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Figure 1: Sketch of the QCD phase diagram. 

1. Introduction 

Lattice QCD currently is the only quantitative approach to finite temperature QCD based on 
first principle calculation: For a recent review see [l]. At non zero density however, lattice QCD is 
harmed by the sign problem ever since its inception. The Fermion matrix becomes complex and can- 
not be interpreted as a probability distribution. Hence straight forward Monte Carlo simulations 
become impossible. For a detailed description of the sign problem in the epsilon regime see [2]. 

During the 1ast.few years a lot of,progress has been made to circumvent the sign problem 
for small values of y g / T ;  where ,uq is the quark chemical potential and T the temperature. This 
progress helps to understand the physics relevant for heavy ion collisions and eventually will clarify 
the existence/location of the critical end-point in the QCD phase diagram. In Fig. 1 a sketch of the 
QCD phase diagram in the T-,u plane is shown. Lattice QCD calculations provide more and more 
evidence that the QCD transition at ,uq = 0 is not a phase transition in the thermodynamic sense, 
but a smooth crossover. Further evidence was seen recently in [3]. Nevertheless, one can define a '  
transition temperature.T, by the peak position of the chiral susceptibility. As a function of the quark 
chemical potential. the line of transition temperatures (Tc (pq))  is smoothly connected to a critical 
end-point in the (T ,  ,uy)-diagram. For larger chemical potentials the QCD transition is expected to 
be first order. At high densities, several color superconducting phases are expected. 

The rest of the article is organized as follows: in Sec. 2 I will briefly,recall different methods 
which have been used so far to calculate thermodynamic observables at non zero chemical potential. 
In Sec. 3 I will summarize current knowledge about the yq-dependence of the critical temperature. 
I will continue with reviewing results on quark number fluctuations along the transition line (Sec. 4) 
and the critical point (Sec. 5). Finally I will discuss the physics beyond the critical point in Sec. 6. 

2. Methods to extractkformation on the chemical potential dependence 

2.1 Reweightingfrom the (y'= 0)-ensemble ' 

On the lattice one has to choose several parameters to characterize a thermodynamic system. 
In addition to the number of lattice points in spacial and temporal directions, N , , N ,  respectively, we 
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have to choose quark masses m4, the coupling P f 6/g2 and the chemical potential p 4 .  Together 
these parameters define the lattice spacing a and thus also the temperate T f l / a N t  and volume 
V ’ r  of the simulated system. A thermodynamic observable is calculated on the lattice as 

Here Nf is the number of dynamical fermions., The notation is written down for staggered fermions 
as the additional factor of 1/4 in the power of the fermion determinant indicates. See [4] for a 
discussion ofdie “4th root trick” needed to calculate the staggered fermion determinant. 

In principle it is possible to calculate the expectation value of the observable at the parameter 
set p = {E,mq,p4}, from an ensemble generated at po = { P o , n ~ ~ , o , p ~ , o } .  We have the identity 

(O), = ~ ~ ~ ~ ~ ~ ~ , ~ o ~ ~ , , / ~ ~ ~ ~ ~ ~ , ~ o ~ ~ , ,  9 (2.2) 

R(U;p,po) [ d e t M ( U ; y ) / d e u M ( U ; p ~ ) ] ~ ~ ’ ~  exp{-(P -PO)&) . (2.3) 

where we define the reweighting factor R. as 

The reweighting method as a tool to perform extrapolation and interpolation in the gauge coupling 
P goes back to [5]. For reweighting in the chemical potential it was first used by the Glasgow 
group.[6]. However, since the overlap<between the generated ensemble at pY,o = 0 and the target 
ensemble. at p4 > 0 exponentially decreases with increasing p 4 ,  the-method was successful only 
after it was generalized to a multi-parameter approach‘[7]. For Nt = 4 lattices it was found that 
reweighting along the transition line Tc(p4)  works quite well up to ~ p ~ 5 0 . 3  or equivalently for 

In general the reweighting approach requires the evaluation of the fermion determinant on ev- 
ery configuration. As this is computationally demanding, one may consider to expand the reweight- 
ing factor given in Eq. (2.3) in terms of the chemical potential [SI. In this case the reweighting 
procedure is, however, only correct up to a certain order in ,uq/T. 

p(J7-5 1.2. 

