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Abstract. I review recent developements in lattice QCD at  finite temper- 
ature, including the determination of the transition temperature Tc, equation 
of state and diffenet static screening lengths. The lattice data suggest that 
at temperatures above 1.5Tc the quark gluon plasma can be considered as gas 
consisting of quarks and gluons. 
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1. Introduction 

One of the most challenging question in particle and nuclear physics is the one con- 
cerning the properties of strongly interacting mater at extremely high temperatures 
and densities. We expect that at sufficiently high temperatures and densities the 
strongly interacting matter undergoes a transition to a new state, where quarks and 
gluons are no longer confined in hadrons, and which is therefore often referred to 
as a deconfined phase or Quark Gluon Plasma (QGP). We would like to know at 
which temperature the transition takes place and what is the nature of the transition 
as well the properties of the deconfined phase, equation of state, static screening 
lengths, transport properties etc. Lattice QCD can provide first principle calcula- 
tion of the transition temperature, equation of state and static screening lengths 
(see Ref. [I, 21) for recent reviews. Calculation of transport coefficients remains an 
open challenge for lattice QCD (see discussion in Refs. [3,4]). 

One of the most interesting question for the lattice is the question about the 
nature of the finite temperature transition and the value of the temperature Tc where 
it takes place. For very heavy quarks we have a 1st order deconfining transition. 
In the case of QCD with three degenerate flavors of quarks we expect a 1st order 
chiral transition for sufficiently small quark masses. In other cases there is no 
true phase transition but just a rapid crossover. Lattice simulations of 3 flavor 
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QCD with improved staggered quarks (p4) using NT = 4 lattices indicate that the 
transition is first order only for very small quark masses, corresponding to  pseudo- 
scalar meson masses of about 60 MeV [lo]. A recent study of the transition using 
effective models of QCD resulted in a similar estimate for the boundary in the quark 
mass plane, where the transition is 1st order 181. This makes it unlikely that for the 
interesting case of one heavier strange quark and two light u, d quarks, corresponding 
to 140 MeV pion, the transition is 1st order. However, calculations with unimproved 
staggered quarks suggest that the transition is 1st order for pseudo-scalar meson 
mass of about 300 MeV [ll]. Thus the effect of the improvement is significant and 
we may expect that the improvement of flavor symmetry, which is broken in the 
staggered formulation, is very important. But even when using improved staggered 
fermions it is necessary to do the calculations a t  several lattice spacings in order 
to establish the continuum limit. Recently, extensive calculations have been done 
to clarify the nature of the transition in the 2+1 flavor QCD for physical quark 
masses using Nt = 4, 6, 8 and 10 lattices. These calculations were done using the 
so-called stout improved staggered fermion formulations which is even superior to 
other more commonly used improved staggered actions (p4, asqtad) in terms of 
improvement of flavor symmetry. The result of this study was that the transition 
is not a true phase transition but only a rapid crossover [12]. Even-though there 
is no true phase transition in QCD thermodynamic observables change rapidly in 
a small temperature interval and the value of the transition temperature plays an 
important role. The flavor and quark mass dependence of many thermodynamic 
quantities is largely determined by the flavor and quark mass dependence of T,. 
For example, the pressure normalized by its ideal gas value for pure gauge theory, 
2 flavor, 2+1 flavor and 3 flavor QCD shows almost universal behavior as function 
of T/Tc [9]. 

The chiral condensate ($$) and the expectation value of the Polyakov loop (L )  
are order parameters in the limit of vanishing and infinite quark masses respectively. 
However, also for finite values of the quark masses they show a rapid change in 
vicinity of the transition temperature. In Figure 1 I show the chiral condensate 
and the Polaykov loop as function of the temperature calculated for the p4 action 
and light quark mass ml = O.lm,, with m, being the physical strange quark mass. 
Note that in Figure we show the renormalized Polyakov loop defined as in Ref. 
[13]. The details of the calculations calculated can be found in Ref. [30]. We see 
that the chiral condensate and the renormalized Polyakov loop show rapid change 
a t  Tc suggesting that the chiral and the deconfinement transitions happen a t  the 
same temperature. To determine the value of the transition temperature and to 
study the interplay between the chiral and the deconfinement transition one usually 
calculates the disconnected part of the chiral susceptibility and the Polyakov loop 
susceptibility defined as 

as function of the of the bare gauge coupling ,b = 6 / g 2 .  N, is the spatial size 
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Fig. 1. The renormalized Polyakov loop LTen(T) [30] and the chiral conden- 
sate normalized to the zero temperature chiral condensate [15] as function of the 
temperature calculated on 1 6 ~  x 4 lattices. 

