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Summary 

 Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues 

in selecting the metal components used at geothermal power plants operating at brine 

temperatures up to 300°C. Replacing these components is very costly and time 

consuming. Currently, components made of titanium alloy and stainless steel commonly 

are employed for dealing with these problems. However, another major consideration in 

using these metals is not only that they are considerably more expensive than carbon 

steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop 

on their outermost surface sites to reactions with brine-induced scales, such as silicate, 

silica, and calcite. Such reactions lead to the formation of strong interfacial bonds 

between the scales and oxide layers, causing the accumulation of multiple layers of 

scales, and the impairment of the plant component’s function and efficacy; furthermore, a 

substantial amount of time is entailed in removing them. This cleaning operation essential 

for reusing the components is one of the factors causing the increase in the plant’s 

maintenance costs. If inexpensive carbon steel components could be coated and lined 

with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and 

–fouling materials, this would improve the power plant’s economic factors by 

engendering a considerable reduction in capital investment, and a decrease in the costs of 

operations and maintenance through optimized maintenance schedules.  

 Over the past eight years, the objective of the R&D work at Brookhaven National 

Laboratory (BNL) in U.S. Department of Energy (DOE) Geothermal Materials Program 

was to develop advanced coating material systems with upgraded corrosion-, erosion-, 

and fouling-prevention performances that extend the lifecycle of carbon steel-based plant 

components, including heat exchangers, heat exchanger tube/sheet or pipe/pipe joint 

areas, wellheads, condensers, and steam separators, which encounter very harsh 

geothermal environments. Since these plant components operate in chemically, 

physically, and thermally different environments, the material criteria of developing the 

coating systems depend on the particular components. Success would provide 

information on new material synthesis, processing technologies, and the specific 

characteristics of materials, as well as on how to eventually scale up the coating 
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technologies necessary to adequately protect carbon steel-based plant’s components in 

corrosive geothermal environments.  

 

Coatings for Heat Exchanger (HX) Tubes 

Economic utilization of the binary working fluids in geothermal energy 

conversion cycles would dramatically increase the size of the exploitable portion of any 

hydrothermal resource. The components of the HX, 800 tubes on average, shell, and 

sheet, represent by far the major cost in a binary plant. Thus, if inexpensive carbon-steel 

tubes could be coated with a thermally conductive material that resists corrosion, 

oxidation, and fouling, then there would be a marked reduction in both the capital 

investment and the maintenance costs of the heat exchanger. 

Based upon all the data we obtained from 1998 through 2006, the following were 

the criteria for the liner systems being developed in this program: 1) Continuous 

operation at a hydrothermal temperature of 200°C; 2) thermal conductivity > 1.0 

kcal/hr.m°C; 3) cost of <$ 1.0/ft; 4) ionic impedance of lining film after 15-day-exposure 

to 200°C brine: > 1 x 108 ohm-cm2; 5) oxidation rate (O/C atomic ratio) of liners’ 

surfaces after 15-day-exposure to 200°C brine:  < 0.05; 6) abrasive wear rate by SiO2 grit 

(particle size of 15 µm) under 150 m/s velocity and 0.6 MPa pressure for liners’ surfaces 

after 15-day-exposure to 200°C brine: < 0.1 µm/min; 7) bond strength of liner to tube: 

>5.0 MPa; 8) tensile strength of lining film before exposure: > 60.0 MPa; 9) low surface 

energy of liner: contact angle > 80° of water droplet on liner surfaces; and, 10) self-

repairing properties. To meet these material criteria, BNL developed smart, high-

performance polyphenylenesulfide (PPS)-based composite coating systems consisting of 

PPS as the matrix, polytetrafluoroethylene (PTFE) as the antioxidant, micro-scale carbon 

fiber as the thermal conductor and reinforcement, dicalcium aluminate powder as the 

self-repairing filler, nanoscale boehmite crystal as the wear resistant filler, and crystalline 

zinc phosphate as the primer. Importantly, the zinc phosphate primer played a very 

important role in improving the adherence of carbon steel to the coating and in mitigating 

cathodic corrosion of the underlying steel.  

A very promising result was obtained from a two-year-long field validation test of 

this liner at the Mammoth Pacific power plant, CA, a site operating at a brine temperature 
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of 160°C. The liner adequately protected the 20-ft.-long carbon steel HX tubes (~1.0 in. 

O.D) against corrosion, while minimizing the deposition of irremovable calcium silicate 

and silica scales. Also, this test result verified that the PPS liner satisfactory withstood the 

160°C brine and greatly resisted its permeation. In contrast, the surfaces of the unlined 

stainless steel tubes were very receptive to the deposition of calcium silicate hydrate and 

silica scales, which strongly adhereed to the tubes.  

This encouraging result inspired us to further test its performance at an upgraded 

brine temperature of 200°C in the Puna power plant, HW. Our research team, inlcuding 

staff from BNL, the National Renewable Energy Laboratory (NREL), and Thermochem, 

Inc. conducted  four-week field validation tests for PPS composite-lined 20-ft.-long tubes 

with a small diameter of less than ½ in. Post-test analyses revealed that this composite 

liner withstood hot brine at ~ 200°C throughout this abbreviated exposure time. However, 

we observed some blistering and local delamination of the liners, in particular, near the 

inlet areas of brine temperatures of ~ 200°C and pH 3.5. The primarily reason for the 

local delamination and blisters was due to the irregular coverage of the inner surfaces of 

the small diameter tubes by the crystalline zinc phosphate primer, and was not due to any 

hydrothermal degradation of the liners. Thus, the standard formulation of the zinc 

phosphating solution did not offer as effective a protection for small diameter tubes as it 

did for those with a normal diameter of ~ 1 in. Chemical modification of the standard 

ZnPh solution was required to deposit a rough crystalline primer layer of at least 10 µm 

thickness for tubes with a diameter of < 0.5 in.   

Nevertheless, Curran International Corp., commercialized this PPS-based lining 

material system under the trade name “CurraLon”.  The company estimated that the 

capital costs of the heat exchanger, containing on average 800 tubes, would be strikingly 

reduced by ~ 83% and ~ 80%, compared to those of titanium- and stainless steel-based 

heat exchangers, respectively. Consequently, in 2003, this high-performance PPS 

composite lining system was selected for the prestigious “Research and Development 

(R&D) 100 Award” in 2002 and “Federal Laboratory Consortium for Technology 

Transfer (FLC) Award”.  
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Coatings for HX Tube/Sheet or Pipe/Pipe Joint Areas 

Coatings that are curable at low temperature < 80°C, yet possess high-

hydrothermal temperature stability are needed for preventing the corrosion at HX 

tube/sheet and pipe/pipe joints after roller expansion or welding joining process. None of 

the coatings tested can withstand exposure to the high compressive strengths and high 

temperatures of the joining process. Hence, the joint areas must be recoated with 

materials possessing the following four properties: 1) Hydrothermal stability of > 200°C; 

2) good adherence to the joint areas; 3) ability to cure well at temperatures up to 80°C; 

and, 4) ability to be applied with a paint brush or spray gun.  

BNL explored the usefulness of a room temperature-curable 

poly(tetrafluoroethylene)/(hexafluoropropylene) (PTFHFP) polymer coating for 

mitigating the corrosion of carbon steel joints in 200°C brine. After 20 days exposure, the 

superficial layer of this coating suffered hydrothermal oxidation, thereby diminishing its 

maximum effectiveness in preventing the corrosion of underlying steel. Our focus next 

centered on evaluating the NASA-developed polybezimidazole (PBI) polymer coating 

that possesses outstanding thermal stability (a high heat-deflection temperature of 

450°C). Unfortunately, when this room-temperature curable PBI film was exposed to 

200°C brine, it underwent hydrolysis. Consequently, the coating was hydrothermally 

degraded, and had delaminated from the underlying steel joints after a 14-day exposure.  

Solvay Advanced Polymers, L.L.C. provided us with a newly developed solvent-

dissolvable polyarylethersulfone (PES) polymer. Its specific characteristics were its high 

glass-transition and softening temperatures of 260° and 350°C, respectively. Although 

the autoclave validation test was carried out only for two weeks, the PES coating gave 

some encouraging results; namely, it adequately protected the jointed steel against 

corrosion in 200°C brine. However, at ≥ 250°C, the PES underwent severe hydrothermal 

oxidation, causing cleavage of its sulfone- and ether-linkages, and opening of phenyl 

rings. Consequently, the disintegration of the PES structure by hydrothermal oxidation 

was detrimental to the maximum efficacy of the coating in protecting the steel against 

corrosion, allowing the corrosive electrolytes to infiltrate easily through it.   

Thus far, a hydrothermally self-advancing hybrid material, prepared by blending 

two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium 
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aluminate cement (CAC) as the hydraulic filler, has been identified as the most promising 

room-temperature curable anti-corrosion coating for these joints exposed to 250°C brine. 

The following two major factors supported the self-improving mechanisms of the coating 

during autoclaving: First was the formation of a high temperature stable polymer 

structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) resulting 

from hydrothermal reactions between SAL and CAC; second was the growth with 

continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-

CCG-SAL. These two factors promoted the conversion of the porous microstructure in 

the non-autoclaved coating into a densified one after 7 days exposure. The densified 

microstructure not only considerably reduced the conductivity of corrosive ionic 

electrolytes through the coatings’ layers, but also contributed to the excellent adherence 

of the coating to the underlying steel’ s surface. 

 
Coatings for Wellhead Components 

Wellhead components, including a flow line and tee, valve, and casing head, 

encounter a very harsh environment with a flow velocity of ~ 3 m/sec of brine at 250°C. 

If their components were made of inexpensive carbon steel instead of titanium alloy-

based metals, 250°C hydrothermal stable coatings would be needed to protect the 

component’s surface against corrosion. Three different coatings were evaluated: The first 

was a titanium carbonitride [(Ti(CN)] coatings generated by chemical vapor deposition 

(CVD) technology; the second was a nickel-aluminum (Ni-Al) coating produced by 

flame-spray technology; and the third was a PPS/Clay coating made using nanocomposite 

technology. 

Both the CVD-Ti(CN) and flame-sprayed Ni-Al coatings failed when exposed in 

250°C brine environment. Two undesirable attributes caused their failure as corrosion-

preventing coatings: One was the susceptibility of these coatings to hydrothermal 

oxidation reactions with hot brine; the other was the inherent open structure of these 

coatings that allowed the hot brine to permeate them easily, causing the development of 

corrosion-induced stress cracks in the underlying carbon steel. The degradation of Ti(CN) 

in such an environment took place through the processes of oxidation 6 chlorination 6 

dissolution. The hydrothermal oxidation of Ni-Al coating led to the formation of Al2O3 as 
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the major scale compound and NiO as the minor one, and their subsequent accumulation 

and spallation on the carbon steel. 

Since the melting temperature of PPS was around 250°C, it was reasonable to 

assume that this material can withstand the brine temperatures up to 200°C. Undoubtedly, 

increasing the melting temperature of PPS is an inevitable next step, if its potential 

application is targeted towards protecting carbon steel components at ≥ 250°C against 

corrosion and scale deposition. To enhance the melting point of PPS, the polymer/clay 

nanocomposite technology was adapted by using montomorillonite (MMT) clay as the 

alternative nanoscale filler. This nanofiller conferred three advanced properties on the 

semi-crystalline PPS: First, it raised its melting point by nearly 40°C to 290°C; second, it 

increased its crystallization energy, implying an excellent adherence of the nanofillers’ 

surfaces to PPS in terms of a good interfacial bond; and, third, it abated the degree of its 

hydrothermal oxidation due to sulfide → sulfite linkage transformations. When this 

advanced PPS nanocomposite was used as a corrosion-preventing coating for carbon steel 

in a simulated geothermal environment at 300°C, a coating of ~ 150 µm thickness 

adequately protected the steel against hot brine-caused corrosion. 

 

Coatings for Condensers 

With the increased consumer demand for electricity from geothermal binary 

plants during the most economically valuable summer season, one very important issue is 

the impairment of the efficiency of the air-cooled condensers, thereby causing ~ 30 % 

reduction in the plant’s net monthly energy delivery compared with that in the winter. A 

simple method to deal with this problem is to directly spray inexpensive relatively clean 

cooled geothermal brine over the surfaces of the aluminum-finned steel tubing condenser. 

Although this method is very attractive, a concern raised about spraying the brine is the 

likelihood of corroding the condenser’s components, aluminum fins and carbon steel 

tubes, as well as depositing geothermal brine-induced mineral scales on them. To deal 

with this problem, the anti-corrosion and anti-fouling coatings are needed. 

The aluminum fins circling the surfaces of steel tube are of many different shapes 

and structures; some of which they have zigzag- and wave-shaped conformations. 

Further, the distance between the fins is less than 3 mm, while the height of fin attached 
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to the steel tube is ~ 15 mm. Based upon their unique features and the information 

obtained from field and in-house tests over the past three years, the following were the 

design criteria for the coatings developed in this program: 1) Low surface tension of < 60 

dynes/cm, allowing them to easily permeate through and wick between the fins; 2) 

excellent wetting behavior on the surfaces of both aluminum and steel: a contact angle of 

< 70° of a precursor solution droplet on both metal surfaces; 3) a hydrophobic surface to 

confer water-repellent and –shedding properties: low surface energy of < 30 mJ/m; 4) 

retention of thermal conductivity by a thin coating film of < 100µm, so to reduce material 

cost; 5) coating cost of < $0.015/ft2; 6) ASTM salt-spray resistance of > 1000 hours; 7) 

good adherence to aluminum and steel: required strength of interfacial bond was 

unknown; 8) durability: withstand 10,000 brine wet/dry cycles; 9) chemical inertness of 

their surfaces to brine minerals to prevent scale deposition; and, 10) low conductivity of 

corrosive ions: ionic impedance of  > 1 x 105 ohm-cm2. 

 To design the coatings meeting for this material criteria, BNL succeeded in 

developing a new technology of self-assembly nanosynthesis that allowed the assembly 

of a the nanocomposite structure consisting of the nanoscale rare-earth metal oxides as 

the corrosion inhibitors, and water-based organometallic polymer (OMP) as the 

hydrophobic matrix. Among the rare-earth metal oxides, the environmentally benign 

cerium (Ce) oxide was employed in this nanocomposite system. Using this synthesis 

technology involving three spontaneous reactions, viz., condensation, amidation, and 

acetoxylation, between the Ce acetate dopant and aminopropylsilane triol (APST) as the 

film-forming precursor aqueous solution, a synthetic OMP material was composed of Ce 

oxide as the nanoscale filler and poly-acetamide-acetoxyl methyl-propylsiloxane 

(PAAMPA) polymer in a family of OMP. This nanocomposite coating extended the 

useful lifetime of steel exposed in a salt-fog chamber at 35°C from only ~ 10 hours to ~ 

768 hours. Furthermore, this coating system far better protected an aluminum substrate 

from the corrosion that it did one of steel. The salt-spray resistance of film-covered 

aluminum panels was strikingly extended to more than 1440 hours compared with ~ 40 

hours for bare aluminum.    

 Under an extremely harsh environment, exemplified by the 24,500 brine wet/dry 

cycle field fatigue test conducted by NREL at the Mammoth power plant, the Ce 
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oxide/PAAMPS nanocomposite coatings displayed very promising results in protecting 

two metal components, the aluminum fins and carbon steel, of air-cooled condensers 

against corrosion, and in minimizing the deposition of scales. However, two critical 

issues to further improve corrosion-preventing performance of this coating remained 

unanswered: One is the poor coverage of the coating over the sharp edges of the ring-

shaped fin; the other issue is to explore more effective nanoscale rare earth metal oxides 

in inhibiting the cathodic corrosion reaction of metal surfaces underneath the coating, 

instead of using Ce oxide.  

 Nevertheless, BNL filed a patent entitled “Self-assembly Nanocomposite 

Coatings” through BNL’s technology transfer office.  

 

Coatings for Steam Separators 

The steam separator plays a pivotal role in minimizing the extent of erosion of the 

turbine blades brought about by brine-laden steam containing hard mineral particles 

impinging on the blade’s surfaces. Thus, the metal components of separators must 

possess excellent resistance to corrosion and abrasive wear at hydrothermal temperatures 

up to 210°C. Currently, despite being very expensive, Inconnel 625 Ni-Cr alloy is 

extensively used in separators to lessen such erosion. The focus of our work in 

collaboration with Two-Phase Engineering & Research, Inc. centered on developing and 

evaluating candidate materials as the internal coatings for the carbon steel separators.  

Like Inconnel 625, the coatings must not only offer good corrosion- and scale-

preventing performance at brine temperatures up to 210°C, but also their surfaces must 

have three important properties: 1) Low friction; 2) low surface free energy 

corresponding to high water repellency; and, 3) resistance to abrasive wear. 

We evaluated usefulness of a Teflon-rich PPS coating system as slip- and water 

repellent-enhancing, anti-corrosion barrier film. We demonstrated that it afforded 

outstanding slipperiness and water repellent properties because of its low surface free 

energy. In addition, although the Teflon-rich coating was immersed for 35 days in CO2-

laden brine at 300°C, it significantly contributed to preventing the permeation of moisture 

and corrosive electrolytes through the film, so mitigating the corrosion of carbon steel.  

We also explored, in detail, the changes in the kinetic coefficient of friction (KCOF) of 
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the Teflon-rich PPS coatings’ surfaces as a function of exposure time in CO2-laden brine 

at 300°C. A very low KCOF of 0.19 was recorded from the Teflon-rich PPS surfaces 

before exposure to hot brine, suggesting that this coating was very slippery; this value 

represented a decrease of 47 % and 2.6-fold compared with that of the PPS surface 

without Teflon and the stainless steel (SS) surface, respectively. After exposing the 

Teflon-rich PPS to hot brine, the KCOF value rose by 21 % to 0.23 in the first 7 days 

exposure; beyond then, it seemed to level off. In contrast, the friction of the SS surfaces 

increased from 0.5 before exposure to 0.9 after 14 days exposure, raising concerns that 

the enhanced surface roughness accompanying this increment in friction might promote 

the deposition of scales.   
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1. Introduction 

One way to reduce capital investment and the expenses of operating and 

maintaining geothermal power plants with brine temperatures up to 300°C is to use 

inexpensive carbon steel components coated with cost-effective anticorrosion and 

antifouling materials instead of the very expensive stainless steel, titanium alloy, and 

inconel components that commonly are employed as a low corrosive metals. In this 

concept, the coatings play a pivotal role in extending the lifecycle of the carbons steel 

components including heat exchangers, wellheads, condensers, and steam separators, 

eventually lowering the costs of electricity generated from these plants.    

 To achieve this goal, the R&D work at the BNL in the DOE geothermal materials 

program was focused on developing advanced coating material systems with upgraded 

corrosion-, erosion-, hydrothermal oxidation-, and fouling-prevention performance for 

these plant components in very harsh geothermal environments. The technical approach 

encompassed innovative syntheses and processing, and short-term in-house and field 

exposure tests for evaluating the reliability of the new types of coating materials. The 

work also was designed to obtain a fundamental understanding of the characteristics of 

these coating systems before applying them to full-scale metal substrates. Once a 

fundamental formulation of coating materials was established, our focus next was shifted 

to developing the coating and lining process technologies that confer the maximum 

performance of the formulated material systems, and can be scaled up. The coated and 

lined full-scale metal components then were deployed in geothermal plants to conduct the 

field validation tests and to identify the potential coating systems suitable for mitigating 

corrosion and deposition of scales on metal components.   

 Below are the aspects for reducing capital investment and maintenance costs of 

these plant components.  

 

Heat Exchangers (HXs) 

 The economic utilization of binary working fluids in geothermal energy 

conversion cycles would dramatically increase the size of the exploitable portion of any 

hydrothermal resource. The components of the HX, such as tubes, shell, and sheet, 

represent by far the major cost in a binary plant. The stainless steel and titanium alloy HX 
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tubes presently used in such binary-cycle plants afford great protection against corrosion 

caused by hot brine. However, there is one serious concern about using these expensive, 

high-grade metal alloy tubes. The concern is the inevitable formation of the corrosion-

preventing passive oxide layers on their outermost surface sites. The oxide layers are 

detrimental in that the tubes’ surfaces become more susceptible to the reactions with 

silicate and silica scales, developing a strong adherence to them. The accumulation of 

such multiple layers of scales promoted by the interfacial bonds between the scale and 

oxide layer not only impairs the HX’s function and efficacy, but also entails a substantial 

amount of time to remove them, so that this cleaning operation essential for reusing the 

tubes is very costly. Thus, if inexpensive carbon-steel tubes could be coated with a 

thermally conductive material that resists corrosion, oxidation, and fouling, then there 

would be a marked reduction in both the capital investment and the maintenance costs of 

the heat exchanger, which contains 800 tubes on average. 

 

HX Tube/Sheet and Pipe/Pipe Joint Areas 

 The completion of some plant components, such as the HX unit and long pipeline, 

requires joints. Roller-expansion and welding processes are among the most popular 

ways to make the HX tube-to-tube sheet joints, and also the pipe-to-pipe joints. In the 

former process, the thickness of the walls of the carbon steel HX tubes are reduced by ~ 6 

% as they are rolled into a tube sheet. Currently, none of available coatings can withstand 

such high compressive strength and abrasive wear during this expansion. Likewise, 

welding at high temperature causes thermal decomposition of the coatings. Hence, the 

joint areas, of ~ 10.0 cm wide, must be recoated in the factories or in the field with 

materials having the following four important properties: 1) good curability at low 

temperatures up to 80°C; 2) hydrothermal stability of > 200°C; 3) good adherence to the 

joint areas; and, 4) be suitable for application with a paintbrush or spray gun. In addition, 

the material cost must be as low as possible. 

 

Wellhead Components 

One specific area of application in the geothermal plants is the production 

wellhead, consisting of a flow line and tee, valve, and casing head, that encounter a very 
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harsh environment with a flow velocity of ~ 3 m/sec of brine at 250°C. At present, a 

titanium alloy-based metal is commonly used in assembling the wellhead. Hence, if this 

could be replaced by an inexpensive carbon steel wellhead coated with a cost-effective, 

anti-corrosion and -fouling material, which withstands 300°C hydrothermal temperature, 

capital expenditure would fall considerably. 

 

Condensers 

With the increased demand for selling electricity in geothermal binary plants 

during the most valuable summer season, one very important issue is the impairment of 

the efficiency of the air-cooled condensers, thereby causing ~ 30 % reduction in the 

plant’s net monthly energy delivery compared with that in the winter [1]. A simple 

method to deal with this problem is to directly spray inexpensive relatively clean cooled 

geothermal brine over the surfaces of the aluminum-finned steel tubing condenser.  As 

expected, such sprayed condensers then attain outputted the same generating capacity for 

electricity as under wintertime conditions. Although this method is very attractive, a 

concern raised about spraying the brine is the likelihood of corroding the condenser’s 

components, aluminum fins and carbon steel tubes, as well as depositing geothermal 

brine-induced mineral scales on them. There is no doubt that such negative phenomena, 

corrosion and scale deposition, cause the impairment of the condenser’s maximum 

function and efficacy. To deal with this problem, the anti-corrosion and anti-fouling 

coatings are needed to ensure that the condensers have a long useful lifetime free from 

any corrosion and hard-to-remove scale deposits. 

 

Steam Separators 

In geothermal power plants, a high temperature steam mixed with brine 

containing minerals such as silicate and silica, is extracted under pressure as a resource of 

renewable energy from wells, 300 to 3,000 m deep. The extracted steam then flows into 

the steam separator for purification. The steam separator plays a pivotal role in 

minimizing the extent of erosion of the turbine blades brought about by the brine-laden 

steam containing hard mineral particles impinging on the blade’s surfaces. Thus, the 

metal components of separators must possess excellent resistance to corrosion and 
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fouling at hydrothermal temperatures up to 210°C because once the topographical 

features of the internal surfaces of separators are altered by a build up of scale, pitting 

corrosion, and enhanced asperity due to abrasive wear, their maximum efficacy in 

improving the quality of steam diminishes. Currently, despite it’s being very expensive, 

Inconnel 625 Ni-Cr alloy is extensively used to deal with such an alteration. If Inconnel 

625 can be replaced by an inexpensive carbon steel coated with cost-effective, high 

temperature-stable, anti-corrosion and anti-fouling materials, there is no doubt that the 

cost of separators would be considerably reduced. Hence, emphasis in this study was 

directed towards developing and evaluating candidate materials as the internal coatings 

for carbon steel separators. Like Inconnel 625, the coating to be developed must not only 

offer good corrosion- and scale-preventing performance at brine temperatures up to 

210°C, but also its surfaces must offer the following three important properties; 1) 

slipperiness, 2) water repellency, and 3) resistance to abrasive wear. 