2.2 The .Taylor expansion method 

It is conceptually very simple to calculate the expansion coefficients of any observable 0 
(Eq. (2.1)) in a Taylor series around ,uq = 0: 

1 
O@) =co+clp+ZC2p2+.. .  . (2.4) 

Since on therlattice all quantities are given in units of the lattice spacing (a) ,  the expansion param- 
eter is p E apq = NL1(pq/T). .This idea goes back to the first calculation of the quark number 
susceptibility [9]: The response of meson masses [lO].as well as the pressure and further bulk ther- 
modynamic quantities [ l l ,  12, 13, 141 have been studied by this method. The first two nontrivial 
coefficientsh Eq. (2.4) are given by 

a In detM 

dOdlndetM)+( od21ndetM)-( o)  (d”1ndetM) 
ap2 ap2 

3. 
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Besides derivatives of the observable itself, the calculation of derivatives of In detM with respect 
to is required. The derivatives have to be taken at & = 0. Note that due to a symmetry of the 
partition function ( Z ( p q )  = Z ( - p q ) )  all odd coefficients in Eq. (2.4) vanish identically. For the 
same reason we have (dlndetM/dp) = 0 attp = 0. We explicitly use this property in Eq. (2.5) to 
derive the expansion coefficients. 

The advantages of this method are that expectations values only have to be evaluated at ,i2 = 0, 
i.e. calculations are not directly affected by the sign problem. Furthermore, all derivatives of the 
fermion determinant can be expressed in terms of traces by using the identity 1ndetM = TrlnM. 
This enables the stochastic calculation of the expansion coefficients by the random noise method, 
which is much faster than a direct evaluation of the determinant. Moreover, the continuum and 
infinite volume extrapolations are well defined on a coefficient by coefficient basis. 

On the other'hand it is a priori not clear for how large p / T  the method works and how large 
the truncation errors are. Furthermore one is strictly limited by phase transitions, since phase 
transitions are connected with discontinuities or divergences. An estimation of the convergence 
radius of*the.series gives a lower bound on the applicability range and thus also a lower bound to 
the phase transition.line in the ( T ,  p) plane (see the discussion in Sec. 5). 

2.3 Analytic continuation 

At imaginary chemical potentials, the fermion determinant is real and positive, thus simula- 
tions by standard Monte Carlo techniques are possible. Results on the imaginary axis can be 
analytically continued to the real ,& axis. .It is especially easy to convert a Taylor series in /I[, 
expanded around p-= 0, into a Taylor series in j l ~ .  Since the series has only even powers of /I, due 
to the the symmetry Z(@) = Z(-@), one only has to switch the sign of every second coefficient 
(c2 +-CZ, C6 + 4 6 , .  . .). There is however anothep.symmetry of the partition function which 
limits the analytic continuation. Due to the periodicity [15] Z ( ~ R ,  p ~ )  = Z@R, pz + 2nT/3) simu- 
lations with pz%> 0 will only give access to the physical region p ~ S n T / 3 .  This method was used 
to map out the phase transition line [16]-[18]. One should note, that for this method neither an 
evaluation of the determinant, nor any of its derivatives is required. In order to determine the func- 
tional dependence of an observable on j.i~ one needs many different simulation points for several 
values of &, to perform an analytic continuation using a certain Ansatz. 

A demonstration of the imaginary chemical potential method is given in Fig. 2. The method 
was applied to the case of 2-color QCD [19]. Here it is not only possible to calculate observables at 
f i2  < 0, but also at p2 > 0, since 2-color QCD does not suffer from a sign problem. Thus one can 
explicitly check how far the extrapolation in p 2  is valid and which type of Ansatz is especially well 
suited for the extrapolation. In general, extrapolations with rational functions seem to be better 
than extrapolations with polynomials [19,20]. 

