurred. Using this
approach, 106 events related to software failures were
included in a database. Seven additional LERs that
documented a software failure were added to the
database; they had not been identified in the automatic
search because they did not include the keyword
"software" in either the abstract or the title.

Hence, the current total number of LERs associated
with software failure(s) included in the database is 113.
The database containing these LERs can he sorted by a
variety of criteria, such as by date of the event or by LER
number, and can be queried using one or more keywords
in one or more fields. To the extent supported by the
information in an LER, each event is characterized in the
database in terms of the following properties: LER
Number, Event Date, Plant (the specific nuclear unit(s)
involved), Title (of the LER), Summary (description of
the software failure), Causes, Consequences (the impact
of the software failure on the safety of the plant), Error
Forcing Context, Dependent failure (dependent failure(s)
associated with software), and References (the source of
information of the event).

m.B. Insights

The work to characterize software failures in
domestic NPPs focused on developing an approach to
identify events potentially related with this type of
failures, screening these events, and designing and

developing the datahase. The following main insights
were gained during this process:

A) 71 different nuclear units have at least one event
related to software failure during the period studied.
This means that software failures have occurred in a
significant number of units, so it is a type of failure
that has extended to many units. Hence, this type of
failure may occur in any ofthe operating units that
use software-supported systems.

B) In 17 of the 11 3 LERs documenting software failures,
two nuclear units are identified. This means that
there have been 130 events associated with software
failures in different nuclear units during the period
studied.

C) The 45 LERs that occurred during the last 10 years of
the period stored in the database, i.e., January 1, 1996
to December 3 1,2005, were analyzed to classify the
"software failure mode" and the cause of the failure
according to the categorization scheme presented in
Section 1I.B. The following conclusions were
reached:

C. 1) Regarding the "software failure mode," 3 1 out
of the 45 events (i.e., about 69%) had the failure
mode "Runs with wrong results that are not
evident." The next failure mode with most hits
is "Runs with evidently wrong results" with 7
out of the 45 events (i.e., about 16%). The fact
that most of the events studied have the failure
mode "Runs with wrong results that are not
evident" may be a reason for concern because it
is undesirable to have software that is executing,
sometimes for long periods of time, and
producing incorrect results.

C.2) Software failures were due to a variety of
causes. The most predominant cause is "Software
requirements analysis" with 16 out of the 45 events
(i.e., about 36%). In general, when software fails due
to this cause, it fails to perform a function because
when its requirements were specified, they did not
include this function. The second cause is
"Operation and maintenance" with 12 out of the 45
events (i.e., about 27%). Most of the events related
to "Operation and maintenance" involve a failure
introduced during modifications or upgrades of the
software after the software was developed, installed
and had operated for some time. In other words,
software that was meeting its expected fimctions was
modified, and some fault was introduced during this
modification.

D) Most of the software failures appear to have
happened in non-safety-related systems. It is not
known what is the main cause(s) for this situation.
Potential reasons are 1) safety-related systems that
use software have higher quality standards, and hence
have a lower probability of failure, 2) possibly,
software has been more commonly used in non-
safety-related systems than in safety-related ones, and
3) a combination of potential reasons 1 and 2.

E) In many cases, the specific combination of conditions
that comprise the EFC, i.e., the conditions that
triggered an (inactive) software fault into an (active)
software failure, was identified for a particular LER.
The review of software failures also revealed that in
some cases a failure may occur as soon as the
software became operational, but it may remain
hidden for a long time, i.e., several years. In these
cases, the EFC is the normal operation of the plant.
The failure may he discovered by indirect means,
such as discrepancies in the results produced by
alternative calculations (see Section 1I.A for a
discussion of the EFC). A failure that is hidden for a
long time, or that is discovered by indirect means,
appears to be usually associated with a non-safety-
related system which 6equently has regulatory
requirements that are less stringent than those applied
to safety-related ones.

F) Most of the software failures identified in this review
had low safety significance for the plant involved.
For example, a software failure might have resulted
in a violation of the regulatory requirements, such as
Technical Specifications, of the plant. This violation
may have resulted in the loss of functionality of some
system(s) and an automatic or manual reactor trip.
However, during the event the plant may have other
available redundant systems that perform the same
function of the lost system(s); accordmgly, the safety
significance of the software failure may he
considered minor. The assessment of the
consequence of a software failure on the associated
NPP used the evaluation of the safety impact
contained in the LER.

