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Figure 1: Sketch of the QCD phase diagram:.

1. Introduction -

Lattice:QCD ¢urrently: is-the only quantitative-approach to finite temperature QCD based on: .
first principle calculation.: For a recent review see [1]: At non zero density however, lattice QCD is
harmed by the sign problem ever since its inception.. The Fermion matrix becomes complex and can-
not-be:interpreted-as a probability-distribution.: Hence-straight forward Monte:Carlo simulations.
become-impossible. For-a detailed description of the sign problem in the epsilon.regime see [2].

During the»last;fewﬁyears a-lot of.progress has been made-to circumvent the sign problem
for.small'values of: i, /T, where-p; is the-quark chemical potential and T the temperature. This
progress-helps to undérstand the physics relevant for hieavy ion collisions and eventually will clarify
the existence/location of the critical end-point in the QCD phase diagram. In Fig. 1" a sketch of the
QCD phase diagram ‘in"therT-[J"plane is shown. Lattice QCD calculations provide more and.more
evidence. that the QCD'transition-at f1, = 0 is not a phase transitionin the thermodynamic sense,.
but.a-smooth crossover.- Further evidence-was seen-recently in [3]. Nevertheless, one can define a -
transition temperature T by the peak.position of the chiral susceptibility. As a function of the quark
chemical potential the line of:transition temperatures (T%(l,))-is smoothly connected to-a critical
end-point in the (T, i,)-diagram. Forlarger chemical potentials the QCD transition is expected to -
be'-ﬁrst.order.Atvhigh densities; several color.superconducting phases are'expected.

The rest of-the article is organized as follows:'in Sec. 2 I:will briefly;recall different methods -
which have been used so farto calculate thermodynamic observables at non zero chemical potential.
In Sec. 3 I'will summarize currentknowledge about the. ii,;,-dependence of the critical temperature.- -
I'will continue with reviewing results on quark number fluctuations along the transition line (Sec. 4) -
and the critical point (Sec.-5). Finally:1 will discuss the physics beyond the critical point in Sec: 6.

2. Methods to extract'information on the:chemical potential dependence

2.1 Reweighting from the (1= 0)-ensemble .

On the lattice one has to.choose several-parameters to-characterize a thermodynamic system.
In-addition to the number of lattice points in spacial and temporal directions, N ;, N; respectively, we:
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have.to choose quark.masses:m;, the coupling =6/ g? and the chemical potential Hq.- Together
these parameters define the-lattice spacing.a -and- thus also-the:temperate T = 1/aN; and volume:
V'=.(aNy)3 of the simulated system. A thermodynamic observable is.calculated on the lattice as

<O>B,mq,‘u,'l‘ o V T) / @U O detM(U mq’ Auq)] f/4 exp{ ﬁSG )} * (21)

Here Ny is the number of dynamical fermions:<The notation is written down for staggered fermions .
as-the additional factor. of 1/4’in-the power of .the fermion determinant indicates.. See [4]. for a
discussion of:the “4th root trick” needed to calculate the staggered fermion determinant. -
In-principle it is possible to calculate the expectation value of.the:observable at:the parameter.
set p = {B;my, t; }, from an ensemble generated at-pg = { o, my0, 150} We have the identity -

(0), =(OR(U:p,po));, / (RWU:pP0))yy - 2.2)
where we define the reweighting factor R.as
R(U; p, po) = {detM (U3 p) /detM (U po)}"/* exp{~(B~fo)Sc} - 23)-

The:reweighting method as-a toolto perform extrapolation and interpolation in the gauge coupling
_Brgoes back to [5]::For reweighting in:the chemical potential it was first-used by the Glasgow -
group:[6]:-However, since the overlap-between the generated ensemble at 11,0 = 0.and the target
ensemble-at ;1; > 0 exponentially-decreases with increasing i, the-method was successful only.
after-it was:generalized to-a multi~parameter. approach [7].: For N; = 4 lattices it was found that--
reweighting along the. transition line T (u,) works: qulte -well up:to a14<0.3 or equivalently for -
Hy/TSL2.

In: general the reweighting.approach requires-the evaluation of the fermion determinant.on ev-
ery configuration. As this is computationally demanding, one may consider to expand the reweight-
ing factor-given.in'Eq..(2.3) in terms of the chemical potential [8]:".In this case the reweighting
procedure is; however, only correct up to a certain order in f,/T.

