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I. INTRODUCTION 

Condensed phase physical and chemical processes generally involve interactions covering a 

wide range of distance scales, from short-range molecular interactions requiring orbital overlap 

to long-range coulombic interaction bewteeen local sites of excess charge ( positive or negative 

monopoles). Intermediate-range distances pertain to higher-order multipolar as well as 

inductive and dispersion interactions. Efforts to model such condensed phase phenomena 

typically involve a multi-tiered strategy in which quantum mechanics is employed for full 

electronic structural characterization of a site of primary interest ( eg, a molecular solute or 

cluster), while more remote sites are treated at various classical limits ( eg, a molecular force 

field for discrete solvent molecules or a dielectric continuum (DC) model, if the solute is 

charged or has permanent multipole moments). 

In particular, DC models have been immensely valuable in modeling chemical reactivity 

and spectroscopy in media of variable polarity. Simple DC models account qualitatively for 

many important trends in the solvent dependence of reaction free energies, activation free 

energies, and optical excitation energies, and many results of semiquantitative or fully 

quantitative significance in comparison with experiment have been obtained, especially when 

detailed quantum chemical treatment of the solute is combined self consistently with DC 

treatment of the solvent ( eg, as in the currently popular PCM ( 'polarized continuum model') 

approaches). 

Solvation effects are especially crucial in a class of transformations known as electron 

transfer (ET) processes, in which a charge ( 'electron' is typically used generically to denote 

electron or hole) is transferred between local donor (D) and acceptor (A) sites, over a distance 

(characterized by an effective DIA separation distance rDA), which is at least as large as the 

distance scales of the local D and A sites (with effective radii r~ and rA)); ie, ~ D A  > r~ + r,+ Eq. 

(1) nominally depicts 'intermolecular' ET between disjoint 'solutes' ( ie, two separate 

molecular species, which may be in non-bonded contact or separated by solvent): 

D+A- + DA (1) 

Alternatively, in 'intramolecular' ET, D and A are linked covalently by a bridge (B), as 

shown schematically in Figure 1). 
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As a result of the appreciable change in local charge density, ET energetics are strongly 

coupled to the polarization modes of the solvent environment. Since ET does not involve the 

types of bonding rearrangements which characterize chemical reactions in general, they 

provide ideal tests of solvation models, free of many of the issues pertaining to electron 

correlation in chemical bonding. In this chapter we review the role of DC models ( including 

PCM and its variants) in characterizing the solvent dependence of the energetics needed to 

model thermal and optical ET ( the different types of ET are categorized in Section 11). While 

ET is fundamentally a dynamical process, we will show, nevertheless, how the relevant 

energetics ( both equilibrium and nonequilibrium) can be expressed in terms of suitably chosen 

equilibrium thermodynamic quantities. 

As used here, a DC model is characterized entirely in terms of dielectric 'constants' (E) of 

the pure solvent ( ie, in the absence of the solute and its cavity) and the structure of the 

molecular cavity ( size and shape) enclosing the solute. We confine ourselves to dipolar 

medium response, due either to the polarizability of the solvent molecules or their 

orientational polarization. Within this framework, in its most general space and time- 

resolved form, one is dealing with the dielectric 'function' ~(k,o),  where k refers to fourier 

components of the spatial response of the medium, and o ,  to the corresponding fourier 

components of the time domain. In the limit of spatially local response ( the primary focus of 

the present chapter), in which the induced medium polarization (P) at a point r in the medium 

is specified entirely by the electric field (E) at the same point, only the 'long wavelength' 

component of E is required (ie, k=O). 

In general, E(O,O), or simply ~ ( o ) ,  is a complex function, but real dielectric constants may 

be defined fir certain regions along the o axis. In the low frequency limit, the static dielectric 

constant, = E (0) corresponds to a medium at full equilibrium with the solute electric field. 

When the solute charge density is changing (as in ET), only optical modes of the medium can 

remain in equilibrium, and the response is characterized by E, E (m), where 'infinity' simply 

denotes the fact that the electronic frequencies of the medium are well above those associated 

with the nuclear modes. The nuclear modes constitute an inertial drag which controls the 

solvent reorganization energy, the seat of the activation energy for thermal ET and the Stokes 

shift for optical ET, as discussed below. 

Introduction of the solute (or solutes) into the medium obviously leads to complications 

relative to the homogeneous pure solvent. In simple models of the PCM type, the presence of 

the solute is accounted for by a suitable cavity ( or cavities for multiple solute species) in the 



dielectric medium. Outside of the cavity (cavities), the medium maintains its homogeneous DC 

character, and the interface with the cavity is accommodated by suitable boundary conditions. 

Analogous use of boundary conditions can be used to treat an inhomogeneous medium in terms 

of piecewise homogeneous dielectric zones. Traditionally, for reasons of computational 

simplicity, molecular solutes have often been treated in terms of simple point-multipolar 

models, which are placed in idealized cavities (eg, spheres or ellipses), but modem 

computational implementation permits the use of cavities of very general shape, adapted to the 

structuaral details of complex molecular solutes. In general, the molecular cavity and its spatial 

extent may be considered to be a joint property of the solute and solvent. Much useful analysis 

concerning molecular cavities has been reported, but it is to be emphasized that in certain 

respects the specification of the cavity remains fundamentally empirical. While common ET 

models employ a fixed cavity (ie, the same for initial and final ET states), fluctuating cavity 

models have been proposed, with distinct equilibrium cavity structure for initial and final 

states. 