G) In 29 of the events, i.e., about 26% of the 11 3 LERs,
some type of dependent failure, including common
cause failures (CCF), occurred. An additional 13
LERs, i.e., about 12% ofthe 113 LERs, potentially
involved dependent failures; enough information was
not found in the associated LERs to assess in a
conclusive way whether such failures had actually
occurred. Hence, the potential of software failures to
cause dependent failures, including CCF, is
demonstrated. Since a dependent failure can be
significant to the risk of a NPP, a software failure has

the potential to be a significant contributor to the risk
of a NPP.

N . FAILURES IN THE NON-NUCLEAR
INDUSTRIES

N.A. Approach

The general approach we adopted to collect software
failure events in non-nuclear industries was to search
through the internet and web-based databases. We started
6om some websites that contain brief descriptions of
many possibly software related incidents or accidents. In
general, only those events that are typically software
failure related were further investigated. Each of these
websites may have a number of events that are claimed to
be computer related but only some of these events can be
verified to be caused by computer or software failures
using the official reports 6om different websites such as
Federal Aviation Administration (FAA), National
Transportation Safety Board (NTSB), National
Aeronautics and Space Administration (NASA), and
Department of Energy (DOE). For government websites
that contain databases, additional queries were performed
to collect more related events.

Some examples of the non-government websites
include "Com~uter Horror Stories" at
http: \r.~rw.cs.t~u.ac.il oo7Enaihu.md horror html.
"Collection of Sofi\rarc r4urs" 31 -
httD:i/www5.in.tum.de/-hucklehse.html, and Risks
Digest at h~://catless.ncl.ac.ukiRisks/.
The first two websites list a number of events with very
brief descriptions. The Risks Digest illustrates risks to the
public due to the use of computer systems and related
technology, and summarizes as one-liners most of the
interesting cases over the past decades. The incidents are
not limited to any certain area. In fact, either brief or
detailed illustration of almost every important computer
related event can be found here.

The sources below contain official reports and were
used in this study:

(1) NTSB Aviation Accident Database. This database
contains data describing the aircraft, operations,
personnel, environmental conditions, consequences,
probable causes, and contributing factors of civil aviation
accidents within the United States, its territories and
possessions, and in international waters. This database is
shared by the NTSB and FAA. The Safety Board also
investigates some incidents, including them in the
database in the same form as accidents. Typically,
incidents do not involve the level of injury or damage in
the same form as an accident. The NTSB database
website also provides information query service. Some of

the data collected here was obtained using the query with
"software" and "computer" as keywords.

(2) Aviation Safety Network (ASN) Database. This
database provides limited query capability, and contains
descriptions of safety occurrences of over 10,000 airliner,
military transport aircraft and corporate jet aircraft since
1943. For each event, it gives a brief description; most
descriptions are 6om official reports.

(3) NASA Description of Missions. It gives a list of
known lunar and planetary missions. Limited query
capability is available. Both successful and failed events
are collected in this chronology. Detailed reports are
provided.

(4) Computer-Related Incidents with Commercial
Aircraft. The website gives only incidents and accidents
of commercial airplanes. For each event, it provides both
a brief description and a detailed report. Most of the
reports are official.

(5) Some other websites do not have systematically
maintained databases but reports that contain
investigation of the accidents can be obtained 6om these
websites. For example, the 2004 blackout report is
available 6om the DOE website. Other sources of the
collected data include various publications and books.

1V.B. Insights

We reviewed software failure events in more than 10
different industries, mainly by searching the internet to
identify events, reviewing the event descriptions, and
screening out those that are not software failure related or
not considered interesting. We also included 4 failure
events that took place at foreign NPPs by reviewing a
report of the Nuclear Energy Agency [S], and one event
that is not reported in the LER database that occurred at
the Davis Besse plant due to a virus [9]. The total number
of software failure related events in non-nuclear industries
is 43. Including the 5 nuclear events, a total of 48 events
were obtained. The actual number of events that we
identified as software related is much higher than this.
However, most of them were screened out after reviewing
the detailed description or official investigation reports of
these events. The consequences of most of the 48
software related events are very severe, because people
only tend to identify root causes of very severe events and
only those sources that contain the most important or
well-known events are available to the public. The nature
of our search does not allow the events to be used in a
statistical analysis because the screening of events is
subjective, and no attempt was made to identify the time
period in which the search was performed.

The review of events found that software failures
occurred in every industry that uses digital systems.
Practically all system and element level failures modes
and failure cause categories we defmed (in subsection
1I.B) have taken place. At the software element level, the
processing element has the most failure events. The more
frequent element failure modes are incorrect
implementation and omission of functions or amibutes.
Errors at the software requirement analysis stage are the
most important failure cause.