2.2 The Taylor expansion method
It is conceptually very simple to calculate the expansion coefficients of any observable O
(Eq:'(2:1)) ina Taylor series around i, =.0:
- PR S
O(ﬂ)=co+-61#+zczl~t' +ee (24)

Since on the-lattice all quantities-are.given in units of the lattice spacing (a), the expansion param- -
eteris I =apl ::N,"l‘('/,tq/ T): This idea goes back to the first calculation of the quark number
susceptibility [9]. The response of meson masses {10]-as well as the pressure and further bulk ther-
modynamic quantities [11, 12, 13, 14] have been studied by this method. The first two nontrivial -
coefficients:in Eq. (2:4)'are‘given by- -

20 dIndetM: -
o = (52 (0% ) =
_ [d*0 2 ‘90 JIndetM\ " ,’Oazlndeth o\ d%IndetM \ -
.= apr) " \op o /7 2/  opZ
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Besides derivatives-of the observable itself, the calculation:of derivatives of.IndetM with respect
to’ f is required: - The derivatives have to be taken at ‘{iy = 0. Note that due-to-a symmetry of the
partition.function (Z () =-Z(—u;))- all odd coefficiénts in Eq: (2.4) vanish identically. For the
same reason-we have (d IndetM/d 1) =0 at:t = 0. We explicitly use this property in Eq. (2:5) to
derive the expansion coefficients.

The advantages of this method are that expectations values only have to be evaluated at I = 0,
i.e:- calculations:are not directly. affécted by: the-sign problem. Furthermore, all derivatives of the
fermion-determinant can:be expressed in terms: of traces by using the identity IndetM = TrinM.: -
This enables.the stochasti¢ calculation of the expansion coefficients by the random noise-method;.
which is: much -faster-than a-direct-evaluation:of the determinant. Moreover, the continuum and-
infinite-volume extrapolations are well defined on a coefficient by coefficient basis:

On the:other.-hand-it-is a priori not clear for.-how.large -y /T the method works and how:large
the truncation errors-are.- Furthérmore-one is-strictly: limited-by- phase transitions, since phase.
transitions are connected with discontinuities-or-divergences.. An estimation.of the convergence
radius of.the series- gives:a lower bound on the-applicability range: and thus also a lower-bound to
the phase transition.line in the (7', t) plane (see the discussion in Sec. 5).

2.3 Analytic continuation

At imaginary-chemical potentials, the fermion-determinant is real and- positive, thus simula- -
tions.by standard:-Monte. Carlo: techniques are possible.- Results on the imaginary fl; axis can be
analytically-continued to the real [ig axis..Itis especially easy to convert a Taylor series in- fl;,
expanded around-f}:= 0;into a Taylor series in: flg. Since the series has only even powers of [i, due-.
to the.the symmetry Z(1) =Z(~fi); one-only has to switch the sign-of every second coefficient .
(cy:—+—c2,C6 =+ —Cs,...). There is however -another:symmetry of the partition function which:-
limits the analytic continuation:. Due to-the periodicity [15]1 Z(u g, ti) = Z(Ug, iy + 27T /3) simu-
lations.with ;>0 will only give-access to the physical region g <77 /3. This method was used
to map -out-the phase-transition line [16]-[18]. One-should note, that for this method neither an
evaluation of the determinant, nor.any of its derivatives.is required. In-order to determine the func-
tional'dependence. of an.observable on [ig one needs many different simulation points for several
values of i, to perform an analytic continuation using a certain Ansatz.

A demonstration of the imaginary-chemical potential method.is given in Fig. 2. The method
was applied to the case of 2-color QCD [19]. Here it is not only possible to calculate observables at
0% <.0, but-also-at: 12 > 0, since.2~color-QCD does:not suffer from a sign problem. Thus one can
explicitly check how far the extrapolation ih Q% is valid and which type of Ansatzis especially well-
suited for-the extrapolation: In general, extrapolations with'rational functions seem to be better -
than extrapolations with polynomials [19, 20].+:

2.4 The canonical approach

The canonical partition function (Z¢) can be constructed by introducing a 6-function into-the
grand: canonical-partition function which fixes the net number of.quarks present in the system.
Using an-integral representation of-the: 6-function one recognizes the integration parameter. as an
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Figure 3: Relation between the Baryon number and-
the chemical potential from the saddle point approx-
imation,; for different temperatures [27].