2.4 The canonical approach 

The canonical partition function (Zc) can be constructed by introducing a &function into the 
grand canonical partition function which fixes the net number of,quarks present in the system. 
Using an integral representation ofsthe &function one recognizes the integration parameter as an 

4'  



Lattice QCD at Finite Density Christian Schmidt 

0.12 

0.10 

0.08 
3 
M 

d 

.g 
5 0 0 6  - 
.c 

0.04 

0 02 

0.00 
-0d -0.2 0.0 0.2 0.4 . O S  0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

( a d  

Pn3 
0 1 2 ’ 3  4 5 6 7 8 

0 5 10.. 15 20 25 30 
Baryon number 

Figure 2: The chiral condensate as a function of j12, 
in SU(2) gauge theory [19]: The solid lines are fits 
with different Ansatze to the data for j12 < 0.” 

Figure 3: Relation between the Baryon number and 
the chemical potential from the saddle point approx- 
imation, for different temperatures [27]. 

imaginary chemicakpotential. One finds.. 

Thus, .the canonical partition functions are the coefficients of the Fourier expansion of the grand 
canonical partition function (ZCG) in imaginary p. Here we have used the 2nT/3  periodicity of 
the grand canonical partition function which as a consequence leads to the fact that the canonical 
partition functions vanish for non-integer values of the baryon number B = 3Q. 

The Fourier-coefficients can be computed exactly [26]. As for the reweighting method (2. l), 
the evaluation of the fermion determinant is required on every configuration. In fact the same 
method can be used, which is the calculation of all 6N: eigenvalues of the so-called “reduced 
matrix” [7]. 

After having calculated the canonical partition functions, a relation between the chemical po- 
tential and the baryon number is needed, in order to explore the phase diagram in the (T ,  p)-plane. 
Such a relation can be obtained by using the saddle point approximation of the fugacity expansion 
(which is exact in the thermodynamic limit). One finds 

where p = B/V is the baryon number density and f ( T , p )  = - ;logZc(T, p )  is the Helmhotz free 
energydensity. For several different temperatures the saddle point approximation is shown in Fig. 3 
[27]; Due to the computational costs the calculation have been performed on 6 x 4 lattices, with 
Nf  = 4 flavors,of.staggered fermions. As can be seen from the “S”-shape of the curves, one can 
have more than one solution when solving for the baryon density p ,  at given p and T .  This reflects 
the nature of thestransition in.the four-flavor theory, which is ofArst order. By using a Maxwell 
construction, one is able to calculate the two densities p 1 ( T )  < p2(T), giving the lower and upper 
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boundary of the coexistence area, as well as the critical chemical potential 
the temperature. 

( T ) ,  as functions of 

2.5 The density of states method 

An alternative to the.importance sampling technique .used in most Monte Carlo simulations . 
is the density of states method. 'Here one reorders the path integral representation of the partition 
function in the following way: firstsexpectation values with a constrained parameter will be cal- 
culated. Le. one selected parameter (4) is fixed. Expectation values according to the usual grand 
canonical partition function (2,) can then be recovered by the integral 

where the density of states*@ j is given by the constrained partition function: 

Here ( )4 denotes the.expectation value with respect to the constrained partition function. In ad- 
dition, the-product of the weight functions f , g  has to equal the correct measure of ZGC: fg = 
detM exp{ -SG}. The idea of reordering the partition functions is rather old and was used suc- 
cessfully.for gauge theoriesl[21] and QED with dynamical fermions [22]. For QCD the parameter 
$ is usually chosen to be the plaquette [23]: Cp = P. In [24], however, the DOS method was con- 
structed for the complex phase ($ =-e). Within the random matrix model, the authors of [25] used 
the quark number density ($ = n,). 

The advantages of this additional integration becomes clear, when choosing $ = P and g( V )  = 
1,. In this case p ($) is independent of all simulation parameters. The observable can be calculated 
as a function of all values of the lattice coupling/p. If one has stored all eigenvalues of the fermion 
matrix for all configurations,.the observable can also be calculated as a function of quark mass (m) 
and number of flavors[23] ( N f ) .  

Note that this method 'does not solve the sign problem. It is, however supposed to solve the 
overlap problem: Moreover, it is also possible to combine the DOS method, with the reweighting 
method 2.1, by reweighting the constrained expectation values in the case of g( U )  # 1. For large 
reweighting distances an overlap problem is then introduced once again. 