In general, the different types of software failures are
applicable to domestic NPPs. They represent different
types of events that are important to consider in analyzing
and modeling software. For example, in a software
hazard analysis or a software FMEA, it is desirable to be
able to capture all these types of failures. The following
examples illustrate some of the intricacies in termsof the
needed level of detail and scope of the analysis. From a
quantitative reliability point of view, the failures do not
necessarily have to be modeled as explicitly, as long as
the impacts ofthe failures are captured in some way.

1) A stuck-at-one fault on a data line of the Traffic
Collision Avoidance System of the Korean Air Cargo
flight contributed to a near miss collision with a British
Air flight. A model at the individual bit level would be
required to capture this type of failure.

2) A few events occurred due to faults in diagnostic
software, interrupts, and communications. They involve
software that is part of the platform hardware, of the
operating system, or of the communication software. For
example, at Darlington, the hardware diagnostic software
contributed to the stalling of the computers and eventually
shutdown of the reactor. To capture these failures, the
non-application software would have to be modeled.

3) A few events involved failure of identical software in
redundant systems due to common cause software
failures. For example, a software exception caused failure
of both inertial reference systems of the Ariane 5 launch
vehicle which exploded on takeoff [lo]. Software CCF
is real and has to be modeled in a quantitative reliability
model.

4) Poor man-machine interface contributed to a few
accidents. For example, in the 2003 blackout, the
computer alann system at First Energy was not available
for a long time without any indication due to a race
condition [I I], and prevented early mitigation of the
blackout. A good model of operator and software
behavior would be necessary to provide a method for
identifying the accident scenario.

V. CONCLUSIONS

We reviewed software failure events in different
industries and some papers on software FMEA. We also
defmed generic software failure modes and causes. The
lessons learned and insights are summarized in this
section.

V.A Review of Software Failure Events

We searched the LER database to identify software-
related failure events at domestic NPPs, and searched the
internet for events that took place in other industries and
other countries. The search of the LER database is a more
systematic search, i.e., based on search for the keyword
"software" in the abstract and title of the LERs. Using
this approach, a database containing the information kom
113 LERs documenting software failures was developed.
They were identified for all modes of operation of all
plants that operated during the period Januaq 1, 1984
through December 3 I, 2005. This database can be
considered a repository of raw information on software
failures that occurred at domestic NPPs.

The internet search was somewhat ad hoc. We
subjectively decided if an event should be included based
on whether or not it is important, interesting, or of serious
consequence. A large number of events were screened
out this way. Another criterion used is covering a large
number of industries. The information collected based on
the internet search is essentially limited to publicly
available information.

By reviewing the events and the literature on
software failure modes and effects analysis, we developed
a model of software failure which depicts how:
(1) software faults are introduced in the software's life
cycle stages, (2) EFCs trigger software failures, and
(3) software failures contribute to accidents that are
considered in a PRA. The model of software failure is
shown in Figure 1, and provides a high-level picture of
how software failures fit into accidents, and a foundation
for including software failures in a probabilistic model
such as a PRA.

In reviewing the software failure events, we
recognized that it is difficult to defme software failure
modes because they occur in many different ways which
depends on specific applications. In our review of papers
on software FMEA, we found that different ways of
defming failure modes, causes, and effects were proposed
and they suffer from a few shortcomings. For example,
failure modes, failure causes, or failure effects are
frequently mixed up, defined ambiguously, and
sometimes they overlap or even are contradictory. In an
attempt to address these problems with the current

software failure categorization methods, we developed a
software failure categorization kamework that involves
defmition of generic failure modes and failure causes.
We consider a software as a nested hierarchical structure
of "software system" and "software elements", and
defined generic failure modes at hoth levels based on the
dynamic execution process of a software without being
distracted by specific functions of the software. Table 1
summarizes the failure modes, and more detailed
defmitions are given in Section I1.B. The generic failure
modes can be used to support software FMEA by
providing a generic list of potential failure modes.

We defme two types of software failure causes,
internal and external causes. Internal causes represent
errors made in different stages of the software life cycle,
and are further broken down into causes at the different
stages. External causes include human errors, failures of
systems supporting the software, cyher security problems
such as viruses and hackers, and environmental problems
such as electromagnetic interferences. Strictly speakmg,
a software failing to perform due to the external causes is
not a software failure because the software cannot run
without proper support, such as hardware. However,
external factors cause a large number of software failure
events and cannot be ignored. Therefore, the external
causes are also included here. Classifying software
failure causes can potentially be used to support
developing a quantitative software reliability analysis
method by considering the quality of the stages of the
software life cycle.