Recent perspective concerning DC models of solvation has been provided by molecular- 

level theories and simulations. Such studies, for example, draw attention to the importance of 

departures from the homogeneous, spatially local models discussed above, and help to 

elucidate the nature of effective molecular cavities. Examples of these effects will be included 

in the specific results illustrated in Section VC. 

11. CLASSIFICATION OF ET TYPES 

Electron transfer (ET) processes can often be classified into three basic types: charge 

separation (CS), charge recombination (CR), and charge shift (CSh). In CS (CR), the initial 

(final) state is characterized by charge neutral D and A sites, while the final (initial) is dipolar 

(D'IA-). In CSh processes, an excess charge (positive or negative) is transferred between D 

and A sites. Eq. (1) has already introduced the CS case, and examples of CR and CSh ET are 

displayed, respectively, in Eqs. (2) and (3) 
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In the cases considered below, D and A sites may be separated by bridging spacers ( B, as in 

Figure I), which mediate electronic tunneling between D and A without involving chemical 

intermediates in which the transferring electron resides on B. Hereafter, we will suppress the B 

notation, except as needed for clarity. 

The CS, CR, and CSh processes in general may involve even or odd electron species ( in 

the former case, the states may be either closed or open shell in character). Furthermore, the 

initial state can be either a ground ( eg, DA) or an electronically excited state: eg, a locally 

excited (LE) state (D*A or DA*), as depicted for CS in Eq. (4). 

Analogous excited state CSH processes are displayed in Eq. (3, 

D(A+)*+ D+A ( 5 4  

D*A++ D+A (5b) 

When the initial states are created by photoexcitation, the ET process is denoted as 

photoinitiated ET (PET), in constrast to the case of optical ET, in which the ET is achieved 

directly by a radiative process (eg, of the CS (Eq. (6)) or CSh (Eq. (7)) type. 

It is clear that in detailed modeling studies, a flexible quantum chemical approach is 

required to accommodate the variety of electronic states which may be involved. Figure 2 

displays free energy profiles along the ET reaction coordinate (q) for some examples of the CS 

and CR type. The definition of q and the formulation of the energy surfaces are discussed in 

Section IV. 

The label 'thermal' can apply to any of the ET types just described and implies that the 

initial state is at thermal equilibrium ( ie, all the molecular and medium modes are at thermal 

equilibrium with the given electronic state). Ultrafast P E T  processes may be sufficiently fast 
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(ultrafast) that the equilibrium assumption is no longer valid. 

The ET processes under discussion here correspond by definition to 'pure7 ET, in which 

molecular or medium coordinates may shift ( the polaron response), but no overall bonding 

rearrangements occur. More complex ET processes accompanied by such rearrangements ( eg, 

coupled electronlproton transfer and dissociative ET) are of great current interest, and many 

theoretical approaches have been formulated to deal with them, including quantum mechanical 

methods based on DC treatment of solvent. 

111. KINETIC FRAMEWORK 

A standard point of reference for thinking about the thermal ET rate constant (kET) is given by 

Eq. (8) 

2 kET = ( P R  H I h )  l ( 4 d  kBT)l12)(exp- (ACT 1 kBT)) (8) 

where 

A G +  = (AGO+ A ) ~ I ~ A  (9) 

corresponding to the limiting situation characterized by : 

weak DIA coupling ( the nonadiabatic limit, expressed in the Condon 

approximation, where the electronic coupling matrix element has been factored out 

of the full vibronic matrix element) 

harmonic profiles with respect to q ( linear solute/solvent coupling) 

the classical ( high temperature ) limit for nuclear motion (no quantum tunneling) 

kinetics governed by transition state theory (TST). 

In spite of these limitations, Eq. (8) serves in the present context to highlight the role of thee 

crucial energetic quantities in activated ET: 

the net free energy change (AGO) 

the reorganization free energy (X) 

the electronic coupling matrix element (HDA) 
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The activation free energy (AG~)  is expressed as a quadratic function of AGO and h in 

Eq. (9), the well-known result of Marcus theory, which only displays a linear free energy 

relationship in the limit where I AGO I << h. Dielectric continuum (DC) models have been of 

great value in modeling the solvent contribution to AGO and h, and hence also to A G ~ .  The 

activation energy is a manifestation of the Franck-Condon (FC) control of ET dynamics ( as 

well as that for many other electronic processes): ie, in the classical limit represented by Eqs 

(8) and (9), the ET does not occur until a thermal fluctuation brings the system to the crossing 

point ( the transition state (TS)), eg, as in Figure 2, where electron tunneling can occur 

between resonant D and A sites. The location of the TS along the q axis is entirely defined by 

h, and it is of particular interest to understand the abilities ( and limitations) of DC models in 

accounting for the solvent contribution to this nonequilibrium free energy quantity. 