Figure 2: The chiral condensate as a function of (12,
in SU{2)- gauge.theory:[19]." The solid lines are fits-
with different Ansitze to the data for 12 < 0. -

imaginary chemical-potential. One finds:-

Z:(T,0=3B) = —— / " d (&) exp { =382} Zoe (T, i) 2.6)-
2nJ_x \T /) T

Thus; .the canoniéal:kpartition functions-are the coefficients of the Fourier expansion of the grand

canonical.partition function (Z¢cg) in imaginary . Here we have used the 27T /3 periodicity of

the-grand canonical partition function which as a consequence leads to the fact that the canonical

partition functions:vanish for non:integer. values of the baryon number B =.3Q.

TheFourier-coefficients can be-computed exactly [26]. As for the reweighting method (2.1),
the. evaluation of the fermion determinant is-required on every -configuration. In fact'the same.
method can-be-used, which'is the calculation.of all 6N} eigenvalues of the so-called “reduced-
matrix” [7].-

After having calculated the canonical partition functions, a relation between the chemical po-
tential and the baryon number is needed, in order to explore the phase diagram'in-the (T, u)-plane. -
Sucha relation can be obtained by using the saddle point approximation of the fugacity expansion
(whichis exact in the thermodynamic limit).-One finds. .

wp)= ;9(1;_;"?.“ ,

2.7
where p-= B/V.is the baryon number density and-f(T,p) = — §loch(T, p) is the Helmhotz free
energy density. For several different temperatures the saddle point approximation is shown in Fig. 3

[27]--Due to the computational costs the:calculation have. been performed on .63 x 4 lattices; with
Nj =4 flavors.of -staggered fermions.- As can be seen-from:the “S”-shape of the curves; one can
have more than one solution when solving for the baryon density p; at given g and T. This reflects

the nature of:the transition in:the .four-flavor theory; which is of:first order. By using a Maxwell
construction, one-is able-to calculate.the two densities p.1(T): < p2(T), giving the lower and upper
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boundary of the coexistence area; as well as the critical chemical potential p § (T), as functions of
the temperature. -

2.5 The density of states method -

An alternative. to the importance sampling. technique.used in most-Monte Carlo simulations« -
is the density of states method.. Here one reorders the-path integral representation.of the-partition :
function in. the:following.way: first'expectation values with.a constrained parameter will-be cal-
culated.. Le. one selécted parameter (¢)-is fixed. Expectation-values according to the usual:grand-
canonical-partition function (Zs¢) can then be recovered by the-integral

<0>= [ag (05 p(6) ] [ 48 0N, p(0) 28)
where the density.of ‘states.(p).is given by the constrained partition function:
plx) = / QU g(U -x) . 2.9)

Here ( )¢ denotes. the.expectation .value with respect to the. constrained partition-function: In ad--
dition,-the-product ‘of ‘the weight:functions : f, g-has to.equal the correct measure of Zgc: fg ="
detM - exp{—Sg}. The:idea of reordering-the partition functions is rather old and was:used suc-
cessfully.-for:gauge theories:[21] and.QED with dynamical fermions [22]. For QCD the parameter
¢.is-usually chosen to be the:plaquette [23]:: ¢.=-P. In [24]; however, the DOS method was con-
structed:for:the complex'phase (¢.=-68).. Within the random matrix model, the authors of [25] used
the quark -number density.(¢ =n,).

The advantages of this additional integration becomes clear; when choosing ¢ = P and g(U) =
1. In this:case p(¢)-is independent of all simulation parameters. The observable can be calculated -
as a function of all:values of the lattice coupling B : If one has stored all eigenvalues of the fermion -
matrix for-all configurations,the -observable can-also be calculated as'a function of quark mass (m)
and-number-of flavors[23]. (Ny)..

Note: that-this method ‘does not:solve the sign problem.. It-is, however supposed to solve the
overlap:problem:: Moreover, it is -also possible to combine.the DOS method, with.the reweighting -
method-2.1, by reweighting the constrained expectation values in the case of g(U) # 1. For large
reweighting distances-an.overlap.problem-is:then introduced once again.