 

2. Coatings for HX Tubes 

 The melt-crystallized polyaryl thermoplastic engineering polymers, such as 

polyphenylenesulfide (PPS), polyphenyletheretherketone (PEEK), and 

polyphenyletherketone (PEK), have come chemical features consisting of aromatic 

backbone chains coupled with oxygen, ketone, and/or sulfide. When these liner polymers 

are left in an oven at a temperature above their melting point of > 250°C, chain extension 

of the main phenyl groups caused by melting leads to molecular orientation, which is 

reflected in the crystallization of the polymers during cooling from the melting 

temperature to a lower temperature [2-4]. Such crystallization behavior of the polyaryls 

gives them specific desirable characteristics, such as high temperature stability, high 

radiation, chemical, and hydrothermal resistance, and good mechanical and dielectric 

properties. Thus, they have become of increasing interest for applications in coatings, as 

adhesives, and in composites.  

Among them, PPS was chosen as the high-temperature performance lining 

material for carbon steel HX tubes operating at brine temperatures up to 200°C because 

of its lower price and its larger production compared with those of other polyaryls [5]. 

However, this lining material was required to improve the following seven properties: (1) 
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adherence to underlying steel; (2) thermal conductivity in order to increase the thermal 

transfer efficiency of liner; (3) tensile strength and elongation; (4) corrosion-preventing 

performance;  (5) insusceptibility to hydrothermal oxidation to avoid the irremovable 

scale deposits; (6) resistance to abrasive wear; and, (7) self-repairing mechanisms to heal 

the cracks generated on the liner’s surface during its use in the power plants. 

 

2.1. Adherence to Underlying Steel 

 An ideal coating that will protect steel from corrosion is one that acts as a barrier 

against the attack of corrosive reactants, such as oxygen, water, electrolyte species (eg., 

H+, Na+, NH4
+, Cl-, SO4

2-, NO2
-) , and gases (eg., O3, SO2, NOx), in natural or artificial 

environments. Unfortunately, all polymeric coatings are permeable to these reactants in 

some different degrees. Thus, an important consideration is that when the reactants reach 

the steel interfaces beneath the coating layers, corrosion occurs at the interface between 

coating and steel. Once corrosion is initiated, the growth of corrosion products at the 

interfaces promotes wedging and blistering, which put tremendous stress on the 

interfacial side of coating film; consequently, there is localized delamination and 

buckling of the stressed coating layers [6].  In addition, if the coating films become 

blemished, the underlying steels react with the reactants that have penetrated through the 

defect. Such a reaction is commonly called the two-step corrosion reaction; a cathodic 

reaction, H2O + 1/2O2 + 2e- → 2OH-, which occurs under the coating adjacent to the 

defect, and an anodic reaction, Fe + 2e- → Fe2+, which occurs at a defect in the coating 

[7,8]. Considerable attention in this corrosion process has been given to the high pH 

environment created at the cathodic sites; namely, the alkali generated beneath the 

coating not only causes the formation of corrosion products, but also promotes the alkali-

caused degradation of polymeric coatings [9-11]. Subsequently, these phenomena 

occurring at the interfaces between the coatings and the steels lead to the cathodic 

delamination of the coatings from the steels. Thus, it is very important to tailor the 

surfaces of carbon steel prior to application of PPS coating. The surface tailoring not only 

acts to inhibit the onset of the cathodic reaction, and also improves the adherence of 

coating to underlying steel’s surface. 
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 For such tailoring technologies, zinc or zinc alloy and zinc phosphate (ZnPh) 

conversion primers are often introduced into the intermediate layers as a post-treatment 

of the steel surfaces [12]. Among them, the ZnPh primer was employed in this work 

because the open surface structure (Figure 1) of the interlocked insoluble ZnPh crystal 

primer layers contributed significantly to the formation of a strong mechanical 

interlocking reaction with the polymeric topcoat systems, thereby enhancing the 

magnitude of the adhesive force at the primer/topcoat interfaces [13].  

  

     

  
 

Figure 1.  Microphotograph of zinc phosphate conversion primer. 

 

On the basis of this information, emphasis was directed towards exploring the 

changes in chemistry and morphology occurring at the interfaces between PPS coating 

and phosphated steels after heating-cooling fatigue tests in an accelerated corrosive 

environment at 25 to 200°C.  All the information obtained was correlated directly with 

the results from cathodic delamination tests for PPS coatings.  

 

2.1.1. Experimental  
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The metallic substrate used was commercial ALSI 1008 carbon steel. A 

thermoplastic PPS powder with a particle size of < 60 µm was obtained from Ticona Co. 

It has a high melt flow at its melting point around 240°C. The 45 wt% PPS powder was 

mixed with 55 wt% isopropyl alcohol to make the slurry precursor. Before depositing the 

PPS slurry on the metal, the surfaces of the metals were covered with a ZnPh primer by 

immersing them for 10 min into a zinc phosphate solution consisting of a 3.8 wt% zinc 

orthophosphate, 7.5 wt% phosphoric acid, 1.0 wt% calcium nitrate, 2.0 wt% zinc nitrate, 

2.4 wt% ferrous sulfate, and 83.3 wt% tap water at 80°C. The PPS coating was deposited 

on the primed steel panels’ surfaces in the following way: First, the primed panels were 

dipped into the slurry, and withdrawn slowly; second, the slurry-covered panels were left 

in an atmospheric environment at 25°C for 20 hours to volatilize the alcohol, and 

concomitantly, to promote the conversion of the slurry into a sintering layer; and finally, 

the panels were heated in air at 300°C for 3 hours until the sintered layers reached their 

optimum melt-flow, and subsequently cooled to room temperature to make solid PPS 

film. The thickness of the coating films ranged from 0.0075 to 0.1 mm.  

In all the tasks on the coatings for HXs, the same metallic substrate and PPS 

powder were used, and also the ZnPh priming and PPS depositing process technologies 

described above were employed to prepare the coating specimens.   

The cyclic fatigue tests for the PPS/ZnPh primer/steel systems were accomplished 

as follows; the PPS covered steel specimens were directly soaked in a corrosive solution 

consisting of 1.0 wt%  H2SO4, 3.0 wt% NaCl, and 96.0 wt% water, and then the heating-

cooling cycle (one cycle = 12 hours at 200°C + 12 hours at 25°C) was repeated up to 90 

times.  

 

2.1.2. Results  

2.1.2.1. Bond Mechanisms at Interfaces Between PPS and ZnPh 

A very encouraging result was obtained from cyclic tests of the PPS-coated 

panels; namely, there was no sign of delamination and decomposition of PPS coating 

films after 90 cycles. This fact proved that the bond durability at the interfaces between 

PPS and ZnPh is outstanding in such a harsh environment. 
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To investigate the structure and chemistry of the interfacial bonds that confer such 

excellent durability, the cross-sectional areas and both the interfacial PPS and panel sides 

were explored by scanning electron microscopy (SEM) coupled with energy-dispersive 

X-ray spectrometry (EDX) and X-ray photoelectron spectroscopy (XPS).  Figure 2 shows 

the SEM images and EDX spectra for the cross-sectional areas of 30 (top) and 90 

(bottom) cycled PPS/ZnPh/steel joints. These SEM images clearly demonstrated that the 

cross-section regions have three different layers. The EDX spectrum (not shown) of top 

layer in the SEM micrographs indicated that only two elements, C and S, were present, 

reflecting the PPS coating. No traces of Cl and Na were detected in the PPS layers. From 

the EDX spectrum (not shown) containing a single element of Fe, the bottom layer in the 

micrograph corresponds to the underlying steel. The SEM image also highlighted that 

melted PPS penetrates into the open-surface microstructure and micro-size fissures of 

ZnPh layer. Such filling of the spaces in the ZnPh primer layers by PPS appears to 

increase the extent of mechanical bonding between PPS and primer layers. Attention was 

focused on the EDX spectra at the location “1” in the primer layer, and “2” in the critical 

boundary region between the primer and steel. Although SO2 gases are emitted from 

oxidized PPS at high temperatures [14], a surprising fact here was that the S species from 

PPS was present throughout the primer layers. The detection of S in the primer/steel 

interfacial areas suggested that S invaded deeply into the primer layers causing the 

formation of S-related Fe compounds by reacting with the underlying steel. Considerable 

attention next was paid to the striking change in the image of the primer layers for the 90-

cycle panels. A noteworthy difference of from that of the 30-cycles was the development 

of numerous small cracks. Such a damaged and porous state of the primer layer was 

implicated by the increased intensity of S element in the EDX spectrum at a location “3”, 

suggesting that the primer layers react with the S species from PPS.  

To further substantiate the results from this cross-sectional examination, the 

chemical composition and development of the microstructure of the failure surfaces on 

the panel side removed physically from the PPS coating were studied by SEM-EDX. The 

results from 30-cycled PPS/primer/panel system is given in Figure 3. No complete  
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Figure 2. SEM-EDX examinations for the cross-sectional regions of the 30-cycled 
(top) and 90-cycled (bottom) PPS/ZnPh/steel joints.  
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Figure 3.  SEM-EDX data of the substrate interface side removed from the PPS 
coating for the 30-cycled panels. 
 

covering of ZnPh primer remained on the panel surfaces; therefore, most of primer layers 

must have been transferred to the PPS side when the loss of adhesion occurred. The EDX 

location “1” had highly intense Fe signal, moderately intense signals from Zn and P, 

while O, Si, and S were minor components. The detection of Zn and P suggests that some 

remnants of primer remained on the failed panel side. Location “2” showed a different 

morphology from that of location “1”: the EDX pattern on this structure with its sharp 

edge showed two intense signals of Si and O, revealing the formation of Si oxides as the 

contaminants of the steel surfaces. As a result, the loss of adhesion takes place in a 

boundary region between the primer and steel, underscoring that ZnPh primer adheres 

more strongly to the PPS coatings than that to steel. 
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Next, focus centered on identifying the reaction products at the interfaces between 

the PPS and ZnPh primer. This information was obtained by inspecting the XPS Zn2p3/2 

region on the failure surface of primer side. Since the interaction of PPS with the ZnPh 

may generate the S-related Zn compounds as the reaction products, the two compounds, 

zinc sulfide (ZnS) and zinc sulfate (ZnSO4.H2O), were used as reference samples to 

identify the XPS bonding energy (BE) of the precise peak position in the Zn2p3/2 region.  

The peak positions for these reference samples were 1022.7 eV for ZnS and 1024.0 eV 

for ZnSO4.H2O. Figure 4 shows the changes in spectral features in the Zn2p3/2 region as a 

function of cycle number. The spectrum of the control (a) reveals only a single symmetric 

peak at 1024.6 eV, attributed to Zn originating from the ZnPh. A noticeable change in the 

shape of the Zn2p3/2 signal from the 30-cycled panel (b) was the emergence of a new 

signal at 1022.7 eV. According to the reference peaks, this new peak conceivably could 

be the Zn in the ZnS reaction product derived from the interaction between the PPS and 

ZnPh; the intensity of this peak grows with more cycles. After 90 cycles (d), the peak at 

1022.7 eV becomes a dominant component, while the ZnPh-related peak at 1024.6 eV 

considerably decays. Relating this finding to the SEM exploration early, the development 

of numerous microfissures in the ZnPh layer was due to the degradation of ZnPh layers 

caused by the in-situ conversion of ZnPh into the ZnS as reaction product.  

 

2.1.2.2. Cathodic Delamiantion 

An important question was the ability of ZnS to reduce the rate of cathodic 

delamination of the coating films from the ZnPh primer layers. Because the ZnS 

compound is substantially insoluble in the water as well as alkaline solution, it is possible 

to assume that this reaction product would suppress the delamination of polymer film 

caused by alkali-catalyzed dissolution of ZnPh layers occurring at the cathodic reaction 

side, H2O + 1/2O2 + 2e- → 2OH-. The cathodic delamination tests for the PPS-coated 

ZnPh panels after cycling were conducted in an air-covered 1.0 M NaCl solution using an  
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Figure 4.  XPS Zn2p3/2 region for the interfacial steel side of (a) 0-, (b) 30-, (c) 60-, 
and (d) 90-cycled PPS/ZnPh/steel joints. 
 

applied potential of –1.5 V vs SCE for 8 days (Figure 5). A defect was made using a 1 

mm diameter drill-bit. After exposure, the panels were removed from the cell and 

allowed to dry. The coating was removed by cutting, revealing a light gray, delaminated 

region adjacent to the defect. The delaminated areas of PPS films from the primer were 

measured for 0-, 20-, 30-, 60-, and 90-cycled panels after eight days of cathodic 

delamination tests (Figure 6). As is seen, the rate of delamination was progressively 

reduced as a function of cyclic number. The delamination value of ~ 1.8 mm2 for the 90-

cycled panels was ~ 20 times lower than that for the control panels. Such a dramatic 

reduction was due mainly to the rate of in-situ conversion of the ZnPh layers into ZnS 

reaction products in the PPS-ZnPh interfacial regions; that is, a high conversion rate of 

ZnPh as the cycles increased led to the formation of large amount of the ZnS which has 

no effect on the cathodic reaction-caused decomposition of the interfacial intermediate  
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Figure 5.  Schematic diagram of the cathodic delamination test. 

 

layers. Because the cathodic corrosion reaction, which occurs under the coating adjacent 

to the defect creates a high pH environment at the interfacial boundary, the magnitude of 

susceptibility of the interfacial intermediate layers to alkali-induced decomposition plays 

a key role in resisting the cathodic failure. Thus, it is reasonable to assume that the 

intermediate ZnS formation, which is insoluble in alkali solution at pH ~ 13, has a high 

resistance to cathodic reaction-created alkaline environments, thereby resulting in a 

minimum rate of delamination. This concept directly reflects why the rate of 

delamination for the control is higher than that of panels after the cycles because of the 

presence of a large amount of non-reacted ZnPh layers, which are essentially vulnerable 

to the alkali-catalyzed dissolution.  
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Figure 6. Rate of delamination of PPS coating films from the underlying primed 
steel after cathodic tests for eight days for the PPS/ZnPh/steel joints as a function of 
heating-cooling cycles.   
 
 

2.2. Thermal Conductivity and Mechanical Properties  

In previous work we demonstrated that incorporating carbon fibers,  ~ 7.5 µm in 

diameter by ~ 3 mm long, into PPS matrix improved the properties of PPS-based coating 

materials. Although the maximum amount of these 3 mm long fibers that could be added 

to the thermoplastic was only around 1.5 wt%, the thermal conductivity of the PPS was 

increased by 60 %, the tensile strength improved by 2.4 times, and the elongation 

enhanced 1.5 fold compared with that of the unmodified PPS coating [15]. One major 

reason for these improvements was the outstanding adherence of the carbon fibers’ 

surfaces to the PPS matrix, reflecting the cohesive failure mode that occurred in the PPS 

layer. In addition, the PPS itself possessed outstanding hydrothermal stability at 

temperatures up to 200°C and great adherence to ZnPh primer deposited over the 

underlying steel surfaces [16]. Thus, this carbon fiber-reinforced PPS composite coating 

had a high potential for use as a thermally conductive internal liner of carbon steel heat 

exchanger tubes in geothermal binary-cycle power plants operating at temperatures up to 

200°C. 

 Recently, advanced milling technology has made it possible to produce an 

extremely short carbon microfiber while retaining all of these mechanical properties and 
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the filament’s shape. The milled fiber is 100-200 µm long with 7.5 µm diameter [17]. 

One attraction of using such a short fiber is that a substantial amount of it can be 

incorporated into the PPS. Thus, an emphasis in the current study was directed toward 

assessing the effectiveness of this milled carbon microfiber in enhancing further the 

thermal conductivity and the mechanical properties of the carbon fiber-reinforced PPS 

composite coatings.  

 

2.2.1. Experimental  

 Asbury Graphite Mills, Inc. supplied the milled carbon microfibers (AGM-94). 

These carbon fibers derived from polyacrylonitrile (PAN) precursor were 7.5 µm in 

diameter and 100-200 µm long. The surfaces of the fibers do not have any sizing 

materials nor were they treated physically or chemically. The fibers at 1, 2, 3, 4, and 5 % 

by weight of the total mass of PPS were added to the PPS slurry. Using the same coating 

process technology as that described in the early experimental work on the adherence of 

underlying steel, this process was repeated three times to assemble a coating film with a 

thickness ranging from 100 to 130 µm. 

 

2.2.2. Results  

Figure 7 shows a SEM microphotograph of the “as-received” milled fibers. The 

length of the fibers ranged from100 to 200 µm. The SEM close examination (Figure 7, 

right) of the fibers’ surfaces revealed the presence of many gutters (less than 0.5 µm 

wide) oriented along the fibers’ axes. The EDX spectrum accompanying this SEM image 

displayed only one element, carbon, attributed to the fiber. Since the penetration of X-

rays from EDX through the solid surface is up to 1.5 µm depth, it is possible to assume 

that the subsurface layer (1.5 µm thick) of the fibers was mostly occupied by carbon.  
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Figure 7. SEM microphotographs and EDX spectrum of “as-received” milled micro-

fibers. 

 

Also, we inspected by XPS the chemical states occupying the fibers’ outermost 

surface sites. The feature of XPS C1s core-level excitation curve (not shown) closely 

resembled that taken from  ~ 3 mm long carbon fibers’ surfaces used in our previous 

study [16]. Namely, the curve encompassed the C in the graphite as the principal 

component at 284.5 eV and two C moieties in the C=O and COOH groups as the minor 

components at 288.0 and 289.2 eV, respectively. This information strongly suggested that 

the superficial layer of fibers has numerous graphitic basal planes, which act as heat-

transferring components. 

Table 1 lists the changes in thermal conductivity and mechanical properties such 

as tensile strength and elongation of the PPS composite coatings as a function of fiber 

content. As expected, the thermal transfer efficiency of the PPS was enhanced with 

increasing fiber content. In fact, the thermal conductivity of the non-reinforced PPS rose 
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~ 2.6fold to 1.03 W/mk by incorporating 5 wt% fiber. The fibers contributed significantly 

to an improvement in the tensile strength of the PPS film. With only 1 wt% fiber, its 

tensile strength was ~ 3.2 times higher than that of non-reinforced films. Further addition 

of fibers, to 3 wt%, resulted in the development of the highest tensile strength, 

tantamount to an improvement of ~ 5.2 times over that of the non-reinforced ones; 

beyond that content, strength seemed to decline. Correspondingly, the value of 38.2 MPa 

 

Table 1. Thermal conductivity and mechanical properties of carbon microfiber-
reinforced PPS composite films 
 

Fiber, wt% Thermal 
conductivity, w/mk 

Tensile strength, 
MPa 

Elongation, % 

0 0.40 7.9 2.2 
1 0.64 25.0 3.0 
2 0.75 34.5 4.4 
3 0.89 40.8 5.8 
4 0.95 39.3 5.7 
5 1.03 38.2 5.2 

 
 

for 5 wt% fiber-reinforced PPS film was ~ 6 % lower than that of the film with 3 wt% 

fiber. Since the maximum efficiency of the fiber reinforcement is directly related to the 

development of high interfacial shear strength at the interface between the fibers and the 

PPS matrix, the entire surfaces of each one of the multidirectional fibers in the matrix 

should be completely covered with PPS. Yet, adequate adherence of the fibers’ surfaces 

to PPS is required to allow a crack to propagate through the matrix without significant 

pulling of the fibers. Based upon this concept, the incorporation of an excessive amount 

of fibers into the matrix may cause incomplete coverage of fibers’ surfaces with PPS, 

thereby creating a weak interfacial boundary at the fiber/PPS joint. The formation of this 

weak boundary might result in the development of a low interfacial shear strength. If this 

interpretation is valid, the decrease in shear bond strength caused by deficient coverage of 

the fiber’s surfaces with PPS may be the reason why the incorporation of  >3 wt% fibers 

generated a retrogression of tensile strength. A similar trend was observed in the 

measurements of elongation, which were taken during tensile failure; namely, the 

elongation of the PPS films increased with an increasing fiber content up to 3 wt%; 
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beyond this amount, its value descended. The inclusion of fibers in the PPS matrix served 

significantly in enhancing the elastcity of the composite film. In fact, 3 wt% fiber 

reinforcement allowed as much as a 5.8 % elongation, corresponding to ~ 2.6 times 

improvement over the non-reinforced PPS films.  

Focus now shifted to exploring the microstructure developed in the coating layer 

and at interfaces between the fibers or zinc phosphate primer and the PPS matrix after 

exposure for up to 14 days at 200°C brine. The results would provide us with important 

information on whether the fiber-reinforced PPS composite coating layer still retains its 

ability to protect the underlying steel against corrosion. Figure 8 shows the SEM and 

EDX analysis for the cross-sectional profile of the 3 wt% fiber-reinforced PPS composite 

coating adhering to the zinc phosphate-primed steel after 14 days exposure. The SEM 

image shows no signals that reflect the failure of the composite coating as a corrosion 

protective barrier; there is no delamination of the composite layer from the primed steel 

and no blisters were generated at the interfacial boundary regions between the composite 

and primed steel. To assess how well the surfaces of fiber adhere to the PPS matrix, the 

square area in the composite layer was magnified up to ten times. The enlarged image 

revealed that the excellent adhesive bonding at interfaces between the fiber and matrix 

remained unchanged.  

 

2.3. Corrosion-Preventing Performance 

All the information described in 2.2. Thermal Conductivity and Mechanical 

Properties was correlated directly with the ability of fiber-reinforced PPS composite 

coatings to protect the underlying carbon steel against corrosion. 
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Figure 8.  SEM-EDX result for the cross-sectional profile of 3 wt% fiber-reinforced 
PPS composite coating deposited on the ZnPh-primed steel after 14 days exposure in 
200°C CO2-laden brine.   
 

 

2.3.1. Experimental 

 The coated test panels (63 mm x 63 mm) were exposed for up to 14 days in an 

autoclave containing 20,000 ppm CO2-13 wt% NaCl solution at 200°C. AC 

electrochemical impedance spectroscopy (EIS) was used to evaluate the ability of the 

exposed coating films to protect the steel from corrosion. The specimens were mounted 

in a holder, and then inserted into an electrochemical cell. Computer programs were 

prepared to calculate theoretical impedance spectra and to analyze the experimental data. 

Specimens with a surface area of 1300 mm2 were exposed to an aerated 0.5 M sodium 

chloride electrolyte at 25°C, and single-sine technology with an input AC voltage of 10 

mV (rms) was employed over a frequency range of 10 KHz to 10-2 Hz. To estimate the 
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protective performance of the coatings, the pore resistance, Rp, (ohm-cm2) was 

determined from the plateau in Bode-plot scans that occurred in low frequency regions. 

 

2.3.2. Results  

Here, focus centered on the magnitude of the ionic conductivity generated by the 

electrolytes passing through the composite coating layers. EIS tests were conducted on 

the carbon steel panels coated with 0, 1, 3, 4, and 5 wt% fiber-reinforced PPS composites, 

before and after exposure for up to 14 days in the 20,000 ppm CO2-laden brine solution at 

200°C. For the EIS test, particular attention in the overall impedance curve was paid to 

the impedance value, called the pore resistance, Rp, which can be determined from the 

plateau in the Bode-plot features (the absolute value of impedance |Z|, ohm-cm2 versus 

frequency, Hz) occurring at sufficiently low frequencies [18]. A high value of Rp 

signifies a low degree of penetration of electrolyte into the coating layer, corresponding 

to an impervious film. Figure 9 plots the pore resistance, Rp, against the exposure time at 

200°C for fiber-reinforced and non-reinforced PPS composite coatings. Before exposure, 

the Rp value depended on the fiber content in the composites. The incorporation of 1 and 

3 wt% fibers led to the highest Rp value of 7 x 1011 ohm-cm2, corresponding to an 

increase of ~ 17 % over that of the non-reinforced ones. The inclusion of an appropriate 

amount of fibers seems to densify the composite structure, reflecting a lower rate of ion 

permeability. However, the composites with a fiber content of > 3 wt% showed a decline 

in Rp. With 5 wt% fibers, the Rp value fell by one order of magnitude to 8.0 x 109 ohm-

cm2, compared with that of the 3 wt% fiber composites. Although we have no 

experimental evidence, one possible reason may be the air-trapping behavior of the fibers 

during mixing with the PPS slurry. Trapped air in the slurry can cause the formation of a 

porous microstructure in the composite coatings. Over14 days of exposure, the Rp values 

of all the coatings tended to decline, meaning that extended exposures caused the uptake 

of more electrolytes by the coating layers.  
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Figure 9 . Changes in Rp for steel panles coated with fiber-reinforced PPS composite 
and non-reinforced composite as a function of exposure time at 200°C.
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2.4.  Anti-hydrothermal Oxidation 

A short-term exposure test in 200°C brine suggested that although PPS coatings 

offered improved protection of carbon steel against corrosion, compared with the other 

polymeric coatings, such as epoxy, polyurethane, polyimide, and polyamide, its surfaces 

underwent a hydrothermal oxidation. Such hydrothermal oxidation involved two critical 

problems: One was the enhanced rate of permeation of the corrosive electrolytes through 

the PPS layer during prolonged exposure; and the other issue concerned the changes in 

topographical surface configuration, implying that the smooth surface texture of the 

coating was converted into a rough one. A major concern about the latter issue is that a 

rough surface texture promotes the deposition of scales resulting from the migration of 

mineral particles from the geothermal brine onto its surfaces. These results drove us to 

look for way of making PPS more resistant to oxidation by hot brine. One strategy is to 
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modify PPS with other thermoplastics, which have outstanding resistance to oxidation, 

and also provide a surface slip. For this purpose, polytetrafluoroethylene (PTFE) 

thermoplastic was employed as the additive and blending material for PPS because of its 

superior thermal and chemical stability, as well as lower surface energy [19].  

