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Thermodynamics of (2+1)-flavor QCD 
C. Schmidt” a.nd T. Umeda” for the RBC-Bielefeld Collaboration 

”Brookhaven National Laboratory, Upton, NY 11973, USA 

We report on the status of our QCD thermodynamics project. It is performed on 
the QCDOC machine at Brookhaven National Laboratory and the APEnext machine at. 
Bielefeld University., Using a 2 f l  flavor formulation of QCD at almost realistic quark 
masses we calculated several thermodynamical quantities. In this proceeding we show the 
susceptibilites of the chiral condensate and the Polyakov loop, the static quark potential 
a.nd the spatial string tension. 

1. Introduction and Lattice Setup 

The calculation of QCD thermodynamics from first principle is important for va.rious 
resea.rch areas such as Heavy Ion Phenomenology, Cosmology and Astrophysics. Lattice 
QCD enables us to carry out such calculations. Especially for HIC phenomenology it, 
is mandatory to improve estimates on some basic thermodynamic quantities which have 
been obtained in previous lattice calculations. Since thermodynamics of lattice QCD re- 
quires huge computational resources, it is difficult to perform an ideal simulation. Recent 
studies tell us that quark masses and the number of flavors strongly affect thermodynamic 
quantities [ 11. Reliable continuum extrapolations are of tremendous importance as tvell 
[ 21. Therefore, it is our goal to study QCD thermodynamics with almost realistic quark 
ma.sses on the QCDOC machine at Brookhaven National Laboratory and the APEnext 
machine at Bielefeld University. The calculation is performed with N f  = 2 + 1, which 
means 2 degenerate light quarks and one heavier quark on lattices with Nt = 4 a.nd 6. 
The lightest quark masses of our simulation yields a pion mass of about 150 MeV and 
ka.on mass of about 500 MeV. 

For such calcula.tions we adopt the p4fat3 quark action, which is an improved Staggered 
quark action [ 31, with a tree-level improved Symanzik gauge action. By using the p4fat3 
action, the free quark dispersion relation has the continuum form up to O(p‘), a,nd taste 
symmetry breaking is suppressed by a 3-link fattening term. The action also improves 
bulk thermodynamical quantities in the high temperature limit [ 31. The improvements 
are essential to control the continuum extrapolation on rather coarse lattices, i.e. Nt = 4 
and 6. The gauge ensembles are generated by an exact RHMC algorithm [ 41. 

As a. status report of the project, in this proceeding, we present several thermodyna,mics 
quantities, which are susceptibilities of the light and strange quark chiral condensate, the 
Polyakov loop susceptibility, the static quark potential, and the spatial string tension. 
The details of the critical temperature calculation are given in our recent paper [ 51. 
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Figure 1. The susceptibility of t,he chiral condensate (left) and the susceptibility of the 
Polyakov loop (right) on S3 x 4 lattices. In the left panel filled and open symbols are results 
for light a.nd strange quarks, respectively. The lines are calculated by the multi-histogmm 
re-weighting technique. 

2. Order Parameters and Susceptibilities 

To investigate the QCD critical temperature and phase diagram, order parameter of 
the QCD transition are indispensable. In the chiral limit the chiral condensate (46) 
is the order parameter for the spontaneous chiral symmetry breaking of QCD. On the 
other hand in the heavy quark limit the Polyakov loop ( L )  is the order parameter of the 
deconfinement phase transition. For finite quark masses, these observables remain good 
indicators for the (pseudo) critical point. Especially their susceptibilities are useful to 
determine the critical coupling ,& in numerical simulations. 

Figure 1 shows the susceptibilities of the chiral condensate and the Polyakov loop. 
Their peak positions define the point of most drastic change of each order parameters, 
i.e. the (pseudo) critical point of the QCD transition. The results are interpolated in the 
coupling p by using the multi-histogram re-weighting technique [ 61. 