of the lattice. The susceptibilities have a peak at some pseudo-critical coupling 
PC. The chiral and the Polyakov loop susceptibility have been studied using lattice 
with temporal extent N, = 4 and NT = 6 and several values of the light quark 
masses ml = 0.05ms, O.lm,, 0.2m, and 0.4ms [7]. Note that the smallest value 
of ml correspond to pion masses of about 140MeV. We find that within accuracy 
of the calculations pseudo-critical couplings PC determined from the disconnected 
part of the chiral susceptibility and the Polyakov loop susceptibility coincide. This 
again shows that the chiral and the deconfinement transition happen at the same 
temperature. To determine the transition temperature we have to calculate the 
lattice spacing in terms of some physical quantity. In the past the string tension 
has been used to set the lattice spacing. A more accurate determination of the 
lattice spacing is provided by the so-called Sommer scale ro defined from the static 
quark anti-quark potential as 

Analysis of the quarkonium spectroscopy on the lattice lead to the value ro = 
0.469(7)fm [16]. In figure 2 I show the transition temperature in units of ro for 
different quark masses [7] and two different lattice spacings, corresponding to NT = 4 
and NT = 6 lattices. Note that the value of Tc calculated at two different lattice 
spacings are clearly different. The thin error-bars in Figure 2 represent the error in 
the determination of the lattice spacing a, i.e. the error in ro/a. There is also an 
error in the determination of the gauge coupling constant PC = 6/92. The combined 
error is shown in Fig. l b  as a thick error-bar. For Nt = 4 calculations the error 
is dominated by the error in lattice spacing, while for Nt = 6 it is dominated 
by the error in 8,. With the data on roTc a chiral and continuum extrapolation 
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Fig. 2. The transition temperature in units of the TOT, from Ref. [7] as function 
of the pion mass. 

has been attempted using the most simple Ansatz roTc(m,, Nt) = r o ~ c ( ~ ~ ~ %  
A ( ~ ~ r n , ) ~  + BIN:. From this extrapolation on gets the continuum value T,ro = 
0.457(7) [+8] [-21 for the physical pion mass m,ro = 0.321 [7]. The central value was 
obtained using d = 1.08 expected from O(4) scaling. To test the sensitivity to the 
chiral extrapolations d = 2 and 1 have also been used. The resulting uncertainty 
is shown as second and third error in square brackets. Using the best know value 
of ro = 0.469(7)fm we obtain Tc = 192(7)(4) MeV which is higher than the most 
of the previous values. It  is also significantly higher than the chemical freezout 
temperature at RHIC [17]. Note that the large value of the transition temperature 
is mostly due to the large value of the string tension which is related to the Sommer 
scale as r o f i  = 1.114(4) [IS]. Using the above value of TO we get fi = 468 MeV 
which is more than 10% larger than the value fi = 420 MeV which was used in 
Ref. [19] and let to Tc = 173(8)MeV. 

Lattice calculations of equation of state were started some twenty years ago. In 
the case of QCD without dynamical quarks the problem has been solved, i.e. the 
equation of state has been calculated in the continuum limit [20]. At temperatures 
of about 4Tc the deviation from the ideal gas value is only about 15% suggesting that 
quark gluon plasma at this temperate is weakly interacting. Perturbative expansion 
of the pressure, however, showed very poor convergence at this temperature [21f. 
Only through the use of new resummed perturbative techniques it was possible to get 
agreement with the lattice data [22-241. To get a reliable calculation of the pressure 
and the energy density improved action have to be used [25,26]. Very recently 
calculations with the so-called asqtad and p4 action have been done on lattices with 
temporal effects NT = 4 and 6 [27,28]. In Figure 3 the interaction measure E - 3p 
is shown as function of the temperature for the p4 action. Calculations performed 
for N, = 4 and NT = 6 give similar results. This means that cutoff effects are 
under control. Furthermore, there is a good agreement between p4 and aqstad 



Progress in Lattice QCD 5 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 
I I 

m 
I 

Tro - 
(e-3p)/T4 

f: p4: N e 4  -t- 
I + @: 

6 - t -  

n . * . RBC-BI preliminary 
I 

I* 

+a  I. .I TJMeV] 
I I, 

Fig. 3. The interaction measure calculated far the p4 action [28]. 

calculations. We see that close to Tc the interaction measure is very large, which 
means that quark gluon plasma a t  this temperature is very far from the conformal 
limit. At high temperature the value of the interaction measure is consistent with 
the perturbative estimate. 