Emphasis in this present study was directed toward investigating the effectiveness 

of PTFE additive in alleviating the oxidation of PPS film’s surfaces during exposure to a 

low pH, hypersaline brine at 200ΕC. The research, therefore, centered on two objectives: 

One is to gain information on the thermal properties of the PTFE-blended PPS coatings, 

such as its melting and crystallization temperatures; and, the changes in surface chemical 

composition before and after exposure in the simulated geothermal brine environment. 

The other refers to the assessment of the sensitivity of PTFE-blended PPS coating 

surfaces to silica scaling after exposure them to a 200°C sodium metasilicate-dissolved 

brine of which the silica content was ~ 11 times higher than that in geothermal brine.   

 

2.4.1. Experimental 

PTFE powder (commercial grade, SST-3H), supplied by Shamrock Technologies 

Inc., was used as a slip-enhancing and oxidation resistant additive to PPS. PTFE-blended 

PPS powders, with PPS/PTFE ratios of 90/10, 80/20, 60/40, and 40/60 by weight, were 

prepared in a rotary blender. For comparison, unblended PPS powder was used. The 

silica-rich brine consisted of 2.0 wt% sodium metasilicate, Na2SiO3.5H2O, 14.0 wt% 

NaCl, and 84 wt% water. The coated and non-coated steel panels (13 mm x 77 mm) were 

immersed for up to 7 days in this brine at 200°C.   

 

2.4.2. Results  

2.4.2.1. Thermodynamic Properties 

Considering the repeated melting-crystallization behaviors of PTFE-blended PPS 

polymers, the cyclic differential scanning calorimetry (DSC) curves of blended polymers 

were investigated at a heating-cooling rate of ± 10ΕC min-1 and at temperatures ranging 

from 25Ε to 450ΕC in air. Samples were prepared as follows: Open aluminum DSC pans 

were filled with ~ 5 mg slurries containing three components, the PPS, PTFE, and 

isopropyl alcohol, and then placed in an oven at 450ΕC in air for 3 hours. The melted 
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samples were subsequently cooled to room temperature at the rate of -10ΕC min-1; the 

pans were then sealed with aluminum covers. The sealed samples were heated again to 

450ΕC at the rate of + 10ΕC min-1 and immediately cooled to 90ΕC at the rate of - 10ΕC 

min-1. Cooling from 450ΕC to low temperature was accomplished using a DuPont 

mechanical cooling accessory equipped with a DSC. The unblended PPS polymer was 

also used as control sample. 

 The resulting cyclic DSC curves for the PPS/PTFE ratios of 100/0, 80/20, and 

60/40 are illustrated in Figure 10. The typical thermodynamic DSC scan (a) for the 

unblended PPS, denoted as a 100/0 ratio, had endothermic peak at 260ΕC, reflecting its 

melting point, Tm1. On cooling the melted polymer, an exothermic peak, Tc, was 

recorded around 170°C, which represents the heat evolved during the crystallization of 

PPS.  By comparison, the curve (b) of the blended PPS with 80/20 ratio disclosed two 

endothermic peaks at 260ΕC and 320ΕC. Since the first peak is associated with the 

melting point of PPS, it is possible to assume that the second one, Tm2, represents the 

melting point of PTFE. Correspondingly, the appearance of two exothermic peaks at 

170Ε and 310ΕC is reasonably thought to be due to the crystallization point, Tc1 and 

Tc2, of PPS and PTFE, respectively. When the PPS-to-PTFE ratio was reduced to 1.5, 

the cyclic curve (c) revealed a conspicuous decrease in intensity of the PPS-related Tm1 

and  

Tc1 peaks, while a marked growth of Tm2 and Tc2 peaks for PTFE can be seen. This 

information provides no clear evidence for the formation of reaction products yielded by 

interactions between the PPS and PTFE in the melting-flowing processes. In other words, 

if PPS chemically reacts with PTFE, a new peak related to the reaction products should 

have appeared at a different temperature from these ones. 
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Figure 10.  Cyclic DSC curves for polymers with PPS/PTFE ratios of (a) 100/0, (b) 

80/20, and (c) 64/40. 

 

 

2.4.2.2. Surface Chemistry 

 Focus next centered on surveying the changes in chemical composition and state 

for the coating surfaces after exposure for 7 days in autoclave containing a low pH, 

hypersaline brine at 200ΕC. The fractions of the respective chemical elements were 

estimated by comparing the XPS S2p, Cl2p, C1s, Na1s, and F1s peak areas, which can be 

obtained from the differential cross sections for core level excitation. All XPS 

measurements were made at an electron take-off angle of 40Ε, which corresponds to an 

electron-penetration depth of 5.0 nm; thus, the XPS data provide the atomic fractions 

present in the surface layers with a thickness of 5.0 nm.  Table 2 gives the XPS atomic 

fractions of the coating surfaces with the various PPS/PTFE ratios before and after 

exposure. Before exposure, the chemical composition of blended polymer surfaces with a 

90/10 ratio was quite different from that of the unblended ones (100/0 ratio); the surface 
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was occupied by two major atoms, the F and C, while the S and O atoms are present as 

the minor elements. Since the source of F arises from the PTFE, it is possible to assume 

that the outermost surface site of the coatings was made up almost exclusively by the 

PTFE polymer. This finding seems to verify that the separation of PTFE from PPS might 

take place in the blended polymer system, and consequently the surface layer has PTFE 

as its major component and PPS as its minor one. Incorporating more PTFE into the PPS 

resulted in the elimination of the S atom in the surface layer. In fact, no S atom was 

detected from the 80/20 ratio coating surfaces. Hence, almost the entire surface is 

assembled by PTFE because of the presence of F and C as the dominant atoms. As 

expected, the 60/40 and 40/60 ratio coatings had the surface chemical composite similar 

to that of the 80/20 ratio, excepting the concentration of oxygen present. There is no 

detection of oxygen in the 40/60 ration coating, seemingly suggesting that the top surface 

layer was completely constructed by the PTFE. 

 When these coating surfaces were exposed, a considerable attention was paid to 

the changes in chemical composition caused by the hydrothermal oxidation of coatings. 

As is seen, such changes for unblended PPS (100/0 ratio), compared with that before 

exposure, were as follows; 1) the incorporation of considerable amount of oxygen into 

the surface layers, 2) the marked decrease in the amount of both the S and C atoms 

arising from PPS, and 3) the migration of some Na and Clatoms from the brine solution 

to the surfaces. The most critical issue to be considered was the result (1); namely, the 

PPS surfaces can undergo oxidation during exposure to a hot brine solution at 200ΕC. 

The amount of oxygen after exposure for 7 days raised as much as five times to 26.4 %. 

By comparison with this, blending PTFE considerably reduced the degree of PPS’s 

oxidation. The amount of oxygen for the 90/10 ratio coating was only a 9.4 %, 

corresponding to three times less than that of the 100/0 ratio. The amount tends to 

decrease with the reduction of PPS/PTFE ratio. Such a trend exemplifies that the 

incorporation of oxygen into the surface layer depends mainly on the proportion of PTFE 

to PPS; the coating’s surfaces with a 40/60 ratio indicated the presence of very low 

oxygen content of 0.4 %. As a result, blending the PTFE with PPS led to transforming the 

oxidizable PPS surfaces into antioxidation ones. 
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Table 2. Chemical Composition of Coating Surfaces with PPS/PTFE Ratios of 100/0, 
90/10,     80/20, 60/40, and 40/60 Before and After Exposure for 7 Days 
 
                  
PPS/PTFE      Exposure time,                              Atomic fraction, % 
   ratio                    Days             S            Cl            C            O            Na           F
100/0                         0              13.0         0.0       81.6         5.4           0.0           0.0 
 90/10                        0                2.5         0.0       45.7         3.0           0.0         48.8 
 80/20                        0                0.0         0.0       42.3         2.1           0.0         55.6 
 60/40                        0                0.0         0.0       43.3         0.2           0.0         56.5 
 40/60                        0                0.0         0.0       42.9         0.0           0.0         57.1 
100/0                         7                5.3         1.2       66.1       26.4           1.0           0.0 
 90/10                        7                0.8         0.0       42.9         9.4           0.0         46.9 
 80/20                        7                0.0         0.0       41.6         6.5           0.0         51.9 
 60/40                        7                0.0         0.0       41.9         1.2           0.0         56.9 
 40/60                        7                0.0         0.0       41.1         0.4           0.0         58.5 

 

 

2.4.2.3. Inertness to Silica Scale Deposition  

Figure 11 shows the SEM microphotographs coupled with the EDX for the non-

coated bare steel surfaces after 1, 3, and 7 days immersion in 200°C sodium metasilicate-

containing brine. As seen in the top photograph, the surfaces of steel were covered with a 

certain amount of silica after only a day of immersion, clearly demonstrating that carbon 

steel is very sensitive to the deposition of silica. The EDX spectrum accompanying this 

SEM image had three elements, O, Si, and Fe. The first two elements are attributable to 

silica, and the last element arises from the underlying steel. Extending the immersion 

time to 3 days (middle photograph) resulted in the complete coverage of steel’s surfaces 

by silica as evident from the elimination of the Fe signal in the EDX spectrum. Since 

EDX provides information on chemical elements existing in the subsurface layer with an  

~ 1.5 µm thick, this silica layer covering the steel has the thickness of at least 1.5 µm. 

After 7 days immersion, the SEM image revealed the formation of a well-crystallized 

silica layer. In addition, the silica scales strongly adhered to the steel surfaces; in fact,  
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Figure 11.  SEM microphotographs coupled with EDX spectra for the surface of 
carbon steel (top) after 1 day, (middle) 3 days, and (bottom) 7 days immersion 
in silica-rich brine at 200°C. 
 

although the steel panels were physically bent at an angle of about 90 degrees, there was 

hardly any flaking off of scales from the steel’s surfaces. As described in our previous 

paper [4], the principal chemical compound occupying the outermost surface site of the 

carbon steel was ferric oxide (Fe2O3). Hence, the high sensitivity of steel’s surfaces to the 

silica scaling possible reflects the strong affinity of ferric oxide for silica. However, there 

is no experimental evidence on how ferric oxide reacts with silica and what kind of the 

reaction product is formed at the interfaces between them. 
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In contrast, coating the steel’s surfaces with unblended bulk PPS or PTFE-

blended PPS dramatically restrained the deposition of silica. Although we observed some 

silica contaminants on the coating surfaces after 7 days immersion, they were readily 

removed by rinsing the panels with water. Figure 12 shows the SEM image and the EDX 

spectrum for the rinsed surfaces of the 7-day-immersed bulk PPS coating. A smooth 

surface texture is seen, representing the absence of micro-sized silica scales. The EDX 

spectrum associated with this image included three weak peaks of the C, O and Si 

elements, together with a prominent signal of S element. Since the C and S elements are 

attributed to PPS, the other two elements seem to be associated with the SiO2, suggesting 

that a certain amount of silica still remained over the PPS coating surfaces after rinsing. 

 

    

 

 
 

Figure 12.  SEM-EDX analyses of PPS coating surfaces after 7 days immersion. 

 

Figure 13 shows the SEM image and EDX spectrum of the surfaces of PTFE-blended 

PPS coating after 7 days immersion. By comparison with that of the bulk PPS, this image 

expresses a rough surface texture. However, such a rough microstructure is an inherent 

characteristic of blended PPS surfaces, and is not due to the attack of the hot brine. The 
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EDX spectrum for this subsurface layer with the thickness of ~ 1.5 µm had a prominent S 

as the major element and the weak peaks of C and F as the minor ones, while the signal 

of O element is barely detectable. There is no signal of Si element, implying that the 

surfaces of PTFE-blended PPS coating are inert to the deposition of silica.  

 

   

 

 
 

Figure 13. SEM-EDX analysis for PTFE-blended PPS coating surfaces after 7 days 

immersion. 

 

2.5. Resistance to Abrasive Wear 

Our field tests at geothermal power plants demonstrate that no matter how and 

with what the internal surfaces of carbon steel heat exchanger tubes were coated with 

anti-corrosion and anti-fouling materials, fouling by geothermal brine-induced scale 

deposits still occurred. Among the technologies used for removing scales, hydroblasting 

at pressures ranging from 41.3 to 82.7 MPa is commonly employed to clean heat 

exchanger tubes before their reuse. The major mineralogical constituents of the scales are 

silicate compounds and silica, raising concerns that when such scale-deposited surfaces 

are repeatedly cleaned by hydroblasting, the coating’s surfaces undergo severe wear and 

tear. Such damage is due to the bombardment of the surfaces by dislodged hard mineral 
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particles under velocity, causing topographical changes from smooth surfaces to rough 

ones. In the worst case, the liner film was completely worn out, promoting the rate of 

corrosion of the underlying steel. In addition, the asperity of the coating’s surfaces 

reinforced their strong physical affinity for the scales, thereby making it difficult to 

dislodge them. Consequently, an adequate resistance to blasting wear is required to 

extend the coating’s useful lifetime as a corrosion-preventing barrier. 

  In trying to improve the resistance of PPS coating to abrasive wear, the crystalline 

boehmite engineering ceramic is very attractive for use as the wear-resistant filler 

because of its great hardness and strength. Recently, advanced nanoscale technology has 

made it possible to produce a nano-sized boehmite crystal. An attraction in using such 

extremely fine boehmite filler is that the filled PPS coating’s surfaces would offer a 

sufficient resistance to wear. 

 

2.5.1. Experimental 

The nanoscale boehmite filler (Catapal® 200 Alumina) was supplied by Sasol 

North American Inc; Table 3 lists some of its chemical and physical properties. Figure 14 

shows the secondary electron image of clustered nanosize boehmite filler taken by SEM, 

and its chemical elements detected from EDX. The boehmite filler at 2, 5, 10, and 15% 

by weight of the total amount of PPS was added to the PPS slurry, and the mix was 

poured into a 110 ml shear blender. Mechanical blending for 2 min converted the 

agglomerated boehmite powder particles of ~ 35 µm into a primary filler with particles of 

100-500 nm; also, this uniformly dispersed the primary fillers in the slurry. 

 

2.5.2. Results  

The blasting wear resistance of the surfaces of unexposed coatings was assessed 

using a silica (SiO2) grit-blasting hand-held gun with a 2 mm-diameter orifice nozzle. 

The SiO2 grits (particle size of 15 µm) were conveyed by a compressed air pressure of 

0.62 MPa from a backpack hopper to the gun. From a standard distance of ~ 20 mm, the 

grits were projected for 2 min onto the coating surfaces at an angle of ~ 45°. The rate of 

wear was estimated as the loss in weight of the coatings (mg/min).   
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Figure 15 shows the rate of blasting wear for the 2, 5, 10, and 15wt% boehmite-

filled and unfilled PPS coatings. The data clearly showed that the rate of wear of the  

 

Table 3. Typical chemical and physical properties of “as-received” boehmite filler. 
 

Al2O3, % 80 
Na2O. % 0.002 
Bulk density, g/l 500-700 
Surface area (BET), m2/g 100 
Crystalline size, nm ~ 30 
Agglomerated particle size, µm ~ 35 

 
 

 

 

 

Figure 14. SEM image and EDX spectrum of “as-received” nano-scale boehmite 

filler’s clusters (⎯: 500 nm). 

 

unfilled PPS coating, at 1.04 mg/min, strikingly decreases with an increasing content of 

boehmite. When 5wt% boehmite was incorporated into the PPS, the rate markedly 

dropped to 0.35 mg/min, corresponding to ~ three-fold reduction compared with that of 

unfilled coatings. Further, a reduction to 0.2 mg/min was obtained by adding 10wt%; 
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beyond this content, the effect of more filler was reduced. Nevertheless, nanoscale 

boehmite fillers significantly enhanced the resistance of PPS coating’s surfaces to 

blasting wear.   

 

    

 

 

Figure 15. Changes in the rate of blasting wear for PPS coating's surface 
as a function of nano-scale boehmite filler content. 
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2.6. Self-repairing Property 

As described above, the PPS composite material had high potential for use as an 

internal thermal conductive liner for heat exchanger tubes. However, of particular 

concern were the micro- and nano-scopic scissions generated in the superficial layer of 

the composite during operation of the heat exchanger tubes. The development of such 

cracks as initiators of the propagation of serious damage ultimately diminishes the 

lining’s ability to protect the underlying steel against corrosion, thereby reducing their 
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maximum service lifetime as corrosion-preventing barriers. At present, non-destructive 

techniques such as ultrasonic and radiography can detect failed coating with macroscopic 

cracks. But, micro and nano-scale damages are too small to be revealed by these 

technologies. In addition, repairing seriously damaged tubes is a major drawback, 

because it is very expensive and time consuming. Therefore, the ideal composite liner 

must have the ability to self-repair the cracks generated in the superficial layer during the 

service life of tubes in a hydrothermal environment.  

Hydraulic inorganic grains, such as calcium silicate (CaO-SiO2 phase system) and 

calcium aluminate (CaO-Al2O3 phase system) are very attractive for use as self-repairing 

fillers because their crystals grow after their grain’s surfaces came in contact with a hot 

water. The expanding crystals then may densely fill the open cracks, thereby 

reconstituting the damaged coatings. As is well documented, in autoclaved CaO-SiO2-

H2O systems, the crystal’s features and behavior depended on the CaO/SiO2 mole ratios; 

crystals in the ratios of 1.5 to 2.0, and of 0.8 to 1.3, respectively, showed fiber-like and 

needle-like microstructures [20,21]. The size of the crystals ranged from 5 to 20 µm. On 

the other hands, hydrated CaO-Al2O3-H2O systems were characterized by the rapid 

growth of flat blade- or plate-like crystals of 10 to 20 µm [22,23]. Since a rapid growth of 

crystals is of important concern to this healing technology, the CaO-Al2O3 system filler 

was selected in this study.    

 Based upon the information described above, the emphasis of the present study 

was on assessing the potential of the CaO-Al2O3 system in healing and repairing the 

cracks generated in a superficial layer of PPS coating. The factors to be assessed included 

the alterations in microstructure at the coating’s surfaces after healing, the phase 

composition of crystals growing in the spaces of the cracks, the ability of the healed 

material to inhibit corrosion of the underlying steel substrates. All the findings were 

integrated to elucidate the mechanisms of self-healing and –repair in exposed PPS 

coatings containing hydraulic inorganic fillers. 

 

2.6.1. Experimental 

Calcium aluminate (CA, Secar 71) grains, < 40 µm in size, used as the CaO-Al2O3 

system filler material, were obtained from the Lafarge Aluminate Corp. The chemical 
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constituents of Secar 71 consisted of 70.2 % Al2O3, 28.6 % CaO, 0.9 % SiO2, and 0.3 % 

Fe2O3. The X-ray powder diffraction (XRD) data showed that the crystalline components 

of CA consist of two major phases, monocalcium aluminate (CaO.Al2O3) and calcium 

bialuminate (CaO.2Al2O3), and one minor phase, gehlenite (2CaO. Al2O3.SiO2). CA 

fillers at 2, 5, and 10 % by weight of the total amount of PPS were added to the PPS 

slurry, and then the CA-filled slurries were deposited on the ZnPh primed metal panel 

(62.5 mm x 62.5 mm). The average thickness of coating films for 0, 2, 5 and10 wt% CA 

was 110, 110, 100, and 90 µm, respectively. 

To prepare cleaved PPS coatings, an initial crack ~ 5 µm in wide was cut at the 

edge of the coated panel’s surface using a sharpened diamond blade under a loading of 

1.5 kg. Then, the loaded blade was shifted slowly from one edge to other edge of the 

panel until the length of the cleavage reached 62.5 mm (Figure 16). The eleven slices 

were made with the intervals of 5 mm between the grooves. Scanning electron 

microscopy (SEM) for the cross-sectional profile of the cleaved coatings revealed that 

these grooves ranged in depth from ~8 to ~17 µm. The grooved coating panels then were 

exposed for up to 20 days in 200°C 40,000 ppm CO2-laden brine (13 wt% sodium 

chloride). 

 

2.6.2. Results  

2.6.2.1. SEM-EDX Analyses 

The first experiment focused on visualizing how the CA fillers virtually sealed the 

cracks in the coatings. To obtain this information, we explored alterations in the 

microstructure of the cleaved coating surfaces with and without the 5 wt% CA fillers 

after a 24 hr-exposure in a 200°C autoclave. Figure 17 shows the SEM microphotographs 

in coupling with the EDX spectrum for the CA-filled coating surfaces before and after 

exposure. For the non-exposed coating (Figure 17, top), the SEM image revealed the 

microstructure of an ~ 5.3 µm wide cleavage on the coating’s surface. The EDX spectrum 

taken from the area “A” at ~ 2 µm depth from the edge of cleavage included a prominent 

signal from sulfur (S) as the principal element, strong secondary signals from aluminum 
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Figure 16. Sample preparation of cleaved PPS coatings deposited on carbon steel 
panels and the size of specimens for AC electrochemical impedance spectroscopy 
(EIS) test. 

 

(Al) and calcium (Ca) elements, and lesser signals from carbon (C) and oxygen (O). Both 

the S and C elements appear to arise from the PPS coating, while Al, Ca, and O are 

attributed to the CA fillers. A dramatically changed SEM image was observed on the 

surface of 24 hr-exposed coating; namely, the entire space in the groove was completely 

filled up and sealed with block-like crystals (size, ~ 7 µm) growing on the groove’s 

foundation walls. The EDX spectrum of the crystals denoted as site “C” strikingly 

differed from that of the unexposed groove at site “A”; in particular, the Al elemental 

signal had become one of the major peaks coexisting with S, while the signal intensity of 

Ca was markedly reduced. This finding suggests that the major chemical constituent of 

the crystals is an Al-enriched oxide compound. The other elements, such as Na and Cl, 

detected in the crystals, come from the brine. The spectrum of side “B”, which represents 
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Figure 17. SEM images coupled with EDX spectra for cleaved PPS coatings with 5 
wt% CA fillers before (top) and after (bottom) exposure for 24 hours to CO2-laden 
brine at 200°C. 
 

the coating’s surfaces, had a pronounced peak of S and very weak signals of C, O, and 

Na. There were no signals related to the CA fillers, reflecting their coverage with a PPS 

layer of at least 1.5 µm because the penetration depth of x-ray from the EDX is ~ 1.5 µm. 

 

2.6.2.2. EIS Measurement 

The study then shifted to assessing the ability of sealed crystalline materials to 

protect the underlying steel against corrosion. AC electrochemical impedance 
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spectroscopy (EIS) was used to obtain this information. Figure 18 depicts the overall 

Bode-plot curves [the absolute value of impedance |Z| (ohm-cm2) vs. frequency (Hz)] for 

the blemished 5 wt% CA-filled coatings before and after exposure for 1 and 20 days to 

the 200°C brine. Our attention focused particularly on impedance value in terms of the 

pore resistance, Rp. This can be determined from the plateau in the Bode plot occurring 

at a sufficiently low frequency of 1 x 10-1 Hz for the steel panels coated with 5 wt% CA-

filled PPS. Before exposure to brine, the Rp value for the blemished coatings was 7 x 106 

ohm-cm2. This value raised nearly two orders of magnitude to 3.0 x 108 ohm-cm2, when 

the coating was exposed for 1 day. Since the Rp value reflects the magnitude of ionic 

conductivity generated by the electrolyte (NaCl) passing through the coating layer, a high 

Rp value means a low degree of permeation of the electrolytes into the coating films. 