3. The transition line 

Using any of the methods presented above, the calculation of the transition line T,(pu,) is 
possible. This has been done for many systems, which differ in the number of quark flavors, 
quark masses, physical .volume and lattice spacing. This makes a comparison of different methods 
difficult. The case of N f  = 4, m/T = 0.2 and Nt = 4, however, has been studied extensively with 
almost all methods.. A comparison is given in Fig. 4 [27]. As one can see, the agreement between, 
different methods is very good up to apq M 0.3 or equivalently p,/T M 1.2. Forelarger chemical< 
potential the two results from the reweighting method (Sec. 2.1), indicated as green and blue points, 
seem to stay above the other results. The reason could be the lack of overlap between the simulated 
and the reweighted ensemble. 
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Figure 4: Comparison of the transition line .Tc(p) obtained 
from different methods. Plot from [27]. 
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Figure 5: The mass dependence of the 
transition line for Nf = 3 [29]. 

Other results shown in Fig. 4 come from the imaginary chemical potential approach (Sec. 2.3), 
solid line, from a generalized imaginary chemical.potentia1 approach, black dots, and from the 
canonical approach (Sec. 2.4), red points. These results seem to be in agreement even for somewhat 
larger chemical potentials. However, the transition line from the canonical approach bends down at 
p / T  x 1.5. Strong coupling calculations at p = 0 [28] show that this is indeed necessary in order 
to match with the correct strong coupling limit: 

To discuss the transition line a bit more quantitatively, one can expand Tc(pq)  in terms of the 
chemical potential 

(3.1) 

In general the first non trivial coefficient t 2  will depend on the number of flavors and the quark 
masses as indicated above. Of course they will also besensitive to finite volume and cut-off effects. 
One can, however, hope that for large physicalvolumes and small lattice spacings, i.e. N , / N ,  > 4 
and Nt > 4, those effects are small. A detailed comparison of t 2  is given in Tab. 1. In general, the 
curvature of the transition line becomes steeper for increasing number of flavors and decreasing. 
quarklmasses. Two of the 3-flavor results which have been obtained with the p4-improved action 
[29] are shownin Fig. 5. In some cases it has also been possibledo estimate the sub-leading 
coefficient t4,  which has been found to be very small or even negative. If an extrapolation with a 
Pad6 Ansatz is performed, the transition line tends to be steeper for high ,u [20] compared to the 
truncated Taylor series and shows faster convergence. 

We also note, that the calculation of Tc(pq) has two parts. The first part involves the calculation 
of pc(p), the second one is the calculation of the lattice p-function (aap/du).  Some of the results 
listed in Tab. 1 have~been obtained by-using the perturbative two-loop p-function, which has the 
tendency to underestimate the curvature of the critical line. 
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Nf., a m  Nf t 2  Action p-Function Method Reference 
2 0.1 16 0.69(35). p4 non-pert. Taylor+Rew. 181 

0.032 6,8 0.500(54) stag. 2-loop pert. Imag. ~ 7 1  
3 0.1 16 0.247(59) p4. non-pert. Taylor+Rew. [29] 

0.026;- 8,12,16 0.667(6) stag. 2-loop pert: Imag. WI 
0.005, 16 1.13(45) p4 non-pert. Taylor+Rew. [29] 

4. 0.05 16 1.86(2) stag. 2-loop pert. Imag. [181 
2+1 0.0092,0.25 6-12 0.284(9) stag. non-pert. Rew. I341 

Table.1: Comparison of.the first nontrivial coefficient t 2  in the Taylor expansion of the transition line. All 
results have been obtained with Nt = 4. 