We selected several software failure events that
occurred in domestic nuclear plants and in other industries
for detailed analysis, including categorizing them
according to the above failure modes and causes. In
addition, the EFCs of the events were described in as
much detail as possible, and how the likelihood of the
EFC can be estimated was discussed. In a few cases, the
kequency or conditional probability of the EFC was
estimated using available informationldata. However, it
is not too useful trying to use these software failure events
as data to estimate a software failure rate, because the rate
would be that of a historical event which will probably
never take place again. This is one reason quantitative
software reliability analysis is difficult. Such historical
events can potentially be used in validation of quantitative
software reliability methods, by providing case studies
and possibly failure data as well. For example, if a
software reliability method is developed to use
information on how good a job was done in the stages of a
software life cycle to estimate sofcware failure
ratelprobability, it can he applied to a historical event to
perform a benchmark study.

The insights learned 6om reviewing the software
failure events of domestic NPPs are: 1) a majority of the
nuclear units in the United States (US) has experienced
software failures, though most of the failures identified in
this review (in the US nuclear indushy) had low safety
significance for the plant involved, 2) software failures
were due to a variety of causes, and incorrect
specification of requirements is an important cause, 3)
most of the failures happened in non-safety-related
systems, probably because non-safety-related systems are
more commonly used and software of safety systems have
higher quality standards, 4) a software failure may occur
as soon as it becomes operational, but may remain hidden
for a long time before it is discovered, 5) most of the
software failures identified in the review have low safety
significance, and 6) approximately one quarter of the
events involved dependent failures.

The insights learned kom reviewing the software
failure events of other industries and other countries are:
1) the events are more severe than those of domestic
NPPs, and their failure modes and causes are in general
applicable to domestic NPPs, 2) different types of
software failures were identified and they demonstrate the
needed level of detail and scope of the analysis in order to
capture them, e.g., modeling of non-application software
(hardware diagnostics, intempts, communication) and
man-machine interface, 3) most of the software failures
involved control systems and not protection systems,
probably because control systems are more numerous,
4) practically all system and element failure modes we
defmed have happened, and 5) defective requirement
specifications is an important cause of software failure.

For software failures to occur due to internal causes,
two conditions have to be satisfied: the software must
have faults in them, and triggering events have to occur to
induce the failures. Software faults or hugs, are
introduced in the life cycle stages of the software and
become a property of the software. An error-forcing
context (EFC) is the set of events outside the software that
trigger the inputs causing a software failure. Hence, the
occurrence of software failure is due to the occurrence of
EFC which is random and can he modeled
probabilistically in terms of a failure rate. For a given
software, the frequency that failure occurs is the same as
the 6equency of the triggering events. Therefore, the
6equency of software failure depends hoth on the quality
of the software life cycle stages and the operating
environment. The failure rate of software failures in
principle varies as a function of time, but a reasonable
approximation for the purpose of assessing software
reliability is a constant failure rate.

Our review and analysis of events associated with
software failures indicated that the concept of an EFC,
i.e., a set of specific conditions, triggering a software fault

into a failure is actually the way in which software
failures occur. Hence, it is relevant to identify the EFCs
associated with a particular software, and this implies
taking into account the system (in a very broad sense,
such as an entire NPP) in which the software operates. In
past meetings on digital I&C research, an ACRS member
[I] has pointed out that there are two interpretations of the
concept of software safety, i.e., "system-centric" and
"software-centric" viewpoints, and indicated that the issue
is important to the proper treatment of software "failures."
The "system-centric" viewpoint would include the
interactions of the software with the surrounding system
and thus, at least conceptually, it would be possible to
identify the EFCs. In addition, the "system-centric"
viewpoint should be used in developing a model of digital
systems that will be integrated into a PRA. However, it
appears that the "software-centric" viewpoint, as defmed
by the ACRS member, would only analyze the software in
"isolation," i.e., without considering the system in which
the software operates. In this sense, we agree with the
ACRS member that such extremely narrow analysis of
software would fail to discover many relevant EFCs.