Hence, exposure to the hot brine led to the conversion of the failed coating responsible 

for a high rate of uptake of corrosive electrolytes into a reconstituted coating that 

minimized its uptake. This finding strongly demonstrated that the crystals packing the 

spaces in the cracks significantly contribute to restraining the penetration of electrolytes 

through the repaired areas. In other words, the sealing effect of crystals accelerated 

rapidly in a very short period of time, resulting in the recovery and restoration of the 

corrosion-preventing barrier, which had failed due to cleavages. The reconstituted 

coatings after 24 hours exposure again were immersed in hot brine for a 20-day-extended 

exposure. This test was carried out to evaluate whether the crystals would continue to 

maintain the integrity of the impermeable corrosion-preventing barrier. As seen in figure 

18, the Rp value of the 20-day-exposed coatings was almost the same as that after a 1-

day-exposure, verifying that the efficacy of closely packed crystals in reducing the 

permeability of electrolytes in the self-healed coating layer remained unchanged for 20 

days.  
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Figure 18. Comparison of Bode-plots for cleaved PPS coatings with 5 wt% CA 
fillers before and after exposure for 1 and 20 days. 
 

2.6.2.3. XRD Analysis 

Next, the focus concentrated on identifying the phase composition of the crystals 

contributing to the self-healing and –repair of the coatings by XRD. To increase the 

amount of XRD-detectable crystals, we added five additional slices to the eleven slices 

made originally on the 5 wt% CA-filled coating’s surfaces. The coatings then were 

exposed for 0, 2,10, and 24 hours in CO2-laden brine at 200°C. Figure 19 compares the 

XRD features over the diffraction range 0.4436-0.2627 nm. For the unexposed coatings 

denoted as “0” hour,  the XRD tracing revealed the presence of three major crystal 

phases, semi-crystalline PPS, CaO.Al2O3 and CaO.2Al2O3 along with one minor phase 

related to gehlenite (2CaO.Al2O3.SiO2). Except for the PPS, the other crystalline phases 
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Figure 19. XRD patterns for cleaved 5 wt% CA-filled PPS coatings before and after 
exposure for 2, 10, and 24 hours. 
 
are originated from the CA fillers. After 2 hours exposure, XRD pattern was somewhat 

different from that of the unexposed one. Among the differences were the appearance of 

two new additional d-spacing lines attributed to the boehmite (γ-AlOOH) and calcite 

(CaCO3), and the attenuation of line intensity related to the CaO.Al2O3 and CaO.2Al2O3 

phases. After 10 hours, a further attenuation for these CA-associated phases was 

observed, while increasing the line intensity of the boehmite and calcite phases as the 

hydrothermal reaction products. After 24 hours, the pattern’s feature was similar to that 

of the 10-hour-exposed coating, excepting that some CaO.2Al2O3-related lines were 
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eliminated.  Thus, these reaction products appear to be formed within a short exposure 

period of 2 hours. The data also showed that there are no significant changes in the line 

shape of the 2CaO.Al2O3.SiO2 phase after exposure, compared with that before exposure. 

Since calcite is formed by the carbonation of CA fillers, we believed that two reactants in 

the CA, CaO.Al2O3 and CaO.2Al2O3, in the CA preferentially react with CO2 in the brine 

to form the calcite, rather than 2CaO.Al2O3.SiO2. The transformation of CaO.Al2O3 and 

CaO.2Al2O3 into the calcite and boehmite reaction products perhaps took place through 

the following reaction pathways: 

Hydrolysis of reactants; 

CO2 + H2O → HCO3
- + H+, 

CaO.Al2O3 + 4H2O → Ca+ + 2Al(OH)4
-, 

CaO.2Al2O3 + 7H2O + 2OH- → Ca2+ + 4Al(OH)4
-, 

Interactions; 

Ca2+ + HCO3
- → CaCO3 + H+, 

Al(OH)4
-  + H+ → AlH(OH)4 → γ-AlOOH + 2H2O. 

In the induction stage of the reactions described as hydrolysis of both of environmental 

CO2 and the CA filler reactants, CO2 reacts with water to form weakly ionized carbonic 

acid (HCO3
-  H+). Meanwhile, the CaO.Al2O3 and CaO.2Al2O3 phases dissociate into two 

counter ionic species, Ca2+ and Al(OH)4
-. Afterward, the Ca2+ begins to interact with the 

HCO3
- counter ion to yield calcite that is one of the reaction products, in the following 

interaction stage. On the other hand, the uptake of H+ by Al(OH)4
- generates amorphous 

AlH(OH)4 as the intermediate derivative. Then, the dehydration of AlH(OH)4 leads to its 

phase transition into crystalline γ-AlOOH. Furthermore, the relative intensity of γ-

AlOOH line for the coatings after more than 10 hours exposure was stronger than that of 

calcite, verifying that the γ-AlOOH is the principal reaction product. A possible 

explanation of why calcite becomes the secondary reaction product may be due to its 

susceptibility to reactions with carbonic acid, thereby yielding water-soluble calcium 

bicarbonate, CaCO3 + H2CO3 → Ca (CaCO3)2. This finding is supported by the results 

from SEM-EDX analysis earlier; namely, the EDX from the crystals filling the grooves 

revealed a dominant signal from Al. Hence, this dominant element is attributable to γ-

AlOOH. We note that the feature of the XRD pattern from 20-day-exposed coatings is 
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almost the same as those from samples exposed for one day (data not shown). This 

information demonstrated that once the crystalline reaction products were formed in the 

first 24 hours exposure, there was no further phase transformation of these reaction 

products caused by extending the exposure to 20 days. 

Nevertheless, the agglomeration of well-grown dense boehmite crystals, known as 

a strong, hard engineering ceramic, in the grooves appears to play the major role in 

reducing the extent of permeation of the electrolytes, thereby leading to the repair of the 

cleaved coatings.  

 

2.7. Field Validation Tests 

Over the past eight years, BNL had fabricated more than thirty liners for 40- and 20-

ft.-long HX tubes, and National Renewable Energy Laboratory (NREL) had conducted 

the short-and long-term field validation tests of these liners at the Mammoth Power Plant, 

California, and Puna Power Plant, Hawaii. Among a large number of field tests, below 

describes the most recent test results.  

Thus, this objective is to evaluate BNL-developed thermally conductive material 

systems for use as the anti-corrosion and anti-fouling liners of carbon steel heat 

exchanger (HX) tubes. It also aims to develop lining technologies that confer the 

maximum corrosion- and fouling-preventing performance of the candidate material 

systems, and can be scaled up. The approach to evaluating them includes field exposure 

tests of lined 20-ft.- and 40-ft.-long HX tubes using a BNL-designed state-of-the-art 

lining apparatus at the Mammoth and Puna geothermal power plant sites in collaboration 

with NREL and the private sectors; post-test analyses of these materials are undertaken 

after the field validation tests. The results from latter provide the information on the 

improvements in the material’s formulation and placement technology. 

  

2.7.1. Full-scale Lining Technologies 

BNL had designed and installed the state-of-the-art lining apparatus that make it 

possible to complete the entire fabrication process including preparing the internal 

surface of the tube and depositing the ZnPh primer and PPS-based lines for the 0.97-in.-
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diameter x 20- and 40-ft.-long HX tubes. Using this apparatus, the priming and lining 

processes were performed in the following sequences. 

Surface Preparation of the Internal Surfaces of the Tubes 

Step 1: Two 40-ft.-long tubes encased in a ½ in. thick urethane slip-on insulation 

sheath were set on both sides of a galvanized steel truss bed (40-ft-long x 14-in.-wide x 

2-ft.-high). A plastic hose was connected from one tube to a pump outlet, while a 6-ft.-

long hose was attached to the other tube to return cleaning fluid, zinc phosphate make-up 

solution, and rinsing water to the process tanks or the wastewater drum (Figure 20, left). 

Meanwhile, the end of each tube was connected with plastic tube (Figure 20, right). This 

configuration allowed us to circulate the cleaning fluid and a zinc phosphate solution 

through the inside of the two connected tubes.  

 

 

Figure 20. Cold-and warm-tap water hoses connected to circulating pump outlet 
(right), and plastic tube linked between two HX tube ends (left). 

 

Step 2: A warm water-rinsing hose was connected from the building’s hot water 

system to the manifold (Figure 20, left). 

Step 3: Each of three 20-gallon heating tanks was filled with the requisite amount 

of three different solutions: an alkali cleaning fluid in the first tank; pickle conditioner in 
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the second tank; and, zinc phosphate in the third tank. The solutions were agitated with a 

stirrer while being heated to 75°C (Figure 21). 

 

 

Figure 21. Three 20-gallone tanks, the first containing alkaline cleaner, the second 
containing pickle conditioner, and third with zinc phosphate primer make-up 
solution. 

 

Step 4: The warm tap water valve was opened to allow water to run through the 

tubes for five minutes to preheat them. 

Step 5: The valve connected to the first tank containing the alkali-cleaning fluid 

was opened and the circulating pump is turned on, while the circulating hose connected 

to one tube was immersed in the first tank (Figure 22). After circulating the cleaning 

solution for two minutes, the pump and tank valves were shut off, and then the cool tap 

water valve was opened to push back the cleaning fluid into the first tank. After most of 

the fluid had been returned to the tank, the circulating hose was shifted from the first tank 

to the wastewater drum, allowing rinsing water to run through the tubes to remove any 

remaining alkali cleaner from the tube’s internal surfaces. After rinsing for one minute, 
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the cooling tap water valve was turned off, and the rinsing water left in tubes was drained 

out into wastewater drum.   

Step 6: Next, the circulating hose was placed in the second tank containing the 

pickle conditioner, and then the conditioner was circulated for five minutes. Afterwards, 

the tubes were rinsed in the same process as described in step 5. 

 

 

 
Figure 22.  Alkali-circulating cleaning process at 75°C for “as-received” HX tubes. 
 
 
Zinc Phosphate Primer 

Step 7: Once the preparation of the internal surfaces of the tubes was completed, 

the circulating hose was immersed into the zinc phosphate make-up solution in the third 

tank, and then this solution was pumped and circulated for 20 min to deposit the 

crystalline zinc phosphate primer over the tube’s inner surfaces. Again, the primed 

surfaces were rinsed with water to eliminate any slag left behind during the zinc 

phosphate conversion process. 

Step 8: After the zinc phosphate primer was deposited, the circulating hose 

connected to the circulating pump was removed, and then a short piece of plastic tubing 

was jointed to one end of the HX tube. The other end of the insulated HX tube, still set on 
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the truss bed was elevated by a hand hoisting device until there was ~ 40 degree angle 

between the truss bed and the horizontal position. A wet/dry shop vacuum cleaner then 

was attached to the lower end of the tubes and run for ten min, sucking any residual water 

out of the tubes. After drying the zinc phosphate-primed tube, the truss bed was returned 

to the horizontal position. 

 
PPS-based Lining

Step 9: One of two zinc phosphate-primed HX tubes was set on center of the truss 

bed, and covered with a fiber-glass thermal insulator. A temperature-limit controller was 

clamped to the HX tube at its near center point.  Six thermocouples were attached at both 

ends of the tube and at intervals of 10 ft. from the tube’s ends to monitor heat distribution 

and the increasing rate of temperature over the entire tube. One of three impedance 

heaters was connected to the tube’s center point (Figure 23).  

 

 

Figure 23. Temperature-limit controller and the one of impedance heaters being set 
on the primed HX tube is covered with fiber-glass insulator. 
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Step 10: One end of the truss bed was elevated by a hand hoisting device until the 

angle between the truss bed and the horizontal attained ~ 40 degree. A funnel was 

attached to the higher end, while a short length of plastic tubing with a closed ball valve 

was connected to the lower end. With the operator standing on a ladder, the PPS slurry 

was slowly poured through a funnel into the tube until it was filled (Figure 24).  

 

 

 

Figure 24. PPS slurry drain tube joined to the lower end of the primed HX tube. 

 

Step 11: The ball valve on the lower end was opened to allow any extra PPS 

slurry to drain back into the original container. The slurry-wet tube then was rotated back 

and forth through 180 degrees by grasping the impedance heater connected to a center 

point of the tube. This rotating action was repeated five times at intervals of two minutes 

to prevent excess slurry accumulating in the lower radius of tube, and to ensure an even 

thickness of the lining. The truss bed then was returned to its horizontal position and 

again rotated several times for the next five minutes.    

Step 12: Two 6-ft. extension elbow tubes were attached to both of the tube’s ends. 

These extension tubes were designed to provide an equivalent temperature throughout the 
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entire 40-ft.-long tube being lined by the PPS slurry. The remaining two impedance 

heaters were attached to these extension tubes (Figure 25).  

Step 13: The slurry-lined tube was left overnight to ensure the complete 

evaporation of all the isopropyl alcohol in the slurry.   

Step 14: The impedance heaters at the three different locations were turned on via 

the process temperature controller set at 23 volts, 25 % output (heat-increase rate of ~ 

1.7°C/min). Almost one hour afterwards, the temperature of the entire tube reached 

127°C. The controller then was set at 55 % output (heat-increase rate of ~ 7°C/min). 

Thirty minutes later, the tube’s temperature reached 338°C. The tube was left at this 

temperature for two hours to complete the melt-flow of the PPS. 

Step15: After two hours, the heaters were turn off. The tube then was left for 

overnight at room temperature to convert the molten PPS phase into its solid phase. 

  

 
Figure 25. A 6-ft. extension elbow tube linked to the tube’s end with an impedance 
heater attached to the end of the extension tube.  
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2.7.2. Two-year Long Field Exposure Test at Mammoth Power Plant 

As described above, BNL designed and developed several PPS-based coating systems 

in geothermal material research program aimed at extending the useful lifetime of carbon 

steel heat exchanger tubes used in geothermal binary-cycle power plants. The coating 

systems were required to have the following properties: (1) good thermal conductivity; 

(2) protection of steel tube against corrosion and oxidation; (3) anti-fouling 

characteristics; and, (4) resistance to abrasive wear. In this field test at the Mammoth 

power plant, California, operating at temperatures up to 160°C, the silicon carbide (SiC) 

grit instead of employing carbon fiber was used as the thermally conductive filler and 

was packed into the PPS layer. SiC improves heat transfer by 16 %, compared with that 

of unfilled PPS.  

In readily transferring the heat energy generated by passing hot brine through the heat 

exchanger tubes, the coating’s surfaces inevitably must possess anti-fouling 

characteristics. The scales that accumulate over the tubes’ surfaces cause a loss in two 

important functions, the flow pressure of brine and the efficacy of heat transfer, in the 

heat exchangers. To restore these functions, the scale layers must to be scoured off from 

the tubes’ surfaces. Among the technologies for removing scales, hydroblasting is most 

commonly used to clean the fouled tubes. However, the strong bond formed between the 

scales and the tubes’ surfaces not only requires highly pressurized hydroblasting, but also 

a substantial amount of time to dislodge them completely. Such scouring is time-

consuming and very costly. Finally, the coating’s surfaces also must be resistant to 

abrasive wear to abate damage from scratching brought about by the passage of fine hard 

mineral particles through the tubes, and by the impact of scale particles during 

hydroblasting. In trying to alleviate the wear damage, we incorporated nanoscale 

boehmite crystals as the wear resistant filler into the PPS matrix.  

To ensure that the laboratory’s results are duplicated in the field, BNL lined 20-ft.-

long carbon steel HX tubes with two different PPS-based coating systems. One system 

consisted of the ZnPh primer, the SiC-filled PPS as the intermediate layer, and the PTFE-

blended PPS as the top layer. The other was comprised of the Zn.Ph primer and the 

boehmite-filled PPS only. The lined tubes were set by NREL into the test skids at the 
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Mammoth geothermal power plant site, and were exposed for two years to flowing 

geothermal brine at temperature of 160°C.  

Thus, the objective of the present work was to conduct post-test analyses of the two 

yearlong exposed liners. The physicochemical factors to be analyzed included the 

chemistry of the scales deposited on the liner’s surfaces, the interfacial bond between the 

liners and the scales, and the chemical composition and state of liner’s surfaces. 

Integrating these data would provide us with the information on the reliability of these 

liners in protecting the carbon steel heat exchanger tubes against corrosion, oxidation, 

and scaling in such a harsh, hostile geothermal environment. For comparison with these 

liners, we used the stainless steel tubes without any liners. 

 

2.7.2.1. Experimental 

The AISI 1008 carbon steel heat exchanger tubes, 20-ft.-long, 1-in. outside diam. 

with 0.048-in.-thick walls, were lined with the coating materials. The reference stainless 

steel tube with as same dimension as that of the carbon steel tubes was AISI AL-6XN. 

The “as-received” PPS powder for the slurry coatings, supplied by the Ticona, had a 

particle size of < 20 µm and a high melt flow at temperatures above its melting point of ~ 

250°C. The PTFE powder under the commercial trade name “SST-3H”, supplied by 

Shammrock Technologies, was used as the anti-oxidant additive to PPS, and had a 

particle size of ~ 40 µm. PTFE-blended PPS powder, with a PPS/PTFE ratio of 90/10 by 

weight, was prepared in a rotary blender. The nanoscale boehmite filler (Catapal® 200 

Alumina) was supplied by Sasol North American Inc.The boehmite filler, at 10 % by 

weight of the total amount of PPS, was mixed with the PPS powder in a rotary blender. 

The SiC grits used to enhance the thermal conductivity of the PPS layer were of the 

mixture of grits consisting of three different sizes, ~ 142, ~ 32, and ~ 9 µm, obtained 

from Norton Corporation. The industrial grade isopropyl alcohol was used to make the 

slurries. Table 4 gives the formulations of the three different slurries, SiC-filled PPS, 

boehmite-filled PPS, and PTFE-blended PPS that were used to line the internal surfaces 

of the heat exchanger tubes. Before deposing these coatings on the interior surfaces of the 

tubes, the tubes’ surfaces were covered with ZnPh primer. The thickness of these liners 

without the ZnPh primer (8 to 60 µm) ranged from 300 to 330 µm. 
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Table 4. Formulation of slurry systems 

 
Composition, wt% System 

PPS SiC Boehmite PTFE Isopropyl 
alcohol 

SiC/PPS 36.0 19.0 - - 45.0 
Boehmite/P

PS 
45.0 - 4.5 - 50.5 

PTFE/PPS 43.0 - - 4.3 52.7 
 
 
2.7.2.2. Results  

2.7.2.2.1. Scale Deposition 

Figure 26 shows the SEM microphotograph of the scale deposited on the surfaces of 

the PTFE-blended PPS top layer. The image revealed the accumulation of flake-like 

scales covering the entire surface of the top layer. The EDX spectrum of the scale 

fragments denoted as area “A” had seven elemental distributions, C, O, Na, Si, Cl, Ca, 

and Fe, as the representative elements of the scales. Among these elements, Na and Cl 

may be attributed to the NaCl salt, while possible assignments of three other elements, O, 

Ca, and Si, are the calcium silicate compounds and silica. The Fe-related components of 

scales may be associated with FeCl2 and Fe oxides. The remaining component of the 

scales reflects organic contaminants because of the presence of a conspicuous C signal. 

The EDX spectrum from the other area marked as site “B” included a pronounced signal 

from the S element, moderately intense signals of Si, Cl, Ca, and Fe, and weaker signals 

from C, O, F, and Na. The major element S along with the F element appears to be 

originated from the PTFE-blended PPS coating. All the other elements seem to come 

from the scales. The EDX is extremely useful for the quantitative analysis of individual 

elements in a solid surface layer, up to ~ 1.5 µm thick because of the penetration of the x-

rays to that depth. Thus, it is possible to assume that the thickness of some scale layers is 

no more than 1.5 µm.  To the contrary, the EDX spectrum (not shown) of the scales 

accumulated over the stainless steel tube do not show any typical elements like Cr, Mn,  
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Figure 26. SEM microphotograph and EDX spectra of scale deposited on PTFE-
blended PPS’s surfaces after two-year-long field exposure.   

 

and Ni that are representative of the major chemical components of the stainless steel. 

This implies that the scale layer deposited on the stainless steel is more than 1.5 µm 

thick. This information strongly suggested that the susceptibility of the stainless steel’s 

surfaces to the scale deposition is much greater than that of the surfaces of the PTFE-

blended PPS liner. 

To support the information on the chemical constituents of the scales, FT-IR 

analysis (Figure 27) of powdered scales was carried out over the frequency range of 4500 

to 450 cm-1. The IR spectrum showed the following absorption bands at 3423 and 1627 

cm-1 attributed to O-H stretching and bending vibrations of H2O, respectively, at 2923, 

2853, and 1463 cm-1, which can be ascribed to the aliphatic C-H stretching and bending 

modes of CH2 group, at 1155 and 1095 cm-1, corresponding to the calcium silicate and 

silica, and at 668 and 602 cm-1, revealing the inorganic Cl-related salts. From the 

presence of H2O molecules, the calcium silicate might be defined as hydrated calcium 

silicate compounds. 
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Figure 27. FT-IR spectrum of scale collected from the exposed liner’s surfaces. 

 

Next, out attention was focused on assessing how well the scale adheres to the tube’s 

surfaces. We adapted the technique for hydroblasing to obtain this information. Thus, the 

extent of the adherence of the scales to the surfaces of liners and the stainless steel tube 

was estimated by determining the hydropressure needed for scouring all scales from the 

internal surfaces of the 20-ft.-long tubes. The results showed that the scales deposited on 

both the PTFE-blended PPS and boehmite-filled PPS surfaces were easily removed by 

relatively low hydropressure, ranging from 10.3 to 13.8 MPa. By contrast, hydropressure 

of as high as 55.1 MPa was required to dislodge the scales from stainless steel, clearly 

verifying that the scales adhere to the bare stainless steel much more firmly than they do 

to the liners. Furthermore, despite using such a high hydropressure, we recognized from a 

visual inspection that some scales still remained on the stainless steel surfaces. To 

visualize insight into the microstructure of the remaining scales, a cross- sectional area of 

the tube was explored by SEM (Figure 28). As seen, the scale layer had a thickness of ~ 

5µm and was comprised of two different layers marked as “A” and “B”. The SEM image  
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Figure 28. SEM image coupled with EDX analysis for cross-sectional area at critical 
interfacial region between stainless steel and scale after hydroblasting.  

 

revealed morphological features representing a strong bond between these two layers. 

The EDX spectrum of the top layer in the scale gave four strong signals from C, O, Si, 

and Ca, as the principal elements. The contributors to these elements are calcium silicate 

hydrate, silica, and organic contaminants. There were no Na and Cl elements from salt, 

inferring that the salt compounds being present in the original scales were washed away 

by hydroblasting. The EDX data of the bottom layer was characterized by three 

prominent peaks related to the O, Cr, and Fe elements, moderately intense Ca, Mn, and 

Ni peaks, and weak C and Si signals. As shown by EDX, stainless steel has five major 

elements, Mo, Cr, Mn, Fe, and Ni. Hence, the source of these four elements that were 

detected in the bottom layer appears to be the stainless steel. Relating these metal 

elements to the marked signal of O element, we assumed that these metals occupying the 

outermost surface sites of the steel were oxidized during its exposure. If this 

interpretation is valid, these metal oxide layers that formed over the steel surfaces have 

some affinity for calcium silicate and silica scales, thereby forming a strong interfacial 

 67



bond between the metal oxide and the scales. This is a main reason why scales deposited 

on the stainless steel were very difficult to scour away. 

In contrast, the scales over the PTFE-blended PPS surfaces were flaked off 

readily by low-pressure hydroblasing. Compared with the SEM image (Figure 26) from a  

surface fouled by scale deposits, a dramatic change can be seen after hydroblasting 

(Figure 29); namely, there are no remnants of any scales. In fact, the EDX analysis did 

not detect any scale-related elements, such as Ca, Si, Na, Cl, and Fe, demonstrating that  

 

 
 

Figure 29. SEM-EDX analysis of PTFE-blended PPS’s surface after hydroblasting.  

 

the surfaces of PTFE-blended PPS liner are insensitive to reactions with the scales. This 

means that the extent of the interfacial bonding force between the liner and the scale is 

minimal, if any. The SEM image (not shown) of the surfaces of the boehmite-filled PPS 

liner after hydroblasting showed no significant differences to that of unexposed surfaces. 