3. .The transition:line -

Using:any of the methods: presentedabove;: the calculation-of the transition line T';(u,) is
possible.- This has. been done for-many- systems, which differ in the number of .quark.flavors,
quark-masses, physical volume-and lattice spacing..This makes a comparison:of different methods:
difficult.: The case of Ny = 4, m/T = 0.2.and:N;-= 4,-however, has been studied extensively with .
almost-all'methods: A comparison is given'in'Fig. 4 [27].. As one.can see, the agreement between:
different-methods is very good up to-ap; ~ 0.3 or:equivalently i, /T = 1.2. For:larger.chemical..
potential the two results from the reweighting method:(Sec. 2.1), indicated as green and blue points, -
seem-to stay-above the other results: The reason could be the lack of overlap between the simulated -
and the reweighted ensemble. .-
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Figure:4: Comparison-of.the transition line.T¢(4): obtained  Figure.5: The mass dependence of the:-
from different methods. Plot from [27].- transition line for Ny = 3 [29].

Other results shown in Fig. 4 come from the imaginary chemical pdtential approach (Sec. 2.3),
solid'line, from-a generalized imaginary:chemical-potential approach, black dots, and-from the
canonical approach (Sec. 2.4), red points::These results seem to:be in agreement even for somewhat
larger chemical potentials. However, the transition line from the canonical approach bends down at
i/ T = 1:5: Strong coupling calculations at § = 0-[28] show-that this is indeed necessary in order’
to'match with-the correct:strong-coupling limit::

To discuss the transition line a bit more quantitatively, one can expand T'; (1) in terms of the. .
chemical potential:

Wm0 ()) - oo

In-general the first non-trivial coefficient z will- depend: on the number of -flavors-and the quark.
masses-as indicated-above. Of course they will also be:sensitive to finite volure and cut-off effects.
Otie can;-however, hope that.for large physical-volumes and:small lattice spacings, i.e. N;/N;> 4
and Ny> 4, those:effects.are.small. A detailed-comparison of ¢, is given in Tab.. 1. In general, the
curvature: of. the transition:line becomes steeper-for increasing number of flavors and- decreasing~
quarkimasses. Two of the-3-flavor results.:which-have been obtained with the p4-improved. action
[29] are-shown:in Fig: 5. In.some-cases:it-has also been possible:to estimate-the sub-leading -
coefficient #4, which has-been found to be very small or even negative: If an extrapolation with a:
Padé:Ansatz.is performed, the transition line tends to be steeper for high g, {20} compared to the
truncated-Taylor:series-and:shows faster convergence.:

We also note; that the calculation of T¢ (1) has two parts. The first part involves the calculation
of B:(f); the second one is the-calculation of the lattice: B-function (ad 8 /da). Some of the results
listed in'Tab. 1 have:been obtained by-using:-the perturbative two-loop B-function, which has the
tendency to.underestimate the curvature of the critical line.:

7
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Ngso am: N ty- Action: : -Function':. Method. " Reference
2. 0.1. 16 0.69(35).  p4- non-pert:  Taylor+Rew. [8]
0.032 - . 6,8 0.500(54) stag.. 2-loop pert. Imag: [17].
3- 0.1 16- - 0.247(59) ~ p4d- non-pert:.  Taylor+Rew. [29].
0.026: - 8,12,16-" 0.667(6) - stag.: 2-looppert: Imag: [39].
0.005- 16 1.13(45)  p4:: non-pert.  Taylor+Rew. - [29}
4. 0:05- 16 1.86(2):- stag. 2-loop pert.. Imag.. [18}
2+1  0.0092,0.25:. 6-12 0.284(9):. stag.: non-pert: " Rew. - [34]

Table1:- Comparison of .the first nontrivial coefficient ¢, in the Taylor expansion-of the transition line. All.
results have-been obtained with N, = 4..