4. Hadronic fluctuations 

Following the transition line into the non-zero chemical potential plane, quark number fluc- 
tuations xq belong to the most4mportant observables. They will diverge at the critical end-point 
and thus provide an excellent signal forbthe existence and its location on the lattice and eventually 
may be detectable in heavy ion experiments. Hadronic fluctuations can be computed from Taylor 
expansion coefficients of the pressure with respect to the quark chemical potential: 

(4.1) 

Due tosthe particle anti-particle symmetry (pq +) -pq) all odd coefficients vanish. Thus the first 
three non-zero coefficients are c2, c4, and C6. They have been calculated in the case of two flavors 
of p4-improved staggered fermions, with mq/T = 0.4 E131 and are shown in Fig. 6. Note that in 
the-Taylor expansion of the pressure the up and down quark chemical potentials have been chosen 
to be equal. Having calculated the coefficients c,,(T) one can construct the quark number density 
and quark number fluctuations 

Also shown in Fig. 6 are the quark number fluctuations for various values of the chemical potential. 
It is interesting to see that at p;, = 0, the fluctuations xq show a rapid but monotonic increase at the 
transition”temperature, whereas a cusp,is developing at Tc(pq)  for pq > 0. This is a clear sign for 
approaching.the critical end-point. 

In the,case,of 2-flavor QCD, the quark number susceptibility is directly proportional to the 
baryon number fluctuation. Having two light quarks and one heavier strange quark, the situation is 
not that simple anymore. To match the situations realized in heavy ion collisions, one still.wants to 
expand the pressure in terms of pq = p,, = pd, keeping the strange quark chemical potential zero 
(P.~ = 0). However, in order to analyze fluctuations of conserved quantum numbers, it appears to 
be more appropriate to perform a basis change going from the space of quark number fluctuations 

8 



Lattice QCD at Finite Density Christian Schmidt 

0.8 1.0 1.2 1.4. 1.6 1.8 2.0 

0.101 0 ,  0 ,  I ,  1 ,  I ,  , , ,  

0.20 

0.15 

0.10 

0.05 

0.00 
0.8 1.0 1.2 1.4 1.6 1.8 2.0 

4.00 

3.50 

3.00 

2.50 

2.00 

1.50 

1 .oo 

0.50 

0.00 

pq/T=o.o 

pq/T=l.o 4-- 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 6: The Taylor expansion coefficients c2, c4 a n d ~ 6  of the pressure [13] and the quark numberductu- 
ations xq for different values of the quark chemical potential. 

where a, p E { u ,  d, s} to the space of hadronic fluctuations, indicated by a, p E ( 1 3 ,  Y ,  B }  with I3 

being the third component of the isospin, Y being the hypercharge and B the baryon number. In 
Fig. 7 the diagonal susceptibilities xz3,z3 , x y , y  and XB,B as well as the off-diagonal susceptibilityXy,B 
are shown [30]; They have been measured by the MILC Collaboration with 2+1 flavor of Asqtad 
fermions on a 123 x 6 lattice. The light quark mass is my  = 0.2m,T where m, is the physical strange 
quark mass. I The curves have been normalized such that .the continuum Stefan-Boltzmann value 
is 0.5 for all of them. Qualitatively they show the same behavior as the diagonal quark number 
fluctuations, only the off-diagonal susceptibility X Y , B  shows a cusp already at p = 0. However, up 
to a minus sign also the off-diagonal quark susceptibility x ll,d shows a cusp at p = 0. 

Furthermore, also fluctuations of otlier conserved quantities such as electric charge Q have 
been computed: It is especially interesting to analyze the correlations between different conserved 
charges. Also shown in Fig. 7 are the correlations 

(4.4) 

where S is the.strangeness and the operator X is either the electric charge ( X  = Q) or the baryon I 
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N,=6, N,=2+1, m,,d=0.2ms. 

1. 2 5 .  10 
T/T, ; 

I 
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T/Tc 

Figure 7: Different hadronic fluctuations [30] and the correlation between strangeness and baryon number, 
electric charge fluctuations respectively [3 11. 

number (X = B)  [3 13. Such calculations have been performed on an 163 x 4 lattice, using a standard 
staggered action. The two dynamical light quark masses yield m./mp = 0.3. The strange quark 
has been treated in the quenched approximation. The results show that above T ,  strangeness and( 
electric charge or baryon number fluctuate independently. This is consistent with the quasi-particle 
picture of the Quark-Gluon-Plasma (QGP). However, below T,, in the hadronic phase fluctuations 
are clearly correlated. These correlations are thus-directly related to the degrees of freedom in the 
QGP. These are also clearly visible in the calculation of higher order cumulants of fluctuations [32]. 