Also, SEM exploration revealed no signs of any surface damages brought about by 

hydroblasting. However, although the signal intensity was very weak, the EDX (not 

shown) indicated the presence of Si, which is one of the scale-related elements. Relating 

this Si signal to the O signal that also was detected, a possible interpretation is that some 

silica seems to remain on the hydroblasted liner’s surfaces. 
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2.7.2.2.2.  Liner’s Surfaces 

 To understand why the PPS liner’s surfaces without the PTFE become susceptible 

to the deposition of silica scales during exposure, we investigated the changes in 

chemical composition of the hydroblasted liner’s surfaces after exposure, compared with 

that of the unexposed ones. The surfaces for the PTFE-blended PPS and boehmite-filled 

PPS liners before and after exposure were analyzed using XPS. All XPS measurements 

were made at an electron take-off angle of 40°, which corresponds to an electron-

penetration depth of ~ 5 nm, reflecting the detection of atomic fraction and chemical 

states present in a superficial layer with a thickness of ~ 5 nm. Table 5 gives the XPS 

atomic fractions of all chemical elements detected on the surfaces of liners. The 

quantitative data for the respective chemical elements were estimated by comparing the 

XPS Si2p, S2p, C1s, O1s, and F1s core-level areas, which were then converted into atomic 

concentrations. Before exposure, the atomic fraction of PTFE-blended PPS’s surfaces  

 

Table 5. Atomic composition of the surfaces of liners before and after two yearlong 
field exposure test 
 

Atomic fractions, % Liner Field 
test Si S C O F 

Atomic 
ratio, 
O/C 

PTFE-
blended 

PPS 

Before 0.0 2.1 48.0 2.6 47.3 0.054 

PTFE-
blended 

PPS 

After 0.0 1.3 48.8 3.1 46.8 0.064 

Boehmite
-filled 
PPS 

Before 0.0 13.1 81.6 5.3 0.0 0.065 

Boehmite
-filled 
PPS 

After 0.4 9.7 76.9 12.8 0.0 0.167 

 
 
consisted of two dominant atoms, 48.0 % C and 47.3 % F, and two minor ones, 2.6 % O 

and 2.1 % S. The source of F and C atoms is the PTFE. Thus, we believe that the 

superficial layer (no more than 5 nm thick) was made up almost exclusively of PTFE. 
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This phenomenon was due to the typical separation of PTFE from PPS and its migration 

upwards to the top surface of the liner. Consequently, PTFE occupied the liner’s 

outermost surface site. By comparison, no conspicuous difference in the atomic fraction 

was obtained from the exposed liner’s surfaces. Although some oxygen was incorporated 

in the superficial layer, its amount was negligible. 

 The boehmite-filled PPS liner’s surfaces were comprised of 13.1 % S, 81.6 % C, 

and 5.3 % O. No boehmite-related Al atom was detected, reflecting the coverage of the 

entire surfaces of all boehmite crystals by a PPS layer, at least 5.0 nm thick. For the 

surfaces of the exposed liner, our attention was centered on incorporating a substantial 

amount of oxygen into the top surface layer. The atomic ratio of O/C of the exposed liner 

rose 2.6 fold to 0.167 compared to the unexposed one. This can be taken as evidence that 

the PPS’s surfaces underwent some degree of hot brine-catalyzed oxidation. The data 

also indicated that 0.4 % Si atom was incorporated into the superficial layer. Thus, the 

oxidation products formed at outermost surface site seem to have an undesirable function 

similar to that of the oxide compounds accruing on stainless steel’s surfaces; namely, 

they are sensitive to silica deposition. From the above information, PTFE as the anti-

oxidant additive of PPS appears to play an essential role in reducing the rate of the scale 

deposition and in creating an inert surface to reactions with the scale in the two years 

exposure periods. 

 

2.7.3. Field Test at Puna Power Plant  

Our research team including BNL, NREL, and Thermochem Corp. completed a 

four-week field performance test at the Puna Power Plant, Hawaii, operating at 

temperature of ~ 200°C, of the thermally conductive micorscale carbon finer-reinforced 

PPS composite-lined HX tubes (0.5-in.-inner diameter by 20-ft.-long) fabricated by BNL. 

In this test, stainless steel (SS) tube was used as the control. Since most of our field tests 

thus far were conducted under brine at around 160°C, this field test was the first 

opportunity for validating the integrity of PPS-based lining systems at a higher brine 

temperature of 200°C.  

In this post-test analysis, our focus was centered on analyzing the PPS composite 

liners deposited on Vaporizer tubes because the test condition of the Vaporizer tube 
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(196°C inlet and 115°C outlet at pH 4.5) was much severer than that of PPS-lined 

Preheater tube (115°C inlet and 77°C outlet at pH 4.5). 

 
2.7.3.1. Results  

The scale accumulated over the PPS Vaporizer liner’s surface at inlet was 

identified as silica (Figure 30), and its thickness was roughly 88 µm (Figure 31). The 

scale was more likely to be deposited on the inlet liner, rather than on the outlet liner. 

SEM image (Figure 31) clearly showed that in some areas, the PPS liner poorly adhered 

to the underlying steel. This poor adherence was due primary to an inadequate deposition 

of ZnPh primer on the underlying steel’s surface. In fact, an undesirable deposition of 

ZnPh on the tube’s surface can be seen in the SEM image and EDX spectrum indicating a 

very weak signal of the Zn element for the tube sample beneath the delaminated liner.  

An ideal ZnPh layer deposited uniformly over the entire surfaces of tubes must have a 

thickness of at least 10 µm. The crystalline ZnPh primer layer having a very rough 

surface played an important role in stabilizing the interfacial bond at the PPS/ZnPh/steel 

joint. Since the longitudinal coefficient of thermal expansion of the PPS liner was more 

than five fold higher than that of the carbon steel tube (1.3 x 10-5 mm/mm°C for steel vs. 

6.8 x 10-5 mm/mm°C for PPS liner at 300°C), a strong bonding between the PPS and 

ZnPh was required to avoid a different linear thermal expansion-caused segregation of 

the PPS liner from the smooth tube’s surface during the fabrication process of liner. 

Fortunately, the PPS had a great affinity with ZnPh due to two interfacial bonding 

mechanisms: One was a chemical bond; the other was a mechanical anchoring of the PPS 

polymer, which resulted from the penetration of the molten polymer into the open surface 

microstructure of the ZnPh layers at 300°C. Correspondingly, most of liners excepting 

for delaminated and blistering areas displayed a satisfying interfacial bond (Figure 32). In 

preparing the ZnPh for those test tubes with a diameter of less than a half inch, we 

adapted the standard ZnPh conversion solution that is still commonly used for one-inch 

diameter tubes. Although there was no experimental evidence as to why this solution was 

no longer as effective as applied to the one-inch tube, the modification of this formulation 

might be needed for smaller diameter tubes.  
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Figure 30.  SEM image and FT-IR spectrum of scales deposited on the liner’s 
surface as well as visual observation of locally delaminated liner after exposure at 
inlet. 

 
Figure 31. Cross-sectional profile of PPS-lined tube after exposure at inlet. 
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Figure 32. Ideal interfacial bond between PPS and ZnPh primer observed in the 
lined tube after exposure at inlet.  

 

 

 

 

Figure 33.  Surface image of liner after removal of scale by rinsing with water. 
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Figure 34. Melting point and melting energy of PPS liners before exposure (a), and 
after exposure at outlet (b) and at inlet (c) by differential scanning calorimeter 
(DCS). 

 

 

 

The analytical work next sifted to investigating the integrity and quality of PPS 

liners after exposure. Figure 33 shows the surface texture of PPS inlet liner’s surface after 

removal of scale, revealing no signs of the generation of any fissures brought about by its 

thermal degradation. In addition, the combined analyses of DSC (Figure 34) and TGA 

(Figure 35) for the unexposed, and outlet- and inlet-exposed liners strongly demonstrated 

that the integrity of exposed PPS liners remained in effect because of no significant 

changes in thermal properties of exposed liners compared with those of unexposed one.  
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Figure 35. Onset of thermal decomposition for unexposed (a), and outlet (b)-and 
inlet (c)-exposed liners by thermogravimetric analyzer (TGA).  

 

One issue to be addressed involves the characteristic of scale deposited on the 

stainless steel (SS). Figure 36 shows the SEM-EDX close-examination of interfacial 

areas between the scale and SS. As seen, the image represented two distinctive scale 

layers: One was a densified scale layer about ~ 5 µm thick adhering to the SS’s surface; 

the other referred to the same silica scale layer as that observed from the liner’s surface. 

The EDX for the former scale layer revealed that this scale was attributed to silicate- 

based scales containing two additional elements, K and Ca, especially for the calcium 

silicate scale. The detected Al element arises from the Al2O3 polishing powder used to 

prepare a smooth cross-sectional sample. The ordinal silica scale layer could be easily  
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Figure 36. SEM image of two distinctive scale layers deposited on the SS’s surface 
after exposure: Silicate scale layer adhered to SS and ordinal silica scale layer 
accumulated over silicate scale. 
 

dislodged from the SS by hydroblasting at a lower pressure, but not a silicate scale layer 

as the irremovable scale adhered strongly to metals. We assumed that this silicate scale 

would grow as a function of an exposure time. In contrast, the PPS’s surface was 

chemically and mechanically inert with scale. There was no development of the 

additional scale layer attributed to silicate compounds at the interfaces between the scale 

and PPS.  

Based upon the information described above, the following statement can be 

drawn as the conclusion: The generation of local delamination and blisters of PPS liners 

incurred at inlet (196°C) was more likely to be associated with the poorly deposited 

Zn.Ph primer layer on the tube’s surface, rather than the hydrothermal degradation of 

PPS liners. Thus, the chemical modification of the standard ZnPh solution will be 

required to deposit a rough crystalline ZnPh layer of at least 10 µm thick for tubes with a 

diameter of < 0.5 in.   
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2.8. Conclusions 

The following general conclusions can be drawn from the results of in-house and 

field works for thermally conductive lining materials of carbon steel heat exchanger (HX) 

tubes.  

1. The interfacial bond structure for the polyphenylenesulfide (PPS)/ zinc phosphate 

(ZnPh) primed steel joint systems had both mechanical interlocking and chemical 

bonds. For the former bond structure, metallographic observations suggested that 

the melted PPS thermoplastic penetrates into open-surface microstructure and 

microfissures in the crystalline ZnPh layers, thereby contributing to making a 

good bond at the PPS-to-ZnPh interfaces, by the mechanical anchoring PPS 

polymer. The latter bond structure was characterized by representative of the 

formation of zinc sulfide (ZnS) reaction product yielded by chemical interactions 

between PPS and Z in the ZnPh primer layer during exposure in a wet, harsh 

geothermal environment. The combined bond structures from mechanical and 

chemical linkages significantly enhanced the extent of the primer-to-PPS adhesive 

force. The ZnS reaction product at interfaces played a major role in inhibiting the 

alkali-induced delamination of PPS film from the steels that was caused by 

cathodic reaction, H2O + 1/2O2 + 2e- → 2OH-, occurring at corrosion sites in the 

steel, because of its insolubility in the alkali solution at pH~13. Thus, this reaction 

product prevented the alkali dissolution of the intermediate layers, thereby 

reducing significantly the rate of cathodic delamination of PPS film from the 

steel. 

 

2. Compared with the chopped carbon fibers of 7.5 µm diameter and  ~ 3 mm long, 

the major advantage of the shorter milled carbon microfibers (100-200 µm) with 

the same diameter was that it allowed us to incorporate substantially more of the 

fibers into the PPS coatings. This advantage enhanced the beneficial properties of 

the coatings; for instant, the thermal conductivity of the PPS coatings raised 2.6 

fold to 3.7 kJ/hr.m.°C by incorporating 5 wt% fiber. Furthermore, 3 wt% fiber-

reinforced PPS coating films displayed a great tensile strength and elongation of 

40.8 MPa and 5.8 %, respectively, corresponding to the improvement of 5.2 times 
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and 2.6 times over those of the non-reinforced coatings. However, increasing the 

amount of fibers, beyond 3 wt%, caused a gradual decline in these mechanical 

properties. Although we have no experimental evidence, we assumed that such 

mechanical retrogression is due to the deficient coverage of the fibers’ surfaces 

with PPS caused by incorporating an excessive amount of fibers into the matrix, 

reflecting the development of low interfacial shear bond strength at the fiber/PPS 

joint. Although the thermal conductivity of the PPS coatings depended 

preliminary on their fiber content, the most effective amount of fiber in improving 

mechanical behaviors was 3 wt%. 

 

3. The 3 wt% carbon fiber-reinforced PPS composite coating reduced the rate of 

uptake of corrosive electrolytes by the coating, compared with that of the PPS 

without carbon fiber, ensuring a better performance in protecting the underlying 

steel against corrosion in a 200°C brine environment. However, incorporating an 

excessive amount of fiber into PPS impaired the efficacy of the coatings in 

mitigating the corrosion of steels because of the development of an undesirable 

porous microstructure due to the air-trapping behavior of the fibers. 

 

4. Ferric oxide (Fe2O3) occupying the outermost surface site of carbon steel had a 

strong affinity for silica. In fact, when steel panels were immersed in sodium 

metasilicate-dissociated brine at 200°C, silica aggressively precipitated on the 

steel surfaces after immersion for only 24 hours. Further, the silica scales strongly 

adhered to the steel surfaces, and it was very difficult to scour them off. Although 

there was no deposition of micro-sized silica over the PPS coating surfaces after 

7-day immersion, we detected a negligible amount of silica in the superficial layer 

(~ 5 nm thickness) of the coatings, suggesting that the surfaces of immersed PPS 

become sensitive to silica deposits. The creation of such sensitivity was the 

functional sulfur oxide derivatives yielded by a hot brine-induced oxidation of 

PPS surfaces. Thus, the formation of an oxide surface layer on either PPS or 

carbon steel can be taken as one of the critical factors affecting the initiation of 

silica deposits. In trying to deal with this problem, blending 
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polytetrafluoroethylene (PTFE) as the antioxidant into the PPS not only offered 

improved oxidation resistance of the coating surfaces, but also served in creating 

the hydrophobic surfaces. The main reason for conferring such improvements was 

due to the phase segregation of PTFE from the PPS, whereby segregated PTFE 

formed the outermost surface layer of coating. Therefore, PTFE antioxidant-

blended PPS coatings had a high potential for use as anti-silica fouling barriers on 

the carbon steel heat exchanger tubes in geothermal environments containing 

silica-rich brine. 

 

5. In trying to confer resistance of PPS coatings to blasting wear, nanoscale 

boehmite fillers with a crystalline size of ~ 30 nm were incorporated into PPS 

coatings. The rate of blasting wear of the unfilled coating was reduced six-fold by 

adding 15wt% boehmite. 

 

6. Calcium alumina (CA) filler was identified as a material with high potential 

material for sealing and repairing cracks of ~ 5.3 µm wide and ~ 8 to ~ 17 µm 

deep generated in the superficial layer of coatings exposed in the 200° CO2-laden 

brine environments. The mechanisms of healing and repairing may be as follows. 

When the CA fillers disclosed in the grooves come in contact with hot CO2-laden 

brine, the carbonation and decalcification-hydration reactions of two reactants in 

the CA, CaO.Al2O3 and CaO.2Al2O3, lead to the formation of two crystalline 

reaction products, boehmite and calcite, within 2 hours. In particular, the 

boehmite phase represented by block-like crystals rapidly grows and seals the 

open grooves. A microscopic agglomeration of well-developed boehmite crystals 

was observed in the grooves of the damaged coatings after only 24 hours 

exposure. The outstanding performance of boehmite crystals in reconstituting and 

restoring the blemished coatings was validated from measurements of the 

conductivity of corrosive ions; the pore resistance, Rp, value of the failed and 

blemished coatings rose nearly two orders of magnitude to 3 x 108 ohm-cm2 after 

24 hours exposure. This finding clearly proved that the function of the coatings in 

protecting the underlying steel against corrosion was restored within that time. No 
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change in this value was recorded from coatings further exposed up to 20 days, 

suggesting that even then, the boehmite crystals packing the grooves do no allow 

corrosive ions to permeate through them. Although the long-term exposures are 

needed to validate that the healed coatings continue to protect the underlying 

steel, we believe that this self-healing and –repairing technology based upon the 

rapid growth of boehmite crystals is applicable to coatings exposed to 

hydrothermal environments. We found that about 5 % of the total weight of PPS 

was the effective amount of CA content in reconstituting and restoring the anti-

corrosive function of failed coatings. 

 

7. In trying to protect carbon steel heat exchanger (HX) tubes against corrosion and 

fouling by calcium silicate hydrate and silica scaling in geothermal binary-cycle 

Mammoth power plants operating at a brine temperature of 160°C, their internal 

surfaces were lined with two thermally conductive high-temperature performance 

material systems. The lined 20-ft.-long tubes (~ 1.0 in. outside diameter) then 

were exposed for two years at the Mammoth power plant site to ensure that these 

lining systems satisfactory solved these problems facing the geothermal energy 

industry. One of in these material systems was comprised of three different lining 

layers, Zn.Ph as the primer, silicon carbide (SiC) thermal conducter-filled 

polyphenylenesulfide (PPS) as the intermediate layer, and polytetrafluoroethylene 

(PTFE)-blended PPS as the top surface layer. The other consisted of the Zn.Ph 

primer and nanoscale boehmite-filled PPS layer. AISA AL-6XN stainless steel 

tubes also were used as the reference bear steel.  

The unlined stainless steel HX tube is well protected against corrosion due 

to the formation of passive Cr, Fe, and Mn oxide layers at its outermost surface 

sites. However, these oxide layers were very receptive to the deposition of 

calcium silicate hydrate and silica scales, which developed a strong adherence to 

the tubes. This strong bond is reflected in the requirement for high-pressure 

hydroblasting of 55.1 MPa to scour them off from the tube’s surfaces. But, even 

then, many scales forming a ~ 2.0 µm thick layer still remained on the oxide layer 

after hydroblasting. 
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By contrast, the surfaces of a PPS top layer modified with PTFE as an 

anti-oxidant additive significantly retarded the hydrothermal oxidation of the 

liner. Such an anti-oxidant surface not only minimized the rate of the scale 

deposition, but also made it inert to reactions with the scales. Thus, all the scales 

deposited on the liner’s surfaces were easily removed by hydroblasting with only 

~ 18.0 MPa pressure. In addition, the PPS satisfactory withstood a 160°C brine 

temperature and displayed a great resistance to the permeation of brine through 

the liner, expressing an outstanding performance in protecting the tubes against 

corrosion.  

The boehmite-filled PPS liner’s surfaces without the PTFE suffered some 

degree of the oxidation, causing the remnant of few silica scales on the 

hydroblasted liner’s surfaces. However, there was no internal delamination of the 

PPS liner from the ZnPh primer, nor were any blisters generated in the critical 

interfacial boundary region between the PPS and the ZnPh primer. Furthermore, 

brine-related elements were not detected in a superficial layer of ~ 5 µm thick, 

strongly demonstrating that although the boehmite filler was incorporated, this 

liner adequately prevented corrosion of the tubes. 

    

8. The chemical state of scale deposited on the surfaces of thermally conductive 

microscale carbon fiber-reinforced PPS composite liners and stainless steel (SS) 

tube at Puna Power Station operating at ~ 200°C was identified as silica. This 

silica scale strongly adhered to the oxide layer occupying the outermost surface 

side of SS tube, causing an accumulation of ~ 88 µm thickness after only four 

weeks exposure. In contrast, the surfaces of composite liners were much more 

inert to scale deposition. Although the exposure time was only four weeks, this 

composite liners withstood hot brine at ~ 200°C. Thus, we believed that the PPS 

composite material had a high potential as an anti-fouling and 200°C-

hydrothermal stable liner. However, the generation of local delamination and 

blisters of PPS liners incurred at inlet was more likely to be associated with the 

poorly deposited ZnPh primer layer on the tube’s surface, rather than the 

hydrothermal degradation of PPS liners. Thus, the chemical modification of the 
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standard ZnPh solution will be required to deposit a rough crystalline ZnPh layer 

of at least 10 µm thickness for tubes with a diameter of < 0.5 in. 

 

2.9. Technology Transfer  

   Curran International Corp., commercialized this PPS-based lining material system 

under the trade name “CurraLon”. The company estimated that the capital costs of the 

heat exchanger, containing on average 800 tubes, would be strikingly reuduced by ~ 83 

% and ~ 80 %, compared to those of titanium- and stainless steel-based HXs, 

respectively.  

 

2.10. Awards 

In 2002 and 2003, this high-performance PPS composite lining system was 

selected for the prestigious “Research and Development (R&D) 100 Award” and  

“Federal Laboratory Consortium for Technology Transfer (FLC) Award”. 
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3. Coatings for HX Tube/Sheet and Pipe/Pipe Joint Areas 

Coatings that are curable at low temperature, ranging from 25° to 80°C, yet possess 

high-hydrothermal temperature stability are needed for preventing the corrosion at HX 

tube/sheet and pipe/pipes joints after roller expansion or welding joining process. None 

of the coatings tested can withstand exposure to the high compressive strengths and high 

temperatures of the joining process. Hence, the joint areas must be recoated with 

materials possessing the properties described in the Introduction section. 

Over the past five years, four candidate coatings, the 

poly(tetrafluoroethylene)/(hexafluoropropylene) (PTFHFP), NASA-developed 

polybezimidazole (PBI), polyarylethersulfone (PES), and  calcium aluminate cement 

(CAC)-filled styrene-acrylic latex (SAL), were evaluated to meet the material criteria. 

 

3.1. PTFHFP Coating 

Room temperature-curable fluorinated ethylene-propylene called   polyfluorocarbon 

is very attractive to use as a tube-end coating because of its excellent thermal stability at 

temperatures up to 300°C [24]. 

 

3.1.1. Experimental 

Organic solvent-based poly-(-tetrafluoroethlene)/(hexaflouoropropylene) , the 

polyfluorocarbon paint, was supplied by the Lauren Manufacturing Company. In an 

attempt to cure this paint at room temperature, an organic silicon oligomer, obtained from 

the same company, was used as the catalyst. The catalyst of 7 % by weight of the total 

mass of the paint was incorporated into the paint, and then blended thoroughly by a 

stirring rod. The pot life of the catalyzed paint with the viscosity of ~ 100 cps was about 

2 hours at 25°C. The 1010 carbon steel panels (size, 6 cm x 6 cm) were employed as the 

substrates. Prior to depositing the paint, the surfaces of the substrates were scoured with 

an aceton-soaked tissue to remove any contaminants. In preparing the coating film over 

the cleaned steel surfaces, the steel panels were dipped into the catalyzed paint at room 
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temperature, and withdrawn slowly. The paint-wetted panels then were left for 24 hours 

to allow the paint to form a solid film. This dip-withdraw-curing process was repeated 

twice more. The average thickness of the film deposited to the panel surface was 0.185 

mm. Finally, the coated panels were exposed for up to 20 days in a 200°C autoclave 

containing a 13 % NaCl solution and 20,000 ppm CO2. 

 

3.1.2. Results  

The room-temperature curable PTFHFP coatings adequately protected carbon steel 

against corrosion in a short-term autoclave exposure test in which they were exposed to 

20,000 ppm CO2-laden 13% NaCl solution at 200°C.  However, their surfaces underwent 

some degree of hydrothermal oxidation during exposures for up to 20 days. The 

incorporation of oxygen into the coating surfaces during exposure led to the replacement 

of F atoms in the polyfluorocarbon structure for oxygen atoms, thereby causing the 

scission and breakage of the backbone C-C linkages in the following two-step 

hydrothermal oxidation schemes; 

 

 Such oxidation damage to the molecular structure generated undesirable hydrophilic 

fluorocarboxylic acid derivatives, which enhances the wetting of coating surfaces by 

water, thereby lowering their water-repellent properties. The derivatives also promoted 

the uptake of moisture by the coatings. Substituting fluorocarbons by fragmental 

fluorocarboxylic acid not only reduced the extent of the coating’s crystallinity, but also 

was detrimental to the thermal stability of the coatings. In fact, the thermal 
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decomposition temperature of fluorocarboxylic acid began at ~170°C, which was ~ 

140°C lower than that for fluorocarbon.  

Correspondingly, the ionic conductivity of coating layer increased with an extending 

exposure time; namely, the pore resistance of the unexposed coatings fell by a magnitude 

of four orders to 2.0 x 106 ohm-cm2 after a 20-day exposure.  