4.- Hadronic fluctuations

Following, the transition line into the:non-zero chemical potential plane, quark number fluc-
tuations:y; belong to the:most:important observables.. They will diverge at the critical end-point
and.thus provide an excellént signal for:the existence and:its location on the lattice and eventually -
may be detectable:in heavy ion experiments. Hadronic fluctuations can be computed from  Taylor
expansion coefficients of the pressure:with respect to the quark chemical potential:

= A" 1 N} 9lnZ

- :’EBC‘,‘I(T) (%—?) with - en(T) = b S N @.1).
Due to:the particle anti-particle: symmetry’ (ft;:¢+ — ) all'odd:coefficients vanish.. Thus the first-
three non-zero- coefficients are ¢, c4,-and cg.- They have been calculated in-the case of two flavors
of-p4-improved staggered fermions, with m /T = 0.4 [13]-and are- shown in Fig. 6. Note.that in
the:Taylor expansion of the pressure the up and down quark.chemical potentials have been chosen-
to.be equal.: Having calculated the coefficients c,{T") one can construct the quark number density -
and quark number fluctuations

> n—1" hnd n—-2
=X e} () 5 K= 3, nn=1)eu(?) G “2)
Also shown in'Fig. 6 are the quark number. fluctuations for various values of the chemical potential.
It is interesting to see that at {1; = 0 the fluctuations , show a rapid but monotonic increase atthe
transition-temperature, whereas a cusp:is.developing at T¢ (i) for y, > 0. This.is a clear sign for
approaching,the critical end-point.

In-the:case. of: 2-flavor- QCD; the.quark number susceptibility is directly- proportionaﬂzto the
baryon number fluctuation:. Having two:light quarks and one heavier strange quark; the situation is
not that simple anymore. To match the situations realized in heavy ion collisions; one still:wants to -
expand-the:pressure-in terms of p, = (1, =1y, keeping the strange quark chemical potential zero
(45 =0): However, in order to-analyze-fluctuations of conserved quantum numbers, it appears to
be more appropriate to perform a basis change going fromthe space of.quark number fluctuations

T 9*logZ ‘
xa’ﬁv‘;(nanﬁ >;—- (l’la> <n5> °<"‘-/- m i (43)
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Figure 6: The Taylor expansion coefficients ¢z, c4:and:cg of the pressure [13] and the quark number-fluctu-
ations i, for different.values of the quark chemical potential.

where:o; - € {u,d, s} to:the space of hadronic fluctuations, indicated by o, 3-€ {I3,Y,B} with I3
being the third component.of the isospin; ¥ ‘being the:-hypercharge and B the baryon.number. -In
Fig. 7 the diagonal susceptibilities ) 5, 7, Xr,y and xg g as well-as the off-diagonal susceptibility x Y,B
are shown [30]." They have been measured by the MILC-Collaboration with 2+1 flavor of Asqtad .
fermions on a: 123 x 6 lattice. The light quark mass is m = 0:2m, where m; is the physical: strange
quark :mass.. The curves have been. normalized such that-the continuum-Stefan-Boltzmann value -
is 0.5 for.all of them: - Qualitatively they show.the.same: behavior as the diagonal quark number
fluctuations; only. the-off-diagonal susceptibility y y p showsa cusp.already at u = 0. However, up
to a minus sign-also the off-diagonal quark susceptibilityx , 4 shows a cusp at - =:0.

Furthermore,. also.fluctuations-of other conserved quantities such as electric charge-Q have
been-computed: It is especially.interesting to-analyze the correlations between different conserved -
charges. Also shown in-Fig.:7 are the correlations:

oo XD=00()
=)

where § is the-strangeness and.the operator X-is either.the-electric charge (X = Q) or the baryon :

@4y
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Figure 7: Different hadronic fluctuations [30] and the correlation between strangeness and baryon number, - -
electric charge fluctuations respectively [31]. ...

number. (X. = B) [31]. Such calculations have been performed on an 162 x 4 lattice, using a standard-
staggered action. The two dynamical:light quark masses yield m /m, = 0.3. The strange quark
has been-treated in the quenched approximation... The results show that above T’ strangeness and’
electric charge or.baryon number. fluctuate independently: This is consistent with the quasi-particle -
piéture of .the Quark-Gluon-Plasma (QGP): However, below -T,, in the hadronic phase fluctuations
are clearly correlated.. These correlations are thus-directly related.to the degrees of freedom in the-
QGP:These are also clearly visiblein the calculation of higher order cumulants of fluctuations [32].

5.: The critical:end-point

Locating the critical point is one of 'the most.challenging tasks for lattice QCD at-finite chem-
ical potential. The first-attempt to locate the critical point used the reweighting method [33]. For
this calculation; 2+1 flavor-of standard: staggered fermions.have been used at a pion mass of about -
300 MeV and-akaon mass of about-500 MeV. Lattice sizes have, however, been rather.small (43 x 4
- 83 x.4). A critical chemical:potential of: g = 725(35) was found. A second calculation [34],
using-again the reweighting method, with physical masses.(m = 150 MeV, mg = 500 MeV) and
somewhat larger volume (63 x 4 123 x 4); let to ug'# =360(4) MeV.