In addition, we note that such a narrow "software-
centric" viewpoint should not be applied when software is
developed. According to the six stages of the software
life cycle described in Section 11.A and depicted in
Figure 1, the interactions of the software with the
surrounding system are carefully analyzed and evaluated,
so that the software is designed to properly interact with
the surrounding system. In particular, the first stage of
the software life cycle, "System engineering and
modeling," does include the consideration of the system
in which the software will be embedded. The interaction
of the software with its surroundmg system also is taken
into consideration during the "Testing" stage of the
software life cycle. A software has one or more operating
modes, and the failure rate estimate of a black box model,
e.g., [12, 131, represents the failure rate of a specific
operating mode or the averaged failure rate of all
operating modes. This type of modeling uses actual
operating data or test data of the specific software
collected 6om an environment representing the actual
operating environment. In that sense, the modeling
accounts for the operating environment or context. In the
case of test data, the design and selection of test cases also
have to take into consideration the operating profiles.
Thus, the design of software certainly should have taken
into consideration the operational environment and
operational modes.

Hence, in our opinion, there is no contradiction
between "software-centric" and "system-centric"
viewpoints of software failures. They have different
emphases and their applications have different objectives.
The "system-centric" viewpoint considers and models the

complex engineered system around the software, while
the "software-centric" viewpoint only considers the
operating environments as boundary conditions of the
software; that is, the "software-centric" viewpoint does
not simply consider software failure as a property of the
software itself, but also considers software failure as a
function of the operating environmenticontext.

ACKNOWLEDGMENTS

This work was carried out as part of a project for the
Office of Nuclear Reactor Research (RES) of the NRC.
We greatfully acknowledge the support provided by the
NRC's technical monitor, Todd Hilsmeier. The
information and conclusion presented herein are those of
the authors and do not necessarily represent the views or
positions of the NRC. Neither the U.S. Government nor
any agency thereof, nor any employee, makes any
warranty, expressed or implied, or assumes any legal
liability or responsibility for any third party's use of this
information.

REFERENCES

[I] Letter 6om Mario V. Bonaca, Chairman,
Advisory Committee on Reactor Safeguards, to
Luis A. Reyes, Executive Director for
Operations, Nuclear Regulatory Commission,
Subject: Digital Instrumentation and Control
Research Program, NRC, Washingtoq D.C.,
June 29,2004.

[2] National Research Council, Digital
Instrumentation and Control Systems in Nuclear
Power Plants: Safely and Reliability Issues,
National Academy Press, Washington, D.C.
(1997).

[3] Leveson, N.G., Safeware: System Safely and
Computers, Addison-Wesley, Reading, MA
(1995).

[4] Garrett, C., and Apostolakis, G., "Context in the
Risk Assessment of Digital Systems," Risk
Analysis, 19, 23 (1999).

[5] Cooper, S.E., Ramey-Smith, A.M., Wreathall,
G.W., et al., A Technique for Human Error
Analysis (ATHEANA), NUREGiCR-6350, NRC,
Washington, D.C. (1996).

[6] Ristord, L., et al., "FMEA Performed on the
SPINLINE3 Operational System Software as
part of the TIHANGE 1 NIS Refurbishment
Safety Case," CNRAICNSI Workshop 2001 -
Licensing and Operating Experience of
Computer Based I&C Systems (2001).

[7] Institute of Electrical and Electronics Engineers,
Inc., IEEE Guide to Classification for Sofhvare
Anomalies, IEEE Std 1044.1-1995 (1995).

[8] Nuclear Energy Agency, Operation and
Maintenance Experience with Computer-Based
Systems in Nuclear Power Plants, Committee on
the Safety of Nuclear Installations, A Report by
the PWR-I Task Group on Computer-based
Systems Important to Safety,
NEA/CSNVR(97)23 (1998).

[9] Schulin, S. of Nuclear.Com, "Worm Virus
Infection Paper," at http://www.nuclear.comi
n-plantsDavis-BesseiDavis-Besse_news.html.

[lo] Lions, J. L., Chairman of the Board, "ARIANE 5
Flight 501 Failure," Report by the Inquiry Board,
http:llsunnyday.mit.edu/accidentsl

Ariane5accidentreport.html.
[l I] Jesdanun, A,, "GE Energy acknowledges

blackout bug", The Associated Press, 2004-02-
12, bttp:/lwww.securityfocus.codnews/8032.

[I21 Schneidewind, N. F. and Keller, T. W.,
"Applying Reliability Models to the Space
Shuttle," Sofhuare, IEEE, 9, 4 , 28 (1992).

[13] Singpurwalla, N.D., "Software Reliability
Modeling by Concatenating Failure Rates," The
Ninth International Symposium on Sofmare
Reliability Engineering (1998).