 

3.2. PBI Coating 

Polybenzimidazole (PBI) is a hard glassy polymer possessing outstanding thermal 

stability, including nonflammability, a high heat-deflection temperature of 435°C, and an 

upper working temperature of 260-400°C. Currently, fibrous materials made from PBI 

are widely applied to fire-resistant protective gears, firemen’s turnout coats, astronaut’s 

space suits and industrial workers’ suits [25]. Also, it is becoming increasingly attractive 

as high temperature membrane for solid polymer fuel cells that reliably operate at 

temperatures up to 200°C [26-30]. However, there has been virtually no report on its 

applicability as an anti-corrosion coating under hydrothermal conditions. 

 

3.2.1. Experimental 

A 26wt% polybenzimidazole (PBI) dissolved in a 68wt% dimethyl acetamide 

(DMAC) solvent containing 6wt% LiCl stabilizer was supplied by Celanese Acetate A.G. 

Corporation. The metallic substrate used was commercial AISI 1008 carbon steel. The 

surfaces of cleaned carbon steel were directly coated with a PBI-dissolved DMAC 

solution using a paint blush, and then left for 24 hours at ambient temperature to allow 

most of the DMAC to evaporate. After 24 hours, the PBI solution covering the surfaces 

of the metal had become converted into a solid film. To ensure that the coatings to be 

tested did not include any DMAC solvent, the PBI-coated steel panels were heated for 15 

hours in an air oven at 80°C. This coating process was repeated three times to make a 

film of ~ 6 mil thickness.  The PBI-coated steel panels (62.5 mm x 62.5 mm) then were 

exposed for up to 14 days in an autoclave containing a CO2-laden brine (0.5wt% sodium 

hydrogen carbonate,13 wt% sodium chloride, and 86.5 wt% water) at 300°C under a 

hydrothermal pressure of  8.27 MPa.  
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3.2.2. Results  

The PBI film derived from the solvent-based precursor displayed a great thermal 

stability at heat temperatures up to 600°C.  However, the imidazole rings within the 

PBI’s molecular structure were vulnerable to hydrolysis in a brine at 300°C, thereby 

promoting the rupture of their =N=C and /C-N= bonds. As seen in the hot brine-induced 

hydrolysis mechanism below, the hydrolysis led to the formation of two hydrolysate 

derivatives, biphenyl tetra-amine and benzodicarboxylic acid, causing a decline in its 

thermal stability and an increase in the susceptibility of coating’s surface to moisture. 

Such shortcoming of PBI coating in the hydrothermal environments diminished its 

maximum effectiveness in protecting the metal against corrosion.  Thus, when the PBI-

coated carbon steel panels were exposed to 300°C brine, the uptake of corrosive 

electrolyte by PBI coating progressively increased as its exposure time was extended. 

After 14 days, the coating film was delaminated from the underlying steel surfaces. 

Therefore, PBI is an inadequate material for use as a corrosion-preventing coating in 

geothermal environments at a temperature of 300°C.  
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3.3. PES Coating 

Among the high-performance polyaryl-based engineering polymers, 

polyethersuflone (PES) is known to possess excellent thermal properties including the 

deflection temperature of 200°C under a pressure of 1.8 MPa, a high glass transition 
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temperature of ~ 230°C, and processing temperature of ~320°C [31]. Although it is well 

documented that exposure to UV radiation causes photo-degradation of the PES film 

[32,33], two critical factors, its stability at high temperature and its solubility in an 

organic solvent at relatively low temperature of 90°C, urged us to evaluate its potential as 

a low-temperature curable, corrosion-preventing coating for the joint areas in a hot brine 

environment. 

 

3.3.1. Experimental 

Solvay Advanced Polymers, LLC., supplied the polyethersulfone (PES) 

amorphous polymer as a powder. The N-methyl pyrrolidone (NMP) solvent used to 

dissolve the PES was obtained from Lyondell Chemical Corp. Assuming that the surface 

of joint areas is prepared by sand blasting, the sand blasted 1010 carbon steel coupons, 

6.5 cm x 6.5 cm, were employed as the substrates. The PES powder was dissolved in the 

NMP solvent at 100°C, and the precursor solution was left for 24 hours in an ambient 

temperature before using it. Four formulations were prepared as the solvent-based 

coatings with PES/NMP weight ratios of 5/95, 10/90, 15/85, and 20/80. The surfaces of 

the coupons were coated with a PES-dissolved NMP solution using a paintbrush, and 

then left for 24 hours at ambient temperature to allow most of the NMP to evaporate; 

after this time, the PES solution covering the surfaces of the metal had become converted 

into a solid film. To ensure that these coatings did not retain any NMP solvent, the PES-

coated steel panels were heated for 10 hours in an air oven at 80°C. This coating process 

was repeated four times to make films  ~ 25 µm thick for the 5/95 ratio, ~ 48 µm for the 

10/90 ratio, ~74 µm for the 15/85 ratio, and ~ 100 µm for the 20/80 ratio. The coated 

coupons were exposed for up to 15 days in an autoclave containing a CO2-laden brine 

(0.5 wt.% sodium hydrogen carbonate, 13 wt% sodium chloride, and 86.5 wt% water) at 

200°, 250°, and 300°C.  

 

3.3.2. Results  

Among a series of amorphous polyethersulfone (PES) polymer-dissolved N-methyl 

pyrrolidone (NMP) solvent precursor systems, one consisting of 15wt% PES and 85wt % 

NMP proved to be the most effective in fabricating a coating film for protecting carbons 
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steel against corrosion. When the PES films were exposed in brine at 200°, 250°, and 

300°C, their surfaces underwent hydrothermal oxidation. At 200°C, the incorporation of 

some oxygen into the PES structure led to the rupture of sulfone linkages within PES, 

causing the formation of intermediate benzosulfone hydroperoxide, which was converted 

eventually into benzosulfonic acid as the oxidation derivative. Increasing the brine 

temperature to 250°C that incorporated more oxygen, not only markedly promoted the 

sulfone → benzosulfonic acid conformational transformation, but also brought about the 

scissure of  C-C, C=C, and C-H bonds in the phenyl rings, thereby resulting in their 

opening. In addition, a substantial number of the ether linkages within PES were broken 

as the temperature was further increased to 300°C; 
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This breakage promoted the ether → benzophenol-type oxidation derivative 

transformation, while the two other oxidation-associated conformational changes, sulfone 

→ benzosulfonic acid and ring opening, still continued. In considering the corrosion-

preventing performance of coatings, the considerable attention must be paid to these 

oxidation derivatives and to ring opening that generates the functional hydroxyl and 

carbonyl groups because they both enhance the magnitude of susceptibility of the 

coatings’ surfaces to moisture. Thus, in a 200°C brine environment, PES coating of ~ 74 

µm thick adequately protected the carbon steel against corrosion because of minimum 

hydrothermal oxidation. In contrast, at ≥ 250°C, the maximum efficacy of the coatings in 

preventing the corrosion was significantly diminished by their severe oxidation.   

 

3.4. CAC-filled SAL Coating 

In our two previous studies on the effectiveness of hydraulic cement-type fillers in 

improving the hydrothermal stability of styrene/acrylonitril/trimethylopropane 

trimethacrylate and polyester/styrene copolymers [34-36], we incorporated an appropriate 
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amount of calcium silicate cement (CSC) into the copolymer. The hydrothermal reaction 

between the Ca ions liberated from CSC filler and the ester groups in copolymer at 240°C 

led to the formation of Ca-complexed carboxylate compounds that were responsible for 

improving the hydrothermal stability of this copolymer. 

 On the other hand, a mixture of water-borne latex materials, such as the 

poly(vinyl acetate), polychloroprene, polymethacrylates, poly(vinyl choloride) and the 

copolymers of polystyrene, polybutadiene, and polyacrylonitirile, made by emulsion 

polymerization, is widely used in hydraulic cements to improve their mechanical 

properties, chemical resistance, and water proofing.  

Based upon information described above, our particular interest is to assess the 

potential of mixed slurries of styrene acrylic latex and calcium aluminate cement (CAC) 

filler instead of using CSC as room temperature-curable high temperature performance 

coatings for joint areas. 

 

3.4.1. Experimental 

Noveon, Inc supplied the water-borne styrene acrylic latex (SAL, Trade Name, 

HYCA®26-1265). Calcium aluminate cement (CAC, Secar 60) used as the hydraulic 

filler was obtained from the Lafarge Aluminate Corp. The CAC contained two major 

oxides, 69.8-72.2 % aluminum oxide and 26.8-29.2 % calcium oxide. The filler had a 

surface area of 3800-4400 cm2/g, and a particle size of < 90 µm. An x-ray diffraction 

(XRD) analysis revealed that mineralogically it consisted of crystalline calcium 

monoaluminate (CaO.Al2O3, CA) as the principal component, calcium dialuminate 

(CaO.2Al2O3, CA2) as the secondary component, and pervoskite (CaTiO3) as the minor 

one. The metallic substrate used was commercial AISI 1008 carbon steel. Five slurries 

made with SAL/CAC ratios of 100/0, 80/20, 60/40, 40/60, and 30/70, by weight, were 

evaluated.  The slurries were prepared in a shear-blender to uniformly distribute the CAC 

filler in the latex medium. In preparing the test samples, the slurries were directly painted 

on to the alkali-cleaned carbon steel coupons (65 mm x 65 mm), and then left for 24 

hours at room temperature to solidify the slurry. This coating process was repeated 

several times to obtain coating thicknesses ranging from 0.9 to 1.2 mm. For comparison, 

CAC slurry made with a water/CAC ratio of 0.5 also was deposited on the steel’s surface. 
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The coated coupons then were exposed for up to 21 days in an autoclave containing 0.05 

M Na2CO3-laden water at 250°C.  

 

3.4.2. Results  

When water-borne styrene acrylic latex (SAL) was mixed with the calcium 

aluminate cement (CAC) as hydraulic filler at room temperature, the setting time of SAL 

depended on the content of CAC; namely, an increase in its content shortened the pot-life 

of SAL. For instance, the setting time of the slurry made with the SAL/CAC ratio of 

30/70 by weight, which was the highest content of CAC in this test series, was only a 100 

min after mixing these two components. The decreasing content of CAC, as in the 40/60 

ratio slurry, extended setting time to ~ 420 min, corresponding to ~ 320 min delay 

compared with that of the 30/70 ratio. Among the 100/0, 80/20, 60/40, 40/60, and 30/70 

ratios, the surface of the slurry made with the 30/70 ratio was converted into the solid 

state within 240 min at room temperature. This mixture exhibited the lowest magnitude 

of susceptibility to moisture, suggesting that the surface of the SAL coating became more 

hydrophobic as the content of CAC was increased. 

 In the CO2-laden hydrothermal environment at 250°C, the carboxylic acid, -

COOH, groups within SAL hydrothermally reacted with the Ca2+ and OH- ions 

dissociated from the hydrolysis of CAC to form the Ca-complexed carboxylate group-

containing SAL (Ca-CCG-SAL). Concurrently, the reaction between Ca2+ and CO3
2- led 

to the formation of crystalline calcite, CaCO3. These two reactions caused the depletion 

of Ca in the two calcium aluminate reactants in the CAC, calcium monoaluminate 

(CaO.Al2O3, CA) and calcium dialuminate (CaO.2Al2O3, CA2). The Ca-destitute CA and 

CA2 then were transformed into crystalline boehmite, γ-AlOOH. The carboxylic acid → 

Ca-complexed carboxylate group transition was completed in the first two hours of 

autoclave exposure. In contrast, the CaCO3 and beohmite crystals grew continuously 

throughout a 21-day autoclaving period.  

 The slurry made with 30/70 ratio displayed a great potential as a room 

temperature-curable anti-corrosion coating for heat exchanger/sheets and pipe/pipe joints. 

The following three major factors of this coating contributed significantly to mitigating 

the corrosion of carbon steel in CO2-laden geothermal environment at temperatures up to 

 91



250°C: First was the enhancement of the thermal stability of bulk SAL from 320°C to 

415°C by its transformation into the Ca-CCG-SAL polymer; second was the conversion 

of the porous structure in the non-autoclaved coating into the densified one due to the 

growth of crystalline calcite and boemite with increasing autoclave time; and, third was 

its good adherence to the steel’s surface. The integrity of these three factors provided a 

minimum uptake of corrosive electrolytes by the coating and the inhibition of the 

cathodic oxygen reduction reaction at the corrosion site of steel. In the former, the extent 

of corrosive ionic conductivity through the coating layer was considerably reduced as the 

autoclaving time was extended (Figure 37). This fact strongly demonstrated that this 

SAL/CAC hybrid coating system has a self-advancing characteristic that enhances its 

ability to protect the steel against corrosion during autoclaving. 
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Figure 37.  Pore resistance, Rp, of various coatings plotted as a function of autoclaving 
time. 
3.5. Three-mo.-Long Field Exposure Tests 

Based upon the information described above, two potential coating systems, PES and 

CAC-filled SAL, were selected to conduct a short-term field validation test at Mammoth 

Power Plant operating at brine temperature of ~ 160°C. To conduct this field test, the 
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carbon steel coupons (1-in. wide x 3-in. long) were coated with these materials. The 

thickness of coatings ranged from 0.3 to 0.8 mm. The results revealed that the PES 

coating failed after three months exposure; in contrast, the CAC-filled SAL coating 

withstood this geothermal environment.  

 

3.6. Conclusions 

1. The appearance of room-temperature-curable poly(tetrafluoroethylene) / 

(hexafluoropropylene) (PTFHFP) coating after 20 days exposure to 200°C brine 

revealed that they adequately protected the underlying steel substrate against 

corrosion in this short-term exposure. However, the superficial layer of coating 

suffered hydrothermal oxidation, leading to conformational transformation of the 

fluorocarbon structure into a fragmental fluorocarboxylic acid derivative as the 

oxidation reaction product. This transformation generated three undesirable 

features; 1) an increase in the susceptibility of the coating surfaces to moisture, 2) 

a decline in the thermal stability of the coatings, and 3) a reduction of the 

crystallinity of the polymer. 

2. A room-temperature film-forming polybenzimidazole (PBI) coating displayed 

thermal stability at temperatures up to 600°C. However, when its film was 

exposed to 300°C brine, it underwent hydrolysis. This shortcoming lowered the 

film’s maximum effectiveness in minimizing the rate of transportation through it 

of corrosive electrolytes in hydrothermal environments. As a result, the PBI 

coating film was hydrothermally degraded, and it delaminated from the 

underlying steel substrates after a 14-day exposure. 

3. A ~ 75 µm thick polyethersulfone (PES) coating performed well in protecting the 

steel against corrosion in brine at 200°C. However, at ≥ 250°C, the PES 

underwent severe hydrothermal oxidation that caused the cleavage of sulfone- and 

ether-linkages, and the opening of phenyl rings. These, in turn, led to sulfone → 

benzosulfonic acid and ether →  benzophenol-type oxidation derivative 

transformations, and the formation of carbonyl-attached open rings, thereby 

resulting in the incorporation of the functional groups, hydroxyl and carbonyl, 

into the coating. The presence of these functional groups raised concerns about 
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the diminutions in water-shedding and –repellent properties that are important 

properties of the anti-corrosion coatings; such changes were reflected in an 

enhancement of the magnitude of susceptibility of the coatings’ surfaces to 

moisture.  Consequently, the disintegration of the PES structure by hydrothermal 

oxidation was detrimental to the maximum efficacy of the coating in protecting 

the steel against corrosion, allowing the corrosive electrolytes to infiltrate easily 

through it.    

4. Hydrothermally self-advancing hybrid material, which was prepared by blending 

two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and 

calcium aluminate cement (CAC) as the hydraulic filler, was identified as the 

most promising room-temperature curable anti-corrosion coating for HX/sheet 

and pipe/pipe joint areas in CO2-laden geothermal environments at 250°C. The 

following two major factors supported the self-improving mechanisms of the 

coating during its exposure in an autoclave: First was the formation of a high 

temperature stable polymer structure of Ca-complexed carboxylate groups 

containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and 

CAC; second was the growth with continuing exposure time of crystalline calcite 

and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted 

the conversion of the porous microstructure in the non-autoclaved coating into a 

densified one after 7 days exposure. The densified microstructure not only 

considerably reduced the conductivity of corrosive ionic electrolytes through the 

coatings’ layers, but also contributed to the excellent adherence of the coating to 

underlying steel’ s surface that, in turn, retarded the cathodic oxygen reduction 

reaction at the corrosion site of steel. Such characteristics including the minimum 

uptake of corrosive electrolytes by the coating and the retardation of the cathodic 

corrosion reaction played an important role in inhibiting the corrosion of carbon 

steel in geothermal environments.  

3.7.Publications 

• Sugama, T. “Hydrothermally self-advancing Hybrid Coatings for Mitigating 
Corrosion of Carbon Steel”, BNL publication (in press). 
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Geothermal Environemt”, BNL publication (in press). 

 
• Sugama, T., “Hydrothermal Degradation of Polybenzimidazole Coating”, Matter 

Letters, 58, 1307-1312 (2004). 
 

• Sugama, T. and Gawlik, K., “Poly(tetrafluoroethlyene)/(hexafluoropropylene) 
Coatings for Mitigating the Corrosion of Steel in a Simulated Geothermal 
Environment”, Int. J. Prog. In Organic Coatings, 42, 202-208 (2001). 

 
 

4. Coatings for Wellhead Components 

 As described in the Introduction, the wellhead components encountered very 

harsh environment with a flow velocity of ~ 3 m/sec of brine at 250°C. If their 

components were made of inexpensive carbon steel instead of titanium alloy-based 

metals, 250°C hydrothermal stable coatings would be needed to protect the component’s 

surface against corrosion. Thus far, three different coatings were evaluated: One was the 

titanium carbonitride [(Ti(CN)] coatings by chemical vapor deposition (CVD) 

technology; the second was the nickel-aluminum (Ni-Al) coatings by flame-spray 

technology; and the third was the PPS/Clay coatings by nanocomposite technology. 

 

4.1. CVD-Titanium Carbonitride  

 Non-oxide titanium nitride (TiN) and titanium carbide (TiC) coatings deposited 

by  chemical vapor deposition (CVD) are currently used as a protective barrier in 

machine components because of their great wear and chemical resistances as well as their 

excellent thermal stability [37]. Considering the coating technologies, one of the major 

advantages of CVD is the fact that there is no requirement for sintering in fabricating 

non-oxide ceramic films. The films are directly deposited onto the metal surfaces by 

phase transformation from the raw vapors or gases to the solid in a hot-wall reactor. The 

thickness of the films is one important key to improving their ability to protect the metal 

substrates against wear, oxidation, and corrosion; increasing the coating’s thickness 

extends their useful life as a protective barrier.  

 CVD at a moderate temperature between 700Ε and 900°C can fabricate thicker 

coating layers compared with those produced by conventional CVD-processes at a higher 

 95



deposition temperature of > 900ΕC. This technology called moderate temperature-CVD 

(MT-CVD) significantly extended their potential application in protecting machine 

components, such as carbide milling inserts, carbide cutting tools, saws and blades; a 

lower temperature mitigates thermal stress on metal substrates, leading to the possibility 

of depositing thicker coating layers [38].   

Thus, the objective of the present study was to assess the usefulness of the MT-

CVD-derived titanium carbonitride, Ti(CN), coatings consisting of the combined phases 

of TiN and TiC, as corrosion/abrasive wear-resistant barriers for mild carbon steels in a 

low pH, hypersaline brine geothermal environment at a hydrothermal temperature of 

250ΕC. 

 

4.1.1. Experimental 

The MT-CVD Ti(CN) coated specimens were prepared by Sylvester Bernex 

Company, under the following deposition conditions: The CRS panels, 6.25 x 6.25 cm in 

size and 1 mm in thickness, to be coated were held in an externally heated retort called a 

hot-wall reactor. The acetonitrile (CH3CN)-titanium tetrachloride (TiCl4) system was 

used as a precursor for depositing Ti(CN) onto CRS surfaces. The vaporized mix 

precursor was introduced through a gas distribution system into the reactor. The flow 

velocity of reactive chemical vapor was adjusted by controlling the flow rate of the H2 

carrier gas. All the depositions were made in the range of 700Ε to 900ΕC under a 

pressure of ~ 0.03 MPa. The chemical reaction occurring between these gaseous phases 

to deposit Ti(CN) onto the CRS surfaces may be hypothetically expressed as 2TiCl4 + 

CH3CN + 9/2 H2 6 TiN + TiC + CH4 + 8HCl [37]. Two different thicknesses, 4 and 12 

µm, of the coating films were deposited. The coated and uncoated CRS panels were 

exposed in an autoclave containing a pH 1.68, brine (1 wt% H2SO4-13 wt% NaCl-86 

wt% water) at temperature of 250ΕC under a pressure of 1.45 MPa.  

 

4.1.2. Results  

Although the effectiveness of Ti(CN) in mitigating the rate of corrosion of steel 

depended on its thickness , there were two other critical factors: First, Ti(CN) was 

susceptible to oxidation reactions with aqueous steam. This reaction led to the 
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transformation of Ti(CN) into TiO2 scales. Furthermore, the TiO2 scales had chemical 

affinity for HCl yielded by a reaction between H2SO4 and NaCl in acid brine, forming a 

water-soluble TiCl4 salt, which dissolves in the aqueous media. Thus, the hot acid brine 

corroded the Ti(CN) coatings through the processes of oxidation (TiO2) 6 chlorination 

(TiCl4) 6 dissolution. Second, there existed inherent defects and pores in the CVD-

derived coating layers, allowing the corrosive species to infiltrate easily. In fact, the 

growth of steel’s corrosion products, such as Fe2O3, FeCl3, and Fe3O4, beneath the 

coating layers caused delamination and buckling of the coatings.  

 

4.2. Flame-sprayed Nickel-Aluminum (Ni-Al) 

Nickel-aluminum (Ni-Al) coatings applied by flame-spray coating technology are 

very attractive because they not only bond well to the metal surfaces, but also exhibit 

good plastic deformation, great wear resistance, a coefficient of thermal expansion 

similar to that of steels, and excellent thermal conductivity [39,40].  

The emphasis in this present work was directed toward assessing the potential 

application of flame-sprayed Ni-Al coating to the wellhead components. The research 

therefore focused on investigating the changes in chemistry and microstructure of the Ni-

Al coating after exposure in the simulated geothermal environment. The coated carbon 

steel panels were exposed to a corrosive solution consisting of 1.0 wt% H2SO4, 13.0 wt% 

NaCl, and 86.0 wt% water at 250ΕC.  

 

4.2.1. Experimental 

The metallic substrate used was a mild carbon steel (MCS). SW 3670 wires (ASB 

Industries, Inc. Orberton, OH, with a nickel/aluminum ratio of 80/20 by weight were used 

as the starting material for the Ni-Al coatings. The coatings were applied using a hand-

held wire flame gun (Model 12E Perkin-Elmer’s Metco Westbury, NY) under an air 

pressure of 0.45 MPa onto MCS specimens of  6.25 x 6.25 cm. Before spraying, the 

surfaces of MCS were cleaned and decontaminated by blasting them with silica grits with 

a particle-size range 0.177 to 0.297 mm. The average depth of surface roughness of grit-

blasted MCS, determined by a dektak surface profile measuring system (Sloan 

Technology Co., Santsa Barbara, CA), ranged from 0.02 to 0.045 mm. Once the wire 
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reached its molten temperature in the propane flame, the molten Ni-Al particles were 

projected from a target distance of 10 cm onto the MCS surfaces. At room temperature, 

the molten Ni-Al into was completely converted into a solid coating within 1 min after 

spraying. The average thickness of this coating was 0.09 mm. The x-ray diffraction 

analysis of this coating layer revealed that the major phase composition in the layers 

consisted of the two metal components, Ni and Al. The coated test panels were exposed 

for up to 14 days in autoclave containing a low pH, hypersaline brine solution (1 wt% 

H2SO4, 13 wt% NaCl, and 86 wt% water) at 250°C. 

 

4.2.2. Results 

The inherent open pores and void spaces present in the Ni-Al coating layers 

(Figure 38) was a critical issue in protecting the underlying steel substrates against 

corrosion, allowing the corrosive ionic species to permeate the coating layer. In fact, the 

coating panels after exposure for 14 days to a hot brine solution at 250ΕC developed 

corrosion-generated stress cracks at the interfacial contact zone between the Ni-Al and 

steel (Figure 39). In addition, the coating suffered oxidation during exposure, leading to 

the growth of Al2O3 as the major scale compound, and NiO as the minor one (Figure 40).  
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Figure 38.  SEM image coupled with (A-D) EDX spectra for a cross-sectional area of 
the Ni-Al-coated steel before exposure. 
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Figure 39. SEM-EDX analyses of cross-sectional area in the Ni-Al/steel joint after 
exposure for 14 days; EDX for areas (A) and (B).  
 