When:using the reweighting method for locating the critical point, the minima of the normal-
ized partition.function in:the complex B-plane (Lee-Yang zeros) have to be determined

om = | B, 0,0) - 6.1
In'SU (3) gauge theory, where we have ¢/® = 1; this can be done with high accuracy, which-can be
seen in Fig. 8 [35]. One can even.identify a second-Lee-Yang zero: In-order to locate:the critical-
point; one:has. to:take the infinite volume limit.and monitor the approach of the Lee-Yang zeros
on:the real axis. When the first L.ee-Yang zero .touches the real-axis in the infinite: volume limit,

a critical point has.been reached. In Fig. 8§ this is shown for full QCD with physical masses [34];+ .

(BRevO)O)

Zoon = | Z(Bre, Prm, 1) ‘ __‘ < SiBNNFASG 6, (N7 /4)(IndetM (i) ~Indet(0)) >
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Figure 8: Lee-Yang: Zeroes in the complex- B plane; in the case of:SU(3) gauge theory [35] (left).and the. -
distance of the smallest:I.ee-Yang zero from the real axis as function of the chemical potential, in the case-
of. full QCD [34] (right). .

In.QCD’with non-zero-chemical potential the analysis of Lee-Yang zeros is, however, subtle [35].
For-large volumes.and.chemical potentials-the phase factor- of the determinant ¢?® will force the
Lee-Yang zero onto the real axis, which might lead to an underestimation of the critical point. : -

Another difficulty with the reweighting.method at-finite chemical potential has-been pointed
out;in: [36]. It was noted; .that-taking-the fourth:(or-square) root of the determinant (which is
necessary-in order to simulate 2.or.1-flavor. QCD with staggered fermions;:see-also [4]) could lead:
to phase ambiguities. This problem becomes:acute when 1, > my /2.

All of the a above.mentioned limitations are; however, irrelevant for the location of the critical
point with the reweighting method if the critical point is'located at'small values of i ,.

Using: the . Taylor: expansion- coefficients. of :the: pressure;. it is also possible.to estimate the
location of: the. critical ‘point: . The convergence radius of the expansion is limited by the nearest -
singularity-in- the. complex chemical potential:plane.. For each fixed temperature, the radius of
convergence-is given by

Cn

(52)

Crny2

=limp, = lim |
p n—)wpn n—yoo

Moreover; the:sign of the coefficients ¢, gives-information-about the location of-the singularity -
in-the:complex:plane. - If ‘all’ coefficients are positive, the singularity-is located -on the.real axis of
the compl.extchemi'cal‘potential.plane."If«the,si‘gnais strictly. alternating, the singularity lies on the-
imaginary: axis: For-a detailed discussion see [37].~

Having only.a limited-number of €xpansion:coefficients; one can only.estimate- p. The hope.
is-that the convergence of the:p, will be fast:-Indeed; a clustering of the p;, is seen in the phase.
diagram,.as.shownin Fig. 9.[13].: This calculation; which has been performed.with 2 flavors of p4
improved: fermions: and-my /m, = 0.7, suggests a critical chemical potential of u§ a 500 MeV.
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Figure 9: Estimates of the radius of convergence in the. (T, i, )-plane (left), the ratio c4/c; of the expansion. -
coefficients (right).: .

All calculated p,; are, however, consistent (within statistical error).with the resonance gas model in
the Boltzmann approximation, where the radius of convergence is infinity.

The. authors.of [38] have.estimated. the critical chemical-potential from -a Taylor expansion
of the quark number susceptibility and find u§™ ~ 180'MeV. Two-flavors. of standard staggered
fermions:have been-used on lattices up to:24 > x 4 and quark mass corresponding to my/mp =0.3.
The-difference between the.two estimates:[13, 38]- of the critical point is large. We note that the-
second estimate comes from the.expansion coefficients of x,. As can:be seen from Eq. 4.2 this.
will'result in-a smaller p, for each fixed n. The limit-1im,,_y.. p,,.is of course the same: For finite #;
however, the estimate of g™ ~ 180.MeV would correspond to UE it~ 240 MeV, when-estimating.
the p, ‘with-coefficients of the same order from the:expansion of the pressure. Nonetheless, the
difference between the two-estimates-is still striking. The origin could be the difference in mass:-
However, preliminary results from the RBC-Bielefeld Collaboration, also shown in Fig. 9, do not -
indicate a strong mass dependence in.c4/cy = 1/p3.