2. Spatial correlation functions 

To get further insight into properties of the quark gluon plasma one can study 
different spatial correlation functions. One of the most prominent feature of the 
quark gluon plasma is the presence of chromoelectric (Debye) screening. The easiest 
way to study chromoelectric screening is to calculate the singlet free energy of static 
quark anti-quark pair (for recent review on this see Ref. [29]), which is expressed 
in term of correlation function of temporal Wilson lines 

exp(-Ft (r, T ) / T )  = T'r(w(r)wt (0)). 

L = TrW is the Polyakov loop. In absence of dynamical quarks the free energy 
grows linearly with the separation between the heavy quark and anti-quark in the 
confined phase. In presence of dynamical quarks the free energy is saturated at 
some finite value at  distances of about 1 fm due to string breaking [29,30]. Above 
the deconfinement temperature the singlet free energy is exponentially screened, at 
sufficiently large distances [31], i.e. 

g 2 ( T )  exp(-rnr,(T)r). Fl .(r, T) = F, (T )  - - - 
3 4nr 

The inverse screening length or equivalently the Debye screening mass mD is pro- 
portional to the temperature. In leading order of perturbation theory it is rnD = 
J w 3 9 ( ~ ) ~ .  Beyond leading order it is sensitive to the non-perturbative dy- 
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Fig. 4. The Debye mass calculated in quenched QCD [31] and 2 flavor QCD [32] 
The lines show the leading order fit together with its uncertainty. 

namics of the static chromomagnetic fields. The Debye screening mass has been 
calculated in pure gauge theory (Nf = 0) [31] and in 2 flavor QCD (Nf = 2) [32] 
and is shown in Figure 4 at different temperatures. The temperature dependence of 
the lattice data have been fitted with the simple Ansatz motivated by the leading 
order result : mo(T) = A J ~ c J ( T ) T .  Here g(T) is the two loop running 
coupling constant. This simple form can fit the data very well and we get A 21 1.4 
both for Nf = 0 and Nf = 2. Thus the temperature dependence as well as the flavor 
dependence of the Debye mass is given by perturbation theory. We also see that 
non-perturbative effects due to static magnetic fields significantly effect the elec- 
tric screening, resulting in about 40% corrections. However, the non-perturbative 
correction is the same in full QCD and pure gauge theory. Let us note that in 
SU(2) gluodynamics the corrections to the Debye mass are even larger, the Debye 
mass is 1.6 times larger than the leading order result [33-351. This situation can 
be understood in terms of dimensionally reduced effective theory, where the effect 
of hard modes with momentum p - nT is integrated out and which contain only 
static electric and magnetic fields [36]. The validity of dimensional reduction has 
been tested in a wide temperature range [34,35]. 

At zero temperature the static quark anti-quark potential is determined from 
the Wilson loops: V(r) = - l / t  ln W(r ,  t), t + oo. At large separation the Wilson 
loop obeys the area law W ( T ,  t )  exp(-art) which means that the potential grows 
linearly with distance r .  At finite temperature we can consider the spatial Wilson 
loops. They obey area law at any temperature W, (x, z )  - exp(-a, (T)xz) [37,38]. 
Below the transition temperature the spatial string tension is very close to the 
usual zero temperature string tension. Well above the deconfinement transition 
temperature the spatial string tension is expected to be d m  = cMg2(T)T [38]. 
This is because in dimensionally reduced theory it is given by cMg; and at leading 
order the 3-dimensional gauge coupling is = g2(T')T. The spatial string tension 
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Fig. 5. The spatial string tension calculated in quenched QCD [39] and 2 flavor 
QCD [40]. The lines show the leading order fits. 

has been calculated on the lattice in quenched QCD (Nf = 0)  [39] and 2+1 flavor 
QCD [40] and the results are shown in Figure 5. The lattice data can be fitted very 
well with the simple form : d m  = cMg2 ( T ) T .  Here again g(T) is the 2-loop 
running coupling. For the fit we get the value of CM which agrees well with the 
result of dimensional reduction [40]. The 3-dimensional gauge coupling g: has been 
calculated mare systematically in perturbation theory and also led to a very good 
agreement with the lattice data [41]. 

3. Conclusions 

In recent years significant progress has been made in calculating bulk thermody- 
namic observables on the lattice as well as spatial correlation functions. This calcu- 
lations suggest that a t  temperatures T > 1.5Tc thermodynamics can be described 
reasonably well using weak coupling approaches: resummed perturbation theory and 
dimensional reduction. The temperature and flavor dependence of static screening 
length is well described by perturbation theory. However, the value of the screen- 
ing lengths is to large extent non-perturbative and influenced or determined by the 
dynamics of static magnetic fields. Furthermore, there is no evidence for the large 
value of the gauge coupling constant a t  scale T. Clearly more precise lattice data 
and further perturbative calculations are needed to establish the nature of quark 
gluon plasma in the temperature, T > 1.5TC. 
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