5. The criticaEend-point 

Locating the critical point is one of the most challenging tasks for lattice QCD at finite chem- 
ical potential. The first*attempt to locate the critical point used the reweighting method [33]. For 
this calculation, 2+1 flavor of standard.staggered fermions have been used at a pion massof about 
300 MeV and a kaon mass of about 500 MeV. Lattice sizes have, however, been rather small (43 x 4 
- 83 x 4). A critical chemical potential of ,up'= 725(35) was found. A second calculation [34], 
using again the reweighting method, with physical masses (m = 150 MeV, mK = 500 MeV) and 
somewhat larger volume (63 x 4.- 123 x 4), let to ,up = 360(4) MeV. 

When using the reweighting method for locating the critical point, the minima of the normal- 
ized partition.function in the complex p-plane (Lee-Yang zeros) have to be determined 

In SU(3) gauge theory, where we have eie = 1, this can be done with high accuracy, which can be 
seen in Fig. 8 [35]. One can even identify a second.Lee-Yang zero. In order to locate the critical 
point, one has to take the infinite volume limit and monitor the approach of the Lee-Yang zeros 
on the real axis. When the first Lee-Yang zero touches the real axis in the infinite volume limit, 
a critical point has been reached. In Fig. 8 this is shown for full QCD with physical masses [34]. 

10 
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24’x36x4 lattice ., 
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a- . 
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P 

Figure 8: Lee-Yang Zeroes in the complex p plane, in the case of SU(3) gauge theory [35] (left) and the 
distance of the smallest Lee-Yang zero from the real axis as function of the chemical potential, in the case 
of full QCD [34] (right). 

In QCD with non-zero chemical potential the analysis of Lee-Yang zeros is, however, subtle [35]. 
For large volumes and chemical potentials the phase.factor of the determinant e ie  will force the 
Lee-Yang zero onto the real axis, which might lead to an underestimation of the critical point. 

Another difficulty with the reweighting method atkfinite chemical potential has been pointed 
out’in [36]. It was noted, that taking-the fourth (or square) root of the determinant (which is 
necessaryin order to simulate 2 or 1-flavor QCD with staggered fermions; see also [4]) could lead 
to phase ambiguities. This problem becomes acute when p q  > m,/2. 

All of the a above mentioned limitations are; however, irrelevant for the location of the critical 
point with the reweighting method if the critical point is located at small values of ,LL 4. 

Using the Taylor expansion coefficients of the pressure, it is also possible to estimate the 
location of, the critica1:point. The convergence radius of the expansion is limited by the nearest 
singularity in the, complex chemical potential~plane. For each fixed temperature, the radius of 
convergenceis given by 

Moreover; the sign of the coefficients cIZ gives information about the location of the singularity 
in the complex plane. If all coefficients are positive, the singularity is located on the real axis of 
the complex chemical potential plane. If the sign is strictly alternating, the singularity lies on the 
imaginary axis. For a detailed discussion see [37]. 

Having only,a limited number of expansion coefficients, one can only estimate p. The hope 
is that the convergence of the p n  will be fast. Indeed; a clustering of the pIZ  is seen in the phase, 
diagram, as shown in Fig. 9 [13]. This calculation, which has been performed with 2 flavors of p4 
improved fermions and m,/mp = 0.7, suggests a critical chemical potential of p r t  M 500 MeV. 
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Figure 9: Estimates of the radius of convergence in the (T ,  py)-plane (left), the ratio cq/c2 of the expansion 
coefficients (right). I 

All calculated p n  are, however, consistent (within statistical error) with the resonance gas model in 
the Boltzmann approximation, where the radius of convergence is infinity. 

The authors of [38] have estimated the critical chemical potential from a Taylor expansion 
of the quark number susceptibility and find pp M 180 MeV. Two flavors of standard staggered 
fermions have been used on lattices up to 243 x 4 and quark mass corresponding to m./mp = 0.3. 
The difference between the two estimates [13, 381 of the critical point is large. We note that the 
second estimate comes from the expansion coefficients of xq. As can be seen from Eq. 4.2 this 
will result in.a smaller p n  for each fixed n. The limit limn+-pn is of course the same. For finite y1, 
however, the estimate of pp M 180 MeV would correspond to pp M 240 MeV, when estimating 
the en with coefficients of the same order from the expansion of the pressure. Nonetheless, the 
difference between the two estimates is still striking. The origin could be the difference in mass. 
However, preliminary results from the RBC-Bielefeld Collaboration, also shown in Fig. 9, do not 
indicate a strong mass dependence in c 4 / q  = 1/pz. 