IV. ET ENERGETICS 

A. Classical Expressions 

The basic features of ET energetics are summarized here for the case of an ET system (solute) 

linearly coupled to a 'bath' ( nuclear modes of the solute and medium). We further assume that 

the individual modes of the bath (whether localized or extended collective modes) are 

separable, harmonic, and classical ( ie, hv < kBT for each mode, where v is the harmonic 

frequency and ke is the Boltzmann constant). Consistent with the overall linear model, the 

frequencies are taken as the same for initial and final ET states. According to the FC control 

discussed above, the nuclear modes are frozen on the timescale of the actual ET event, while 

the medium electrons respond instantaneously (further aspects of this response are dealt with in 

Section 1V.D). The energetics introduced below correspond to free energies. Solvation free 

energies may have entropic contributions, as discussed elsewhere. Before turning to the DC 

representation of solvent energetics, we first display the somewhat more transparent 

expressions for a discrete set of modes. 

1. Discrete Modes 

The free energies of the initial (i) and final (f) states, the so-called diabatic states in the ET 

process ( discussed in more detail in Section IV.D.2), are given by 



where the discrete space of modes is represented by vector (x>, Ixa> denotes the equilibrium 

coordinate values for state a ( a = i, f) and K is the force constant matrix, taken as diagonal. 

The vector lAx> = Ix-x,> may be considered an arbitrary fluctuation of (x> from its minimum 

energy value ( x, >. 

We adopt as the reaction coordinate for the ET process, the vertical gap, q: 

This gap is given by the following linear function of {XI: 

where A G ~  = G; - GP , (Axif> is the shift in equilibrium coordinate values ( Ixf-xi >), and hf 

is the reorganization energy 

If we define the minimum energy value of Gi or Gf in x-space subject to the constraint of 

a particular value of q ( at I x > = I x min (q)> ), a straight-line path lying along the I Axif > 

direction is obtained, 

Along this path, Gi and Gf may be re-expressed as harmonic functions of the single coordinate 

rl: 

Gi = G; + (Lf + AGY, - 1)2/4hf (15) 

Any linear function of q can serve equally well as a reaction coordinate as long as all the 

coordinates contributing to the collective coordinate q are globally harmonic (i.e., with the 

same force constant matrix for initial and final states, as in Eq. (10)). A familiar alternative to 
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q is the dimensionless progress parameter of Marcus, m, for the overall ET process, related to 

q ( Eqs. (12) and (14) ) by the following linear transformation 

where the initial (i) and final (f) diabatic minima correspond to m=O and m=l. The diabatic 

crossing point for thermal ET occurs at q = 0 ( or mt = (hif + A G ~  )/2 hif ), yielding the 

quadratic Marcus expression for Gt ( Eq. (9), and the second term of Eq. (15) when q = O), the 

free energy of the thermally activated TS relative to G: . 

The quantity G,(lx>) - GI: ( the second term in Eq. (10) is seen to have the form of a 

reorganization energy, h(lAx>), but with IAxif> in Lf ( Eq. (13)) replaced by the arbitrary 

coordinate fluctuation IAx> (see definition following Eq. (1 0)). Letting state a be the initial 

state i, we note that along the reaction coordinate, 3c(lAx>) is scaled relative to Lf by the square 

of the progress parameter m. In particular, Gt is seen to be h (mtlAxif>) = (mt l2 Lf. 
Even in the non-harmonic case, one may still define q as the vertical energy gap 

Gf - Gi, but q will no longer be linear in IX>, in contrast to Eq. (12). In this case, the 

relationship noted by Tachiya 

remains valid in general, indicating clearly that at a given value of q, Gi and Gf have the same 

curvature with respect to q, irrespective of the functional form of Gi and Gf . The relationships 

among the G, A, and q quantities are displayed in Figure 3. When Gi and Gf depart from pure 

quadratic form, initial and final states have distinct h values (hi and b), in which case a mean 

value may be used to define Lf. 

2. Dielectric Continuum Solvent Model 

When the density of bath modes becomes high, as in the case of a DC, counterparts of the 

discrete-mode expressions ( Eqs. (6- 13)) are readily available, based on the assumption that the 

solute-solvent coupling can be expressed as a linear functional of solute charge densities (p). 

Models for defining or calculating p are discussed in later Sections. 
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Corresponding to Eq. (lo), we have for a general non-equilibrium situation, the following 

solvation free energy, 

where Gq(pa) is the equilibrium free energy, when all continuum modes (slow (inertial) 

as well as fast (optical)) are at equilibrium with respect to pa, hs (Ap) is the solvent 

reorganization energy corresponding to Ap = pin - pa, and pin is the hypothetical charge density 

with which ( by construction) the inertial modes are in equilibrium (only for full equilibrium is 

pin = pa ). The relationship between the continuous densities pa and pin and their discrete 

counterparts, Ixa> and IAx>, is discussed below and illustrated for specific ET situations. 

For a homogeneous DC in the absence of dielectric image effects ( associated with 

boundary conditions at the solute/solvent interface), Gq(pa) + hs (Ap) may be represented as, 
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