The strength of the transition decreases with increasing quark masses, this is reflected in 
the decreasing peak height of the chiral susceptibilities. We calculate these susceptibilities 
on lattices with aspect ratios of Ns/Nt = 2 and 4. Since we see a rather small volume 
dependence the results suggest that the transition is in fact not a true phase transition 
in the thermodynamic sense but a rapid crossover. The peak position of the chiral and 
Polyakov loop susceptibilities are almost identical, i.e. the chiral and deconfinement 
transition occur at almost the same temperature. The discrepancy between the peak 
positions shrinks with increasing volume. 

3. Scale Setting and the Heavy Quark Potential 

The lattice scale is determined from the heavy quark potential V ( T )  which is extracted 
from Wilson loops. The Wilson loop expectation values are calculated on 163 x 32 lat,tices 
with APE smearing in spa.tia1 direction. The spatial path in a loop is determined by the 
Bresenham a.lgorithm [ 81. We calculate the string tension, n and Sommer scde T O ,  which 
is defined [ 71 as the distance where the corresponding force of the static quark potential 
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a Nk6, mq=0.2m, 
A Nk6. mq=0.4m, 
0 Nt=4, m =O.lm, 
u Nt-4, rnq=0.2m, 
A Nk4, rn:=0.4m. 

Figure 2. Heavy quark potentials s d e d  by ro for various cut-offs and quark masses 
(left) and the fit-range dependence of ro (right). The latter shows the result for Nt = 
4, m4/m, = 0.026/0.065 and fits with the 3-params. fit-form. 

matches a certain value suggested by phenomenology: r2g 
rmge lattice artifacts we use the improved distance, Tirnp, which is defined as 

1.65. To remove short, 

1 d3k eikr 

(243  4 Ci(sin2 5)  + f sin4 
' 
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In our lattice setup, we find almost no mass and cutoff dependence in the potential 
scaled by ro at N, = 4 and 6 (Fig.2Qeft)). As discussed in previous studies [ 93, we also 
find no string breaking effects even at large T .  

To estimate systematic uncertainties of the potential fit, we performed several types of 
fits, e.g. different fit-ranges in r (see Fig.2(right)) and fit-forms (3 & 4 params. fits), 

(2) 
a a! & a !  

r i m p  r r i m p  r 
V ( r )  = C + - + mimp,  V ( T )  = C + - + nr + d(- - -1. 
The differences in the mean values of the fits are evaluated as a systematic uncertaint,y 
of the scale setting. From a combined quark mass a.nd cut off extrapolakion of roT, 
(ro/u)(uT,) we finally obtain a critical temperature of T, = 192(7)(4) MeV at the physical 
point [ 51. Here we used ro = 0.469 fm to set the scale. The first error summarizes all 
statistical and systematic errors on ro and the critical couplings Pc and the second error 
reflects the remaining uncertainties in the .extrapolation. 

4. Spatial String Tension 

Let us now discuss the calculation of the spatial string tension which is important to 
verify the theoretical concept of dimensional reduction at high temperatures. The spatial 
string tension is extracted from the spatial static quark "potential" (from spatial Wilson 
loops). We use the sa*me analysis technique as for the usual (temporal) static quark 
potential. 

At high t,emperature, the spatial string tension a,(T) is expected to behave like 
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Figure 3. Temperature dependence of the spatial string tension for N f  = 0 [ 101 and 
N f  = 2 + 1. Both dotted lines are fits with Eq. 3. Note, that the scale on the horizontal 
a.xis is logarithmic. 

Here g2(T) is the temperature dependent coupling constant from the 2-loop RG equation, 

g-2(T) = (4) 

If dimensional reduction works, the parameter “e” should be equal to the 3-dimensional 
string tension and should be flavor independent. 

Our 2+1 flavor result yields c = 0.587(41) and A,/Tc = 0.114(27), obtained by a fit 
with Eq. 3. On the other hand, we plot in Fig.3 also the quenched result [ 101 which gives 
c = 0.566(13) and A,/Tc = 0.104(9). We thus find that the parameter ‘(e” is - within 
statistical errors - independent on the number of dynamical flavors and that dimensional 
reduction works well even for T = 2Tc. This analysis can and will be refined in the future 
by taking into account higher order corrections to Eq. 3 [ 111. 
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