 

 

 

Figure 40.  SEM-EDX for the surface of 14 days exposed Ni-Al coating. 

 

 

4.3. PPS/Clay Nanocomposite 

Since the melting temperature of PPS is around 250°C, it is reasonable to assume 

that this material is able to withstand the brine temperatures up to 200°C. Thus, our next 
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biggest challenge was to apply this composite to the carbon steel plant components 

intended to be used at higher brine temperatures above 250°C. We previously studied the 

hydrothermal stability of this composite coating autoclaved at 250°C [41]. The results 

revealed that the PPS underwent a hot brine-induced oxidation, thereby changing its 

molecular sulfide bridges to sulfone ones (Figure 41). This alteration allowed corrosive 

ionic species to permeate gradually through the oxidized PPS with increasing exposure 

time. Undoubtedly, increasing the melting temperature of PPS is an inevitable next step, 

if its potential application is targeted towards protecting carbon steel components at ≥ 

250°C against corrosion and scale deposition.  
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In trying to enhance the melting point of PPS, our particular interest was in 

adapting the polymer/clay nanocomposite technology by using montomorillonite (MMT) 

clay as the alternative nanoscale filler. As well documented by many investigators [42-

47], MMT consists of one alumina octahedral sheet sandwiched between two silica 

tetrahedral sheets in which the fundamental unit is ~ a one nanometer (nm) thick, and has 

an approximately one hundred to several hundred nm long planar structure. Importantly, 

the basal space and gallery of ~ 1.1 nm between the alumina and silica sheets includes 

various cation-exchangeable Na+, K+, Li+, or Ca2+ ions. These ions can easily exchanging 
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with organic alkyl amine cations. Thus, the initial step of preparing a nanoscale MMT 

filler is the intercalation of such organic macromolecule ion exchangers containing a long 

alkyl chain linked to ionic amine into the gallery, thereby substantially expanding the 

gallery. Then, these spaces in the gallery expanded by the intercalated alkyl amine 

macromolecules lead to promoting the co-intercalation of polymers during curing, 

followed by the exfoliation of individual silicate platelets of ~ one nm thick. 

Accordingly, the aspect ratio of the exfoliated MMT nanofiller in the polymer matrix is 

very large.  As a result, such dispersion of exfoliated MMT nanofillers significantly 

improved some properties of the polymer including mechanical properties, thermal 

stability, and fire retardation [48-51]. 

Based upon this information, the emphasis of the present study was directed 

towards investigating the usefulness of chemically treated MMT nanofillers in enhancing 

the melting point of PPS. Also, it included defining the characteristics of MMT-filled 

PPS nanocomposite material as a corrosion-preventing coating for carbon steel in a CO2-

laden brine at 300°C. 

 

4.3.1. Experimental 

Montomorillonite (MMT, 99 % purity) filler was obtained from Aldrich Chemical 

Inc; it included cation-exchangeable sodium, Na. The same company also provided the 

octadecylamine [CH3(CH2)17NH2, ODA, 90 % purity] used as a pretreatment reagent for 

the MMT. The ODA was intercalated into the basal gallery of MMT in the following 

way. First, the two components, MMT dispersed in acidulated deionized water and the 

ODA dissolved in acidulated alcoholic solution, were separately prepared. For the first 

component, 10 g of MMT was added to 500 g acidulated deionized water containing 25 g 

of 1 N HCl, and then agitated for 10 hours at 75°C. The resulting colloidal MMT 

suspension was left for 20 hours to cool to the room temperature, and then was filtered. 

The MMT particles retained by the filer were dried for 20 hours at 110°C.  Meanwhile, 

2.5 g ODA was incorporated into a solution consisting of 50 g of isopropyl alcohol (IPA) 

and 31 g of 1 N HCl, and then continuously stirred until the ODA  completely dissolved 

in this acidulated alcoholic solution, and the solution became transparent. Afterward, 50 g 

deionized water was added to the ODA solution. Next, 6.7 g of dried MMT (the first 
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component) was added to the ODA solution (the second component), and the mix was 

vigorously agitated for 5 hours at room temperature to make slurry with suspended MMT 

particles. The suspension was filtered, and the solid particles remaining on the filter were 

repeatedly washed with deionized water to eliminate any extra ODA as far as possible, 

without removing intercalated ones, and then dried for 24 hours at 110°C. The dried 

ODA-treated MMT mass was pulverized in a vibrating sample mill for use as the filler.  

A thermoplastic polyphenylenesulfide (PPS, 99.9 % purity) powder with a 

particle size of < 60 µm was obtained from Ticona. A 45wt% PPS powder was mixed 

with 55wt% isopropyl alcohol (99.9 % purity) to make a slurry coating. Then, MMT 

filler at 5, 8, 11, and 14 % by weight of the total amount of PPS was added to the slurry, 

and the mix was mechanically blended in a shear blender for 2 min to uniformly disperse 

the MMT particles throughout the slurry. The MMT-filled PPS coating systems were 

deposited on the Zn.Ph-primed coupons as follows. The primed coupons were dipped into 

the slurry, and withdrawn slowly. The slurry –covered coupons were left for 20 hours at 

ambient temperatures to volatilize the isopropyl alcohol, and simultaneously, to promote 

the conversion of the slurry layer into a sintering layer. Then, the sintered layer was 

heated in air at 310°C for 3 hours to achieve melt flow, and subsequently cooled to room 

temperature to make a solid film. This coating process was repeated three times more to 

assemble coating films ranging from 120 to 150 µm thick. 

  

4.3.2. Results 

The cation- exchange reaction between octadecylamine (ODA) and 

montomorillonite (MMT) clay led to the intercalation of ODA into the  ~ 1.1 nm gallery 

within the MMT structure. Further, this intercalation played an important role in 

promoting the exfoliation of individual nanoscale silicate plates formed by the co-

intercalation of molten polyphenylensulfide (PPS), thereby generating a nanoscale MMT-

filled PPS nanocomposite. Exfoliation not only uniformly dispersed the MMT nanofillers 

in the PPS matrix (Figure 42), but also conferred three advanced properties on semi-

crystalline PPS polymer; 1) an increase in its melting temperature by nearly 40° to ~ 

290°C (Figure 43), 2) enhanced crystallization energy, reflecting the development of a 

good interfacial bond between nanofiller and PPS (Figure 44), and, 3) abatement of its  
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hydrothermal oxidation attributed to the transformation of sulfide → sulfite linkage. 

When this advanced PPS/MMT nanocomposite was used as the high temperature 

corrosion-preventing coating of ZnPh-primed carbon steel, a coating of ~ 150 µm 

thickness adequately mitigated corrosion of steel during an exposure for 20 days in a 

300°C brine environment. In fact, there were no significant changes in the coating’s pore 

resistance, Rp, that represents the extent of the uptake of corrosive ionic species (Figure 

45). In contrast, the Rp value of the coating without MMT declined with increasing 

exposure time, meaning that prolonging the exposure time enhanced the extent of 

infiltration of corrosive ionic species through the coating layer. Also, the adherence of the 

exposed nanocomposite coating to the Zn.Ph primer was outstanding, as verified by the 

fact that the bond failure at interfaces between the coating and primer took place in the 

primer layer.     

 

 

 

Figure 42. Transmission Electron Microscopy (TEM) images of untreated 
MMT/PPS (left) and ODA-treated MMT/PPS nanocomposite (right) systems. 
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Figure 43. Shift in the melting temperature of PPS as a function of the content of 
treated MMT. 
 
 

 
Figure 44. Changes in the exothermic crystallization temperature of PPS as a 
function of the content of treated MMT. 
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Figure 45. Pore reistance, Rp, of the PPS coatings containing 0, 5, 8, 11, and 14 wt% 
treated MMT after exposure for up to 20 days in a 300°C brine. 
 

4.4. Field Exposure Test 

Based upon the information above, the 1.5-in.-diam. carbon steel elbow was 

coated with 14wt% treated MMT-filled PPS nanocomposite material (Figure 46), and 

then the coated elbow was sent to CalEnergy power plant, CA, operating the pH ~ 2, 

brine temperature of ~ 260°C to conduct the field validation test. The reason for a low pH 

environment was due to the use of concentrated HCl as scale inhibitor.  As is seen in a 

photo, all surfaces are coated with a 0.011-in.-thick multi-layer nanocompostite. The 

coating has been smoothed on the flange surfaces to allow the gaskets to seal. The field 

test of this test article is currently being undertaken.   

The original assembly of this article was specified in zirconium, which costs 

about $150 /kg. Carbon steal is about $0.50/kg, and PPS, $12/kg. If success, with the 

amount of PPS applied and the dimensions of the assembly, a preliminary cost estimate 

shows that using PPS-coated carbon steel results in a 98 % savings in material expense.  
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Figure 46. Carbon steel elbow coated with MMT-filled PPS nanocomposite being 
prepared for field exposure test at CalEnergy. 

 

 

4.5. Conclusions 

1. Titanium carbonitride [(Ti(CN)] coating was deposited onto steel surfaces by 

chemical vapor deposition (CVD) technology at a moderate temperature; then, its 

effectiveness in preventing the corrosion of steel was evaluated in an acid-brine 

geothermal environment at 200°C under a hydrothermal pressure of 1.45 MPa. 

Two undesirable attributes caused its failure as corrosion-preventing coatings: 

One factor was the susceptibility of Ti(CN) to oxidation reactions with aqueous 

steam, leading to the formation of TiO2 scale. Furthermore, this TiO2 scale then 

was transformed into water-soluble TiCl4 salt by the attack of acid brine, thereby 

resulting in its dissolution in the aqueous medium. The corrosion of Ti(CN) in 

such an environment took place through the processes of oxidation 6 chlorination 

6 dissolution. The other factor was the inherent defects and pores in the coating 

layers, allowing the corrosive species to infiltrate easily. In fact, corrosion 

products from the underlying steel were observed at several different locations in 

the coating’s surfaces. 
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2. Although the flame-sprayed Ni-Al coatings had an excellent thermal conductivity 

and a good wear-resistance, the inherent open structure of these coatings allowed 

the hot brine to permeate them easily under such pressure, causing the 

development of corrosion-induced stress cracks in the carbon steel. Furthermore, 

under 250°C brine environment, the coatings underwent oxidation with the 

formulation Al2O3 as the major scale compound and NiO as the minor one. 

 

3. Nanoscale montomorillonite (MMT) clay fillers became dispersed in a 

polyphenylenesulfied (PPS) matrix through the processes of octadecylamine 

(ODA) intercalation → molten PPS co-intercalation → exfoliation. Cooling this 

molten exfoliated material led to the formation of a PPS/MMT nanocomposite. 

The MMT nanofiller conferred three advanced properties on the semi-crystalline 

PPS: First, it raised its melting point by nearly 40°C to 290°C; second, it 

increased its crystallization energy, implying that an excellent adherence of the 

nanofillers’ surfaces to PPS in terms of a good interfacial bond; and, third, it 

abated the degree of its hydrothermal oxidation due to sulfide → sulfite linkage 

transformations. When this advanced PPS nanocomposite was used as a 

corrosion-preventing coating for carbon steel in a simulated geothermal 

environment at 300°C, a coating of ~ 150 µm thickness adequately protected the 

steel against hot brine-caused corrosion. In contrast, an MMT-free PPS coating of 

similar thickness was not nearly as effective in mitigating corrosion as was the 

nanocompsite; in fact, the uptake of corrosive ionic electrolyte by the unmodified 

coating increased with an extending exposure time.   

  

4.6. Publications 

• Sugama, T., “Polyphenylenesulfied/Montomorillonite Clay Nanocomposite 
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5. Coatings for Condensers 

Regarding the feature of air-cooled aluminum-finned steel condenser tubes, the 

aluminum fins circling the surfaces of tube are of many different shapes and structures; 

some of them have zigzag- and wave-shaped conformations. Further, the distance 

between the fins is less than 3 mm, while the height of fin attached to the steel tube is ~ 

15 mm. Thus, the coating solutions to be used are required to be an environmentally 

benign water-based solution possessing the following characteristics; 1) a low surface 

tension allowing it to easily permeate and wick through between the fins, and, 2) good 

wetting behavior on the surfaces of both aluminum and steel. Correspondingly, once the 

coating solution wetting the surfaces of the entire condenser is converted into a solid 

film, the film must form a void-free uniform, continuous thin coating layer. Also, its 

surface must be hydrophobic, yet be inert chemically to silica and silicate scales. All 

these requirements are essential in fabricating an anti-corrosion and anti-fouling barrier 

layer to cover the condenser’s entire surfaces. 

Our previous study of water-based organometallic polymer (OMP) coatings for 

replacing the environmentally hazardous conventional Cr and Pb metal-containing 

coatings was directed toward synthesizing several metal-containing siloxane polymers by 

a sol-gel technology that involves a hydrolysis-condensation reaction between the 

colloidal precursors containing various different organosilanes and the metal alkoxides. 

The synthesized OMPs then were evaluated to obtain information on their usefulness as 

corrosion-preventing coatings for lightweight metals, such as aluminum, zinc, and 

magnesium alloys [52]. Among the organosilane compounds, the 3-

aminopropyltrimethoxy-silane (APTMS) monomer was one of the effective organosilane 

precursors in ensuring that the assembled OMP coating adequately protects the metals 
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against corrosion and satisfactorily substitutes for the environmentally unacceptable 

coatings.  In polymerizing the APTMS monomer, mineral acid was used to expedite the 

rate of hydrolysis-condensation reactions of the trimethoxy-silane group, ≡Si(-OCH3)3, 

within the APTMS; ≡Si(OCH3)3 → ≡Si(OH)3 → ≡(Si-O-Si)n≡. 

Based upon the background described above, our objective in this work centered 

on assessing the ability of a new-type aminopropylsilane triol (APST) precursor made by 

substituting the trimethoxy group, (OCH3)3, within the APTMS for the triol group, (OH)3, 

to protect the air-cooled condensers against corrosion. This work also involved the 

modification of APST with the cerium (Ce) acetate. Most of our attention was focused on 

the corrosion rather than studying scale deposition and its prevention. The factors to be 

assessed included the changes in the extent of wettability and spreadability of the 

unmodified and modified APST precursors over the both aluminum and carbon steel 

substrates as a function of its surface tension, the hydrophilic and hydrophobic properties 

of unmodified and modified APST solid film’s surfaces, the thermal stability of film, the 

precursor → polymer conversion mechanism, and the adherence of films to aluminum 

and steel substrates. All the data were integrated and correlated directly with information 

obtained from the corrosion-related studies. 

 

5.1. Polyaminopropylsiloxane Coatings Derived from Unmodified APST 

5.1.1. Experimental 

Aminopropylsilane triol (APST) (25 % in water), supplied by Gelest, Inc., was 

used as a network-forming monomeric organosilane precursor. A 25% APST was diluted 

by adding an appropriate amount of deionized water to prepare a 2, 5, 10, and 20 % 

APST aqueous precursor solution. Some HCl then was incorporated into these precursor 

solutions in an attempt to adjust the pH level to within the range of 10.1 to 10.5. The 

metal substrates were 6061-T6 aluminum (Al) sheet and AISI 1008 carbon steel.  

These substrate surfaces were coated with the APST precursor solutions in the 

following sequence. First, to remove any surface contaminants, the substrates were 

immersed for 20 min at 80°C in an alkaline solution consisting of 0.4 wt% NaOH, 2.8 

wt% tetrasodium pyrophosphate, 2.8 wt% sodium bicarbonate, and 94.0 wt% water. The 

alkali-cleaned substrates were washed with deionized water at 25°C for 1 min, and dried 
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for 15 min at 100°C. Then, the substrates were dipped into a soaking bath of precursor 

solutions at room temperature, and withdrawn slowly. The wetted substrates were heated 

in an oven for 120 min at a temperature of 100°, 145°, 175°, and 200°C, to yield thin 

solid films. This dip-withdrawing-baking coating process was repeated once more to 

deposit dual films on the metal’s surface. Using the Dektak Surface Profile Measurement 

System, the thickness of the solid films deposited on the substrates from 2, 5, 10, and 20 

wt% APST solutions were ~ 0.3, ~ 0.7, ~ 1.2, and ~ 2.2 µm, respectively.  

 

5.1.2. Results 

Specific amounts of APST in this precursor solution correspondingly reduced the 

surface tension of the water. For instance, the surface tension of water declined from 73.0 

dynes/cm to 50.9 dynes/cm when 10 wt% APST was added to the water. Since the air-

cooled condenser is composed of two metal components, aluminum fins and carbon steel 

tube, the precursors must be compatible with both metals. The magnitude of the wetting 

of the metals depended on the surface tension of the precursors; namely, a low surface 

tension enhanced wetting performance. Although both metals were cleaned with the same 

hot alkali solution, the surfaces of aluminum possessed better wetting characteristics 

compared with those of the steel component (Figure 47). The precursor solution was 

transformed into a solid film by heating it, which led to condensation reactions between 

the silanol groups within the APST, thereby forming the network structure of the 

polyaminopropylsiloxane (PAPS) polymer; 
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Figure 47. Relation between surface tension and contact angle for APST solutions. 

 

We found that 175°C was the most effective heating temperature in making a 

PAPS film less susceptible to moisture. Further, a thin PAPS coating film (2.2 µm) 

adhered to both these metals, but bonded more favorably to the aluminum’s surfaces 

rather than to those of the steel. These two important properties, excellent wetting by the 

APST precursor and good adherent to the PAPS film, played an essential role in greatly 

protecting the aluminum against corrosion. In fact, the corrosion rate, milli-inches per 

year (mpy) of the bare aluminum was considerably reduced from 1.601 mpy to 1.875 x 

10-3 mpy by depositing on it a 10 wt% APST-derived PAPS film of ~ 1.2 µm thick. In 

contrast, using the same APST concentration, the effectiveness of PAPS film in reducing 

the corrosion rate of steel was much less, by nearly two orders of magnitude. These 

results were directly correlated with the salt-spraying resistance of the coated metals. By 

coating bare aluminum with 20 wt% APST-derived PAPS, its useful lifetime in a 5 % 

salt-fog chamber at 35°C was extended from only ~ 40 hours to more than 1400 hours. 

By comparison, this coating extended the useful lifespan of steel from ~ 10 hours to 216 

hours (Table 6).   
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Table 6. Salt-spray resistance tests for non-coated and coated steel and Al panels 
 

Substrate APST, wt% Salt-spray resistance, 
hours 

Steel 0 ~ 10 
Steel 2 ~ 30 
Steel 5 ~ 48 
Steel 10 ~ 120 
Steel 20 ~ 216 

Al 0 ~ 40 
Al 2 ~ 240 
Al 5 ~ 984 
Al 10 ~ 1224 
Al 20 > 1400 

 
  

 

In trying to further visualize and corroborate the information described above, the 

cut sections of two condensers with different shape of aluminum fins were coated with 5 

wt% and 20 wt% APST-derived PAPS polymers and exposed to salt-spraying chamber 

for 1440 hours. Figure 48 gave the photographs of the appearance of these exposed 

condensers. The surfaces of PAPS coating are represented by a light golden color. The 

aluminum fins of the condenser coated with a 5 wt% APST film were locally corroded, 

and some corrosion was visually observed in the internal carbon tube. In contrast, 

although some rust stain was found in the tube, using a 20 wt% APST film significantly 

reduced the rate of corrosion of the aluminum fins. This finding strongly validated that 

the useful lifetime of air-cooled condensers is extended conspicuously using an 

appropriate amount of APST precursor.  
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Figure 48. Appearance of the condensers coated with 5 wt% and 20 wt% APST- 
derived PAPS after a 60-day salt spray resistant test. 

 

 

5.2. Ce Oxide/Poly-acetamide-acetoxyl methyl-propylsiloxane 
(PAAMPS) Nanocomposite Coatings Derived from Ce acetate-modified APST 

 

Emphasis in this work was directed toward improving the corrosion-preventing 

performance of previously developed PAPS coating for the condensers. Ideally, not only 

would the improved coating adequately protect the steel tubes in the condensers against 

corrosion, but also its thin film would mitigate the corrosion of the aluminum fins. 

Several recent papers [53-58] documented that, among the rare-earth metal salts, the 

environmentally benign cerium (Ce) salt compounds displayed high potential as a 

promising alternative corrosion inhibitor for replacing the toxic hexavalent chromium 

(Cr6+) salt compounds used as a pigment in the polymer coatings and conversion coatings 

in anodizing baths. The formation of Ce oxide- and hydroxide-based passive layers over 

the aluminum and steel surfaces was thought to be the major contributor to mitigating the 

corrosion of these metals.  

Accordingly, our particular interest was to incorporate this green Ce-based salt 

compound as a corrosion-inhibiting dopant into the APST and to investigate its ability to 

enhance the potential of a polysiloxane-based polymer as a corrosion-preventing thin 
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barrier layer. From among the Ce-based salt compounds, Ce acetate was chosen for this 

study. Our study covered the changes in the extent of wettability and spreadability of the 

APST precursor solutions over both aluminum and steel substrates as a function of the 

concentration of Ce acetate dopant, the susceptibility to moisture of the surfaces of the 

polymer film derived from Ce acetate-dopted APST, the conformation of the polymers 

yielded by the reaction between the Ce acetate and APST, the thermal stability of these 

polymers, the phase identification of Ce oxides, and the chemistry at the outermost 

surface sites of the coating films. All the data were integrated and correlated directly with 

information obtained from the corrosion-related studies including the potentiodynamic 

polarization curve and salt-spraying resistance.  

 

5.2.1. Experimental 

Aminopropylsilane triol [H2N-(CH2)3-Si(OH)3, APST] (25 % in water), supplied 

by Gelest, Inc., was used as a network-forming monomeric organosilane precursor. A 

25% APST solution was diluted by adding an appropriate amount of deionized water to 

prepare a 20 % APST aqueous precursor. The cerium (Ce, III) acetate hydrate, 

(CH3CO2)3Ce.xH2O, as the corrosion-inhibiting dopant in APST, was obtained from 

Aldrich. The 0.2, 0.5, 1.0, 2.0, 3.0, 6.0, and 10.0 wt % Ce acetate was added to the 20 

wt% APST solution to prepare the standard Ce acetate-doped APST solutions. To 

fabricate a thin film, the standard solutions then were further diluted with deionized water 

to make a 0.5, 1.0, and 3.0 wt% doped solutions. The metal substrates, supplied from 

Advanced Coating Technologies, Inc., were 3003 aluminum (Al) and AISI 1008 carbon 

steel test panels. 

The surfaces of these substrates were coated with the non-doped and doped APST 

precursor solutions in the following sequence. First, to remove any surface contaminants, 

the test panels were immersed for 20 min at 80°C in an alkaline solution consisting of 0.4 

wt% NaOH, 2.8 wt% tetrasodium pyrophosphate, 2.8 wt% sodium bicarbonate, and 94.0 

wt% water. The alkali-cleaned panles were washed with deionized water at 25°C for 1 

min, and dried for 15 min at 100°C. Then, the panels were dipped into a soaking bath of 

precursor solutions at room temperature, and withdrawn slowly. The wetted substrates 

were heated in an oven for 120 min at 150°C to yield solid films. 
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5.2.2. Results 

The incorporation of Ce acetate not only reduced the pH of APST solution, 

ranging from 10.94 for 0wt% Ce acetate to 9.49 for10wt%, but also increased the surface 

tension of the APST solutions. The latter factor directly affected the changes in 

wettability and spreadability of the modified solutions on aluminum and steel surfaces; 

namely, the high surface tension reduced wetting performance. Although both metals 

were cleaned with the same manner, the surfaces of aluminum possessed better wetting 

behaviors than those of steel. The transformation of the Ce acetate-doped APST solution 

into a solid film by heating it at 150°C was carried out through the following three 

spontaneous reactions: 1) the condensation reaction between the silanol, SiOH, groups 

within the APST to assemble siloxane, Si-O-Si, linkages in the polypropylsiloxane 

polymer network, ≡Si-OH + HO-Si≡ → ≡Si-O-Si≡ + H2O; 2) the amidating reaction 

between Ce acetate and amine, NH2, group in APST to form the acetamide moiety as the 

end reaction product in the polymer network, Ce(-O-COCH3)3 + 3H2N- → 3CH3CO-NH- 

+ Ce(OH)3; and, 3) the acetoxylation reaction between the Ce acetate and the silanol 

group to make the acetoxyl methyl moiety, Ce(-O-COCH3)3 + 3≡Si-OH  →  3CH3CO-O-

Si≡ + Ce(OH)3. The last two reactions led to the in-situ conversion of Ce acetate into the 

Ce hydroxide, Ce(OH)3, derivative as the reaction byproduct, followed by its in-situ 

transformation into the nanoscale Ce3+ oxide, Ce2O3, during heating, 2Ce(OH)3 → Ce2O3 

+ 3H2O. Most of amine groups were converted into the acetamide moiety when 3wt% Ce 

acetate was added to the APST. The extent of densification of siloxane linkages depended 

primarily on the content of Ce acetate; an increase in its content caused a low 

densification of siloxane linkage because of the depletion of silanol groups in the APST 

by an increased rate of acetoxylation. Nevertheless, the polymer structure formed through 

these reactions was categorized as the poly-acetamide-acetoxyl methyl-propylsiloxane  

(PAAMPS) polymer: 
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This new self-assembling nanocomposite synthetic technology allowed us to 

uniformly disperse the nanoscale Ce oxide particles in the PAAMPA matrix. We found 

that 3wt% of Ce acetate was the best amount for conferring the maximum performance of 

a PAAMPS coating in mitigating the corrosion of both aluminum and steel. Among the 

factors governing this maximum performance was 1) a minimum content of non-reacted 

water-soluble APST and Ce acetate remaining in the coating, 2) a lower susceptibility of 

the coating’s surfaces to moisture, thereby conferring water-repellent and-shedding 

properties, 3) the precipitation of a passive Ce3+ oxide film insensitive to Cl dissolution 

over the metal’s surfaces, and, 4) excellent adherence of the coating to metal’s surfaces. 

