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I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. 
Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the 
four "tastes." The rooting procedure averages over tastes of different chiralities. This averaging 
forbids the appearance of the correct 't Hooft vertex for the target theory. 
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1. Introduction 

My presentation [ l ]  at last year’s meeting in this series discussed what were some of the 
unphysical consequences arise from the rooting prescription usually used along with the staggered 
quark formalism. In particular, I showed how an excess symmetry leads to an incorrect quark mass  
dependence. That argument is elucidated somewhat further in  [2, 31. Here I explore this problem 
more deeply to understand why these wrong predictions appear. In particular, I will demonstrate 
that a strong mixing of tastes with different chiralities leads to an incorrect ’t Hooft vertex. 

The outline is as follows. In section 2 I summarize the naive arguments in favor of the rooting 
trick. This includes treating of the determinant as a sum over loops and empirical observations on 
the eigenvalues of the Dirac operator on typical gauge configurations. Section 3 reviews the basic 
formulation of staggered fermions and how the rooting is implemented. Section 4 turns to some 
issues related to chiral symmetry that signal caution. In particular, the method involves an averaging 
over fermion chiralities. Also, on moving between topological sectors, the taste symmetry of the 
eigenvalue spectrum must break. In section 5 I connect these issues to an old topic, the .‘ ’ t  Hoof’t 
vertex.” Here I show how symmetries forbid the rooting procedure from correctly reproducing the 
requisite form. Section 6 raises a few questions, hinting at why the approximation may not be too 
bad for the two light plus one intermediate mass situation. I also suggest some possible ways to 
repair the algorithm. Section 7 briefly states the final conclusion that rooting can often be a good 
approximation but predictions for non-perturbative physics where the ’t Hooft vertex is important 
can not be trusted. 

2. Naive justifications for rooting 

The basic argument for rooting comes from consideration of the fermion contribution as a 
determinant of the Dirac operator. A determinant is a sum over permutations of the rows of the 
matrix. Each permutation in turn is a product of cycles. Each cycle represents a fermion loop i n  
perturbation theory. Now with unrooted staggered fermions on a smooth gauge field background, 
we have an excess in the number of species by a factor of four. Thus each loop is counted four 
times too much. By replacing the determinant with its fourth root, this effectively multiplies each 
loop by a factor of one quarter, giving exactly the desired contribution from a single fermion. The 
conclusion is that the rooting procedure does give the correct perturbative expansion. As a special 
case, rooting is correct for the continuum limit of the free fermion theory as well. 

This argument relies on symmetry between the four “tastes” of the unrooted theory. The im- 
portance of this is strongly emphasized in  Ref. [4]. Numerical evidence for the required symmetry 
appears in studies of the eigenvalues of the Dirac operator; for example, Ref. [5], shows that as 
the lattice spacing becomes small the eigenvalues tend to group into approximately degenerate 
quartets. Rooting effectively selects one eigenvalue from each quartet. 

These arguments for rooting are further supported by the rather spectacular successes of recent 
simulations. Indeed, a variety of observables that had previously been calculated in the “valance ap- 
proximation” have now been redetermined with dynamical quarks treated using the fourth root ap- 
proximation. The agreement with experiment is uniformly much better with the dynamical quarks 
included. For example, see Ref. [6]. 
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Unfortunately these arguments have seduced many into suggesting that the algorithm might 
become exact in the continuum limit, i.e. that the lattice artifacts might go away as the lattice 
spacing is taken to zero [7]. The purpose of this talk is to provide a proof that this is impossible; 
there exist certain important physical effects that the algorithm inherently must miss. 

3. Staggered review 

To proceed I need to delve into the heart of the staggered algorithm. For this I begin with the 
so called “naive” discretization of the Dirac equation. This considers fermions hopping betwecn 
nearest neighbor lattice sites while picking up a factor of firp for a hop in direction *,D. Going to 
momentum space, the discretization replaces powers of momentum with trigonometric functions. 
for example 

(3.1) 

Here I denote the lattice spacing by a. This formulation exposes the famous “doubling” issue, 
arising because the fermion propagator has poles not only for small momentum, but also whenever 
any component of the momentum is at n/a. The theory represents not one fermion, but sixteen. 

It is important to note that the various doublers have differing chiral properties. This arises 
from the simple observation that 

The consequence is that the helicity projectors (1 f y5)/2 for a travelling particle depend on which 
doubler one is observing. 

Now consider a fermion traversing a closed loop on the lattice. As shown in Fig. I ,  the cor- 
responding gamma matrix factors will always involve an even number of‘ any particulu yu. Thus 
the resulting product is proportional to the identity. If a fermion starts in a single spinor compo- 
nent, it will wind up in the same component after circumnavigating the loop. The determinant 
exactly factorizes into four equivalent pieces. The naive theory has an exact U(4)  symmetry, as  
pointed out some time ago by Karsten and Smit [8]. Indeed, for massless fermions this is actually a 
U(4)  @U (4) chiral symmetry. This symmetry does not contradict any anomalies since it is not the 
full naive U (  16) @I U (  16) of 16 species. The chiral symmetry generated by yj remains exact, but  
this is allowed because it is actually a flavored chiral symmetry. As mentioned above the helicity 
projectors for the various doubler species use different signs for E. 

The basic idea of staggered fermions is to divide out this U(4) symmetry [9, IO, 1 I ]  by pro- 
jecting out a single component of the fermion spinor on each site. Taking y/ + Py, one projector 
that accomplishes this is 

(3.3) 

where the x; are the integer coordinates of the respective lattice sites. This immediately reduces the 
doubling from a factor of sixteen to four. 

At this stage the naive U (  1) axial symmetry remains. Indeed, the projector used above con-  
mutes with E. This symmetry is allowed since four species, usually called “tastes,” remain. Among 
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Figure 1: When a fermion circumnavigates a loop in the naive formulation, i t  picks u p  a factor thaL always 
involves an even power of any particular gamma matrix. 

them the symmetry is a taste non-singlet; under a ch i id  rotation, two rotate one way and two the 

other. 
The next step taken by most of the groups using staggered fermions k t h e  rooting trick. In the 

hope of reducing the multiplicity down from four, the determinant is replaced with its fourth root, 
JDl -+ With several physical flavors this trick is applied separately to each. As argued i n  the 
previous section, in simple perturbation theory each fermion loop gets multiplied by one quarter, 
cancelling the extra factor from the four “tastes.” 

At this point one should be extremely uneasy: the exact chiral symmetry is waving a huge red 
flag. Symmetries of the determinant survive rooting, and thus the exact U (  1) axial symmeti’y for 
the massless theory remains. For the unrooted theory this was a flavored chiral symmetry. But, 
having reduced the theory to one flavor, how can there be a flavored symmetry without multiple 
flavors? 

At this point I need to make a somewhat technical comment on chiral symmetry. It is usually 
regarded in terms of an S U ( N f )  @ S U ( N f )  symmetry for the massless N, ,  tlavor theory. This is 
believed to be spontaneously broken, and, via the Goldstone mechanism, explains the lightness 0 1  
the pions. However, this is also a symmetry of the massive theory regarded in terms of its parametcr 
space. More specifically, consider a mass term of form 

(3.4) ~ ( B L M ~ R  + W R M ’ ~ L )  

where M is a complex N ,  by N f  matrix. Then physics is invariant under changing the mass param