The critical point can also be studied directly at i1, = 0. This can'be done by tuning the quark.
masses carefully.to a:value where the critical-chemical potential is y§* = 0. In the quark mass
plane of two.degenerate light quark and one-strange quark, (m, 4,my)-plane, a line exists on which
this condition is-fulfilled. . Starting from this line, one can define a surface of critical points in the
3-dimensional space of (m,; 4, m;, Uz). Onone site of the surface, the order of the QCD transition is
first order (for smaller.masses) on the other side the transition is only a smooth crossover. The line
- of critical-points at*{t, = 0-has been computed for standard staggered fermions [39] as shown in-
Fig: 10. For-locating the critical points, the fourth-order Binder cumulants-of the chiral condénsate .
have been-calculated: Since-the probability distribution.of the order parameter is universal, also
the-value:of its forth cumulant-is-a renormalization group invariant quantity which furthermore-is
volume:independent-at-the-critical point. From-a calculation of cumulants at-imaginary chemical -
potential the:region.of first-order phase transitions .was .found-to shrink as sketched in Fig. 10..
This calculation has been performed with'standard staggered fermions on an rather course lattices
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Figure 10::Line of critical points in the quark mass plane for pip = 0 and iug =:2.4T (1éft).and sketch of the
surface of critical points.as found in [39] (right).

(N;-=.4). If this result:gets confirmed:-in the continuum limit it would put doubts on the.existence
of acritical pointin QCD with physical masses.: It is interesting to-mention, that a shrinking region
of first-order transitions has also been found in‘the case if isospin chemical potential:[41].

6. Beyond the critical point

Even'more challenging than locating the critical:point, is the study of the physics at high den-
sities'and low temperatures. One attempt to do'so is a calculation using the density of states method -
[40].- Using four-flavors of standard staggered fermions (i.e. taking the root of the determinant is.
no.necessary);.several simulation.points in the:(f; f1)-plane have been.chosen.to generate phase
quenched. configurations by employing. the method proposed in [42]. The lattice size has been
6> x 4 and -6 The quark mass.was chosen to be-m/T-= 0.2. The generation has been done with- -
constrained plaquettes. In oder.to'do so, the:d-functionin Eq. 2.9 has been replaced by a sharply -
peaked Gaussian potential; which in practice means that the force term in the. HMD-R ‘algorithm
had:to be modified. In the notation used in Sec. 2.5 this would mean.¢ = P, g = |detM|e ~BSc"and
f-= €%, For.each simulation point, several runs have been performed with about 20 different values-
of the plaquette. By calculating the eigenvalues of the reduced matrix the phase of the determinant:-
was calculated for each of those runs. By numerically calculating the integrals

(P)= fdxxp(x)(cos(e)>x~ (P?) = / dx 2*p(x) {cos(0)), 6.1)

we:recover the-grand canonical expectation.value-of the plaquette and its square...Here p(x) is
the density of:states (Eq.-2.9), which:has been measured: by -the integral- method; usually used to
calculate-the pressure. The susceptibility of the plaquette is then given by the usual expression
xp={P?) — (P)*. From:the peak position of the plaquette susceptibility the phase diagram was
calculated as shown in-Fig. 11: The scale was set by the Sommer radius g, measured on a 103 x 20
lattice.- We-find a-triple: point, where three different-phases.seem to coexist. Thé phases show
different plaquette expectation values. The triple point is-located around p ;“ = 300 MeV, however
its temperature (7" decreases from T 148MeV on the 63 x 4 latticeto 7" ~3.137MeV-on the
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Figure 11: Phase diagram from:the density of state method [39].

6% lattice. : This shift reflects the-relatively large cut-off effects one faces with standard staggered"
fermions.and temporal extents of 4 and 6.+

Also shown'in Figure 11 are points-from: simulations with quark mass m/T .= 1.2. The phase
boundary turned out to-be — withih our statistical uncertainties — independent-of the mass. . -
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