The combination of all these factors contributed to decreasing significantly the rate of 

cathodic oxygen reduction reactions at the corrosion site of metals, so extending their 

useful lifetime. With an ~ 8.5 µm thick coating film, the useful lifetime of steel in a 5% 

salt-fog chamber at 35°C was prolonged from only ~ 10 hours to ~ 768 hours (Table 7). 

This lifetime was more than six times as long as that of steel coated with an APST 

without Ce acetate, strongly demonstrating the great effectiveness of Ce acetate in 

improving the ability of APST to protect steel against corrosion. The PAAMPS coating 

displayed a far better corrosion-preventing performance for aluminum, compared with 

that for steel. In fact, when a coating with nanoscale thickness ≤ 5 nm was deposited on 

the aluminum’s surfaces, its corrosion rate, milli-inches per year (mpy) was nearly two 

orders of magnitude lower than that of bare aluminum (Table 8). In addition, the salt-

spray resistance of aluminum coated with this nanoscale film was strikingly extended 

from ~ 40 hours to > 1440 hours.  
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Table 7. Salt-spray resistance tests for uncoated and coated steel and aluminum 
panels. 
 

Substrate Ce acetate, wt% Salt-spray resistance, 
hours 

Bare steel - ~ 10 
Steel 0 ~ 120 
Steel 0.2 ~ 165 
Steel 0.5 ~ 264 
Steel 1.0 ~ 312 
Steel 2.0 ~ 720 
Steel 3.0 ~ 768 
Steel 6.0 ~ 600 
Steel 10.0 ~ 408 
Bare Aluminum - ~ 40 
Aluminum 0 ~ 980 
Aluminum 0.2 ~ 1248 
Aluminum 0.5 ~ 1400 
Aluminum 1.0 > 1800 
Aluminum 2.0 > 1800 
Aluminum 3.0 > 1800 
 

 

Table 8. Tafel analyses for potentiodynamic polarization curves of thin films derived 
from 0.5, 1.0, and 3.0wt% (3wt% Ce acetate-modified 20wt% APST) solutions for 
aluminum panels.  
 
Substrate Ce acetate-

modified 
APST,  
wt% 

Ecorr(I = 0), 
(V) 

βa, 
(V/decade) 

βc, 
(V/decade) 

Icorr, 
(A/cm2) 

Corrosion 
rate, 
(mpy)*

Uncoated 
aluminum 

- - 0.5690 0.0903 0.3792 2.497 x  
10-7

1.070 x  
10-1

Aluminum 0.5 - 0.5429 0.0275 0.1758 2.295 x  
10-8

9.829 x 
10-3

Aluminum 1 - 0.5353 0.0358 0.2140 6.979 x  
10-9

2.989 x  
10-3

Aluminum 3 - 0.4926 0.0619 0.2055 2.810 x  
10-9

1.203 x  
10-3

mpy: milli-inches per year 
 
5.3. Field Exposure Tests 
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In our previous field tests at Mammoth power plant in 2003 and 2004, we 

evaluated the ability of the polyaminopropylsiloxane  (PAPS) polymer coating to protect 

the surfaces of air-cooled condenser components, aluminum fins and carbon steel tube, 

against corrosion, and also to minimize the deposition of brine-induced mineral scales, 

such as silica and calcium compounds, on their surfaces. In this test, the aluminum fins 

and carbon coupons were covered with PAPS films of four different thickness, ~ 2 µm, ~ 

0.5 µm, ~ 50 nm, and ~ 10 nm, and then they were exposed in the NREL-designed brine 

sprayer apparatus, installed in the maintenance building at the Mammoth power plant. 

This apparatus subjected the coatings to a 15 minutes brine wet/dry cycle consisting of 

one-minute spray of cooled brine followed by 14 minutes of drying. The test results 

revealed that under such a hostile environment the PAPS coating film must be more than 

2 µm thick, and also was required to contain corrosion-inhibiting additives, such as rare 

earth metal oxides to further improve its corrosion- and fouling-preventing performance 

on both the aluminum fins and carbon steel pipes.  

Based upon the information described above, our emphasis next shifted to 

evaluating the efficacy of PAAMPS/Ce oxide nanocomposite coating in protecting the 

aluminum fins and carbons steel coupons against corrosion in the wet/dry brine spray 

apparatus at the Mammoth. In this field test, the thickness of coating ranged from 3.5 µm 

to 10 µm. For the comparison purpose, the Ce oxide-free PAPS coating was used in this 

test.  

 

5.3.1. Experimental 

Aminopropylsilane triol [H2N-(CH2)3-Si(OH)3, APST] (25wt % in water), supplied by 

Gelest, Inc., was used as a network-forming monomeric organosilane precursor. The 

cerium (Ce, III) acetate hydrate, (CH3CO2)3Ce.xH2O, as the corrosion-inhibiting dopant 

in the APST, was obtained from Aldrich. To prepare the Ce acetate-doped APST 

precursor solutions, 3.0wt% Ce acetate was added to the 25 wt% APST solution. The 

metal substrates were aluminum fins, and AISI 1008 carbon steel test panels. 

The surfaces of these substrates were coated with the non-doped and doped APST 

precursor solutions in the following sequence. First, to remove any surface contaminants, 

the substrates were immersed for 20 min at 80°C in an alkaline solution consisting of 0.4 
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wt% NaOH, 2.8 wt% tetrasodium pyrophosphate, 2.8 wt% sodium bicarbonate, and 94.0 

wt% water. The alkali-cleaned panels were washed with deionized water at 25°C for 1 

min, and dried for 15 min at 100°C. Then, the substrates were dipped into a soaking bath 

of precursor solutions at room temperature, and withdrawn slowly. The wetted substrates 

were left for 20 hours in an atmospheric environment at room temperature to convert the 

precursor solution into a gelled film. All the gelled films then were baked in an air oven 

for 120 min at 200°C to solidify them. The coated aluminum fins and carbon steel 

coupons then were exposed in the brine spray apparatus at the Mammoth to undergo an 

extremely harsh 24,500 brine wet/dry cycle fatigue test by NREL. 

 

5.3.2. Results 

Under an extremely harsh environment, exemplified by the 24,500 brine wet/dry 

cycle fatigue test, the Ce oxide/PAAMPS nanocomposite coating, fabricated by BNL-

developed self-assembling nanocomposite technology, displayed very promising results 

in protecting two metal components, the aluminum fin (Figure 49) and carbon steel 

(Figure 50), of air-cooled condensers against corrosion, and in minimizing the deposition 

of scales. The uncoated aluminum fin and carbon steel underwent severe corrosion as 

reflected by the complete disintegration of fins and the accumulation and spallation of 

iron oxide-based corrosion scales on the carbon steel coupons. However, two critical 

issues of a further improvement of corrosion-preventing performance of this coating were 

considered: One was the poor coverage of the coating over the sharp edges of ring-shaped 

fin; we observed that most of the corrosion began at the fin’s edge. The other issue was to 

develop more effective nanoscale rare earth metal oxides in inhibiting the cathodic 

corrosion reaction of metal surfaces underneath the coating, instead of using Ce oxide. 

Regarding the latter issue, we noted that the Ce oxide nanoparticles in contact with the 

underlying fin’s surface formed an interfacial passive film coexisting with the polymer 

matrix. This passive film acted to retard the cathodic oxygen reduction reaction, 2H2O + 

O2 + 4e- → 4OH-, at the corrosion site of the aluminum fin. However, although the Ce 

oxide offered an improved performance of the coating in inhibiting this reaction, the 

high-resolution SRFT-IR analysis revealed that the corrosion product, such as Al(OH)3, 

on the fin was generated at the interfaces between the fin and coating of ~ 10 µm 
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thickness (Figure 51). This finding strongly suggested that ~ 10 µm thickness of coating 

was not enough to abate the permeation of corrosive electrolytes through it during this 

cycle testing; therefore, an effort must be made to seek other earth metal oxides that will 

further prevent the cathodic corrosion reaction at the fin/coating interfaces.  

 

 
Figure 49. Appearance of uncoated, and PAPS- and Ce oxide/PAAMPS-coated 
aluminum fins after exposure in a 24,500 brine wet/dry cycle fatigue test. 

 

Figure 50. Appearance of uncoated, and PAPS- and Ce oxide/PAAMPS-coated 
carbon steel panels after a 24,500 cycle test. 
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Figure 51. Comparison of peak intensities of Al(OH)3- and –CH2- related bands at 
3436 and 2949 cm-1, respectively, for fins coated with Ce oxide/PAAMPS of ~ 2.5 
µm, ~ 7.5 µm, and ~ 10.0 µm thickness after the cycle test.  
 
 
5.4. Conclusions 

1. A self-assembly nanocomposite synthesis technology was used to put together a 

Ce(OH)3- dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) 

organometallic polymer. Three spontaneous reactions were involved, 

condensation, amidation, and acetoxylation, between the Ce acetate and 

aminopropylsilane triol (APST) at 150°C.  An increase in temperature to 200°C 

led to the in-situ phase transformation of Ce(OH)3 into Ce2O3 in the PAAMPA 

matrix. A further increase to 250°C caused oxidative degradation of the 

PAAMPA, thereby generating copious fissures in the composite.  We assessed the 

potential of Ce(OH)3/ and Ce2O3/ PAAMPA composite materials as corrosion-

preventing coatings for carbon steel and aluminum. The Ce2O3 composite coating 

displayed better performance in protecting both metals against NaCl-caused 

corrosion than did the Ce(OH)3 composite. Using this coating formed at 200°C, 

we demonstrated that the following four factors played an essential role in further 

mitigating the corrosion of the metals: First was a minimum susceptibility of 
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coating’s surface to moisture; second was an enhanced densification of the 

coating layer; third was the retardation of the cathodic oxygen reduction reaction 

at the metal’s corrosion sites due to the deposition of Ce2O3 as a passive film over 

the metal’s surface; and, fourth was its good adherence to metals. The last two 

factors contributed to minimizing the cathodic delamination of coating film from 

the metal’s surface. We also noted that the affinity of the composite with the 

surface of aluminum was much stronger than that with steel. Correspondingly, the 

rate of corrosion of aluminum was reduced as much as two orders of magnitude 

by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of 

steel was lower than one order of magnitude.   

 

2. Under an extremely harsh environment, exemplified by the 24,500 brine wet/dry 

cycle field fatigue test at Mammoth power plant, this Ce oxide/PAAMPS 

nanocomposite coatings displayed very promising results in protecting two metal 

components, the aluminum fin and carbon steel, of air-cooled condensers against 

corrosion, and in minimizing the deposition of scales. However, two critical 

issues of a further improvement of corrosion-preventing performance of this 

coating were considered: One was the poor coverage of the coating over the sharp 

edges of ring-shaped fin; the other issue was to develop more effective nanoscale 

rare earth metal oxides in inhibiting the cathodic corrosion reaction of metal 

surfaces underneath the coating, instead of using Ce oxide.  

 
5.5. Patent 

Patent entitled “Self-assembly nanocomposite coatings” BNL Docket No. 369-

208 was filed, and this patent application was made in May 2005.  
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• Sugama, T., “Self-assembly Ce Oxide/Organopolysiloxane Composite Coatings”, 
J. Mater. Sci., (submitted). 
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6. Coatings for Steam Separators 

In our previous study [59], we evaluated the usefulness of polytetrafluoroethylene 

(PTFE) as the anti-oxidant polymeric additive to polyphenylenesulfide (PPS) coating at a 

brine temperature of 200°C. The results revealed that the PTFE not only abated the 

hydrothermal oxidation of PPS, but also made the surface of the coating less susceptible 

to moisture. The principal reason for such contribution was due to the phase segregation 

of PTFE from PPS in the melt-flowing process of these mixed polymers at 320°C; the 

segregated PTFE favorably migrated toward the outermost surface site of coating. Hence, 

the PTFE occupying the superficial layer of the coating played a very important role in 

creating two advanced properties; one was the improved hydrophobic surfaces offering 

an outstanding water repellency, and the other was a minimum uptake of oxygen by the 

coating’s surfaces, reflected in its inertness to reactions with scales. However, one 

drawback of PTFE was that its chemical inertness caused poor adherence to the organic 

polymer and metal substrates. This fact meant that blending PTFE impaired the 

outstanding adherence of PPS to these substrates. Thus, the PPS/PTFE blend polymer 

was only used in the top layer of coating deposited on the underlying bulk PPS layer 

adhering to the primed metals. allowing it to scour off easily from liner’s surfaces using 

hydroblasting cleaning device at low-pressure. Additionally, as is well known, the 

hydrophobic surfaces of PTFE had the lowest coefficient of friction corresponding to the 

lowest surface free energy among the conventional polymers [60]. Since the slippery 

surface of polymer contributes to lowering of its frictional resistance, PTFE’ s surfaces 

appear to possess good slipperiness, suggesting the potential use of this blend polymer as 

a coating for steam separators. Since the continuous operating temperature of the steam 

separator is ~ 210°C, this coating would be required to possess hydrothermal stability at 
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least of 250°C. So, if this coating withstands 300°C brine, it would guarantee that it 

would satisfactorily extend the useful lifetime of the carbons steel steam separators at 

210°C.  

Based upon the above information, emphasis in the current work was directed 

towards assessing the ability of this blend polymer system prepared by varying the ratio 

of PTFE to PPS to protect the carbon steel against corrosion in a CO2-laden brine at 

300°C. Also, we investigated the alterations in the chemical state of unblended PTFE due 

to hydrothermal oxidation after exposure to hot brine. To obtain this information, this 

study had the following two major objectives: One was assessing the changes in the 

surface energy, the degree of oxidation, and the coefficient of friction of the coatings as a 

function of exposure time to estimate the extent of slickness and water repellency; the 

other was measuring thermal decomposition and the alterations of molecular structure to 

investigate the coating’s hydrothermal stability. All the information then was integrated 

and correlated directly with the corrosion-related data obtained from AC electrochemical 

impedance spectroscopy (EIS). 

 

6.1. Experimental 

The polytetrafluoroethylene (PTFE) powder under the commercial trade name 

“SST-3H” supplied by Shammrock Technologies was used as a slip-enhancing and anti-

oxidant polymeric additive to polyphenylenesulfide (PPS); it has a particle size of ~ 40 

µm. The PPS powder with a particle size of < 20 µm was supplied by Ticone.  PTFE-

blended PPS powder, with a PPS/PTFE ratio of 90/10, 80/20, 70/30, and 60/40 by 

weight, were prepared in a rotary blender. The AISI 1008 carbon steel panels (62.5 mm x 

62.5 mm) were used as the substrate.  

As mentioned early, the PPS/PTFE blend polymer was only used as a top coating 

layer because of a poor adherence of PTFE to organic, inorganic, and metallic substrates. 

Accordingly, the coating systems deposited on the ZnPh-primed carbon steel’s surface 

consisted of multi layers, which were prepared in the following step: First, the primed 

steel was immersed in a slurry consisting of 45wt% PPS and 55wt% isopropyl alcohol, 

and then it was withdrawn. Second, the slurry-covered panel was left for at least twelve 

hours to allow the alcohol to volatize at room temperature. Finally, the panel was baked 
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for 2 hours at 320°C to ensure the melt-flow of PPS, and then was cooled off at room 

temperature. This entire process, called “dipping-withdrawing-baking-cooling”, was 

repeated to superimpose the second coating layer of PPS slurry over the first one. Further, 

this process was repeated one more time to assemble a total of three layers of PPS before 

depositing the top coating systems containing PTFE. Afterward, a top coating layer of 

100/0, 90/10, 80/20, 70/30, and 60/40 PPS/PTFE ratios was overlaid on this PPS 

underlying layer, using the same coating process. The composition of slurries for these 

PPS/PTFE blends was same as that of the single PPS, corresponding to 45wt% blend 

power and 55wt% alcohol. The thickness of these coatings without Zn.Ph primer ranged 

from 340 to 380 µm.  

 

6.2. Results 

The self-segregating character of polytetrafluoroethylene (PTFE) from the 

polyphenylenesulfide (PPS) in the melt-flowing process of PTFE/PPS blend powder gave 

it a high potential as a slip-and water repellent-enhancing, anti-corrosion coating for 

carbon steel steam separators operating at brine temperature of ~ 210°C in geothermal 

power plants. The segregated PTFE polymer occupied the outermost surface site of 

coating film. Correspondingly, the surface free energy of this blend polymer coating 

depended on the PPS/PTFE ratios; this energy significantly declined as more PPS was 

replaced by PTFE, from 24.3 mJm-1 for 100/0 PPS/PTFE ratio to 1.7 mJm-1 for 60/40 

ratio (Figure 52). In other words, the surfaces of PTFE-rich PPS coating offered 

enhanced water repellency. However, PTFE underwent hydrothermal oxidation when the 

blend polymer coating was immersed for up to 35 days in the CO2-laden brine at 300°C. 

This oxidation led to the rupture of backbone C-C linkages and C-F bonds within the 

PTFE, reflecting the transformation of PTFE’s molecular structure into an alkylated 

polyfluorocarboxylate salt complex linked to Na. Such transformation not only caused 

the increase in kinetic coefficient of friction (KCOF) and surface free energy of the 

coatings, but also impaired PTFE’s thermal stability, from a decomposition temperature 

of 481°C for unexposed PTFE to one of 438°C for 35 days of exposure. A marked 

increase in surface free energy occurred in the first 7 days exposure; beyond that time, it 

almost leveled off (Table 9).  After exposure for 14 days, the surface free energy of the 
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PTFE-rich PPS coatings made with the 70/30 and 60/40 ratios was ~ 26 and ~ 28 % 

lower, respectively, than that of the bulk PPS without PTFE. Such changes in surface free 

energy were correlated directly with the changes in the KCOF value (Figure 53); the 

increased surface free energy corresponded to the increment of KCOF value. A very low 

KCOF value of 0.19 was obtained from the 70/30 and 60/40 PPS/PTFE ratios before 

exposure, reflecting a great slipperiness of coating’s surface. This value represented a 

decrease of 47 % and 2.6-fold compared with that of the PPS surface without Teflon and 

the stainless steel (SS) surface, respectively.  When the Teflon-rich PPS was exposed to 

hot brine, the KCOF value rose by 21 % to 0.23 in the first 7 days exposure; beyond that 

time, it seemed to level off. In contrast, the friction of SS surfaces increased from 0.5 

before exposure to 0.9 after 14 days exposure, raising concerns that the enhanced surface 

asperity accompanying this increment in friction might promote the deposition of scales 

(Figure 54).          

Although the increased surface free energy and KCOF raised concerns over the 

diminution of maximum efficacy of PTFE in enhancing the water repellency and 

slipperiness of the coating, the top coating layer with 70/30 and 60/40 ratios offered great 

protection of carbons steel against corrosion in 300°C brine. In fact, even though a 

coating consisting of an underlying PPS layer and top PPS/PTFE blend layer was 

exposed for 35 days to hot brine, the PTFE-rich top layer considerably reduced the rate of 

transportation of moisture and corrosive electrolyte through the coating (Figure 55). In 

contrast, bulk PPS and PTFE-poor PPS blend top coating systems failed after 14 days 

exposure, as shown by the presence of blisters on the coated steel panels.     
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Figure 52. Changes in surface energy of 100/0, 90/10, 80/20, 70/30, and 60/40 
PPS/PTFE ratio coatings as a function of exposure time.       
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Table 9. Surface free energy and its components for various PPS/PTFE ratio 
coatings after and before exposure. 
 

Contact angle, 
degrees 

PPS/PTFE Exposure 
time 
days, Water Glycerol

Disperse 
force 
component, 
γs

d, mJm-1

 Polar force 
component, 
γs

p, mJm-1

Surface 
free 
energy, 
γs, mJm

-1

100/0 0 90.7 76.4 15.7 8.6 24.3 
 3 71.1 72.5 5.8 26.8 32.6 
 7 64.9 66.6 6.6 31.1 37.7 
 14 59.9 64.7 4.7 38.9 43.6 
90/10 0 118.1 115.6 2.3 2.9 5.2 
 3 77.3 78.6 4.9 22.7 27.6 
 7 70.0 76.5 2.1 34.7 36.8 
 14 66.6 70.0 4.8 32.3 37.1 
80/20 0 124.8 121.7 1.9 1.7 3.6 
 3 80.6 80.6 5.5 19.3 24.8 
 7 73.2 78.6 2.4 30.8 33.2 
 14 73.1 80.0 1.6 33.1 34.7 
70/30 0 129.5 125.9 1.6 1.1 2.7 
 3 84.6 82.6 6.8 15.0 21.8 
 7 77.3 81.8 2.5 27.0 29.5 
 14 75.3 81.2 1.9 30.3 32.1 
60/40 0 134.4 132.1 0.9 0.8 1.7 
 3 88.2 84.6 8.0 11.6 19.6 
 7 77.3 84.3 2.9 26.1 29.0 
 14 77.3 84.4 1.1 30.5 31.6 
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Figure 53. Changes in KCOF value of 100/0, 90/10, 80/20, 70/30, and 60/40 

PPS/PTFE ratio coatings as a function of exposure time. 
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Figure 54. Comparison of KCOF values of PPS, Teflon-rich PPS (60/40 PPS/PTFE 
ratio), stainless steel, and carbon steel surfaces before and after exposure.  
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Figure 55. Changes in pore resistance, Rp, of 100/0, 90/10, 80/20, 70/30
and 60/40 PPS/PTFE ratio coatings as a function of exposure time. 
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6.3. Conclusions 

The superficial layer of the assembled coating was occupied by PTFE self-

segregated from PPS during the melt-flowing process of this blend polymer; it conferred 

an outstanding slipperiness and water repellent properties because of its low friction and 

surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, 

transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex 

linked to Na. Although such molecular transformation increased the friction and surface 

free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer 

significantly contributed to preventing the permeation of moisture and corrosive 

electrolytes through the coating film, so mitigating the corrosion of carbon steel.  

 

6.4. Publication 
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• Sugama, T. and Jung D., “Polytetrafluoroethylene-rich Polyphenylenesulfide 
Blend Top Coatings for Mitigating Corrosion of Carbon Steel in 300°C Brine”, 
Int. J. Prog. in Organic Coatings, (submitted). 

 
 
 
 
 

7.  Impact of Work   
Nanocomposite and surface processing technologies developed in this project led 

to the creation of the upgraded coating systems with five significantly advanced 

properties, 1) the increase in coating’s hydrothermal stability to > 250°C, 2) the 

considerable reduction of hydrothermal oxidation, 3) the extension of useful lifetime of 

aluminum and carbon steel to more than 1000 hours in very corrosive environment, 4) the 

generation of very low friction surface, and 5) the mitigation of scale depositions. In 

addition, new hydrothermally self-improving hybrid coatings provided the likelihood as a 

low-temperature curable corrosion-preventing coating for the joint areas. Since these 

innovative coating technologies are aimed at protecting the inexpensive carbon steel- and 

aluminum-based plant components against corrosion and fouling, contingent upon their 

scale-up success, they will not only result in a considerable reduction of the needed 

capital investment, but also decrease the costs of operations and maintenance, 

contributing to geothermal technologies goal of nearly 20 % reduction of power plant 

economic factors in 2010.     
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