The critical point can also be studied directly at p q  = 0. This can be done by tuning the quark 
masses carefully to a value where the critical chemical potential is pF’r = 0. In the quark mass 
plane of two degenerate light quark and one strange quark, (mu,dr m,)-plane, a line exists on which 
this condition is fulfilled.-Starting from this line, one can define a surface of critical points in the 
3-dimensional space of (mu,d, m,, pq).  On one site of the surface, the order of the QCD transition is 
first order (for smaller masses) on the other side the transition is only a smooth crossover. The line 
of critical points at p q  = 0 has been computed for standard staggered fermions [39] as shown in 
Fig. 10. For locating the critical points, the fourth order Binder cumulants of the chiral condensate. 
have been calculated. Since. the probability distribution of the order parameter is universal, also 
the value of its forth cumulant is a renormalization group invariant quantity which furthermore is 
volume:independent,atl the critical point. From a calculation of cumulants at imaginary themical 
potential the-region of first order phase transitions ,was found to shrink as sketched in Fig. 10. 
This calculation has been performed with standard staggered fermions on an rather course lattices 
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Figure 10::Line of critical points in the quark mass plane for ~ C L B  = 0 and i p ~  = 2.4T (left) and sketch of the 
surface of critical points as found in [39] (right). 

(Nt = 4). If this result gets confirmed in the continuum limit it would put doubts on the existence 
of a critical point in QCD with physical masses. It is interesting to mention, that a shrinking region 
of first order transitions has also been found in the case if isospin chemical potential:[41]. 

6; Beyond the critical point 

Even more challenging than locating the criticaLpoint, is the study of the physics at high den- 
sities-and low temperatures. One attempt to do so is a calculation using the density of states method 
[40]. Using four flavors of standard staggered fermions (i.e. taking the root of the determinant is 
no necessary), several simulation points in the (p, jl) plane have been chosen to generate phase 
quenched configurations by employing the method proposed in [42]. The lattice size has been 
63 x 4 and 64. The quark mass was chosen to be m/T = 0.2. The generation has been done with 
constrained plaquettes. In oder to do so, the.6-function in Eq. 2.9 has been replaced by a sharply 
peaked Gaussian potential; which in practice means that the force term in the HMD-R algorithm 
had to be modified. In the notation used in Sec. 2.5 this would mean $ = P, g = IdetMle -psc and 
f = eie. For each simulation point, several runs have been performed with about 20 different values 
of the plaquette. By calculating the eigenvalues of the reduced matrix the phase of the determinant 
was calculated for each of those runs. By numerically calculating the integrals 

(6.1) 

we recover the. grand canonical expectation value of the plaquette and its square. Here p (x) is 
the density of states (Eq. 2.9), which.has.been measured by the integral method, usually used to 
calculate the pressure. The susceptibility of the plaquette is then given by the usual expression 
x p  = (P2)  - (P>2 .  From the peak position of the plaquette susceptibility the phase diagram was 
calculated as shown in Fig. 11: The scale was set by the Sommer radius P O ,  measured on a lo3 x 20 
lattice. We find a triple.point, where three different phases seem to coexist. The phases show 
different plaquette expectation values. The triple point is located around p M 300 MeV, however 
its temperature (Pi) decreases from Tt" M 148MeV on the 63 x 4 lattice to Tt" M 137MeV on the 
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Figure.ll: Phase diagram from:the density of state method [39]. 

64 lattice. This shift reflects the.relatively large cut-off effects one faces with standard staggered 
fermions and temporal extents of 4 and 6. 

Also shownin Figure 11 are points.from simulations with quark mass m/T = 1.2. The phase 
boundary turned out to be - within our statistical uncertainties - independent of the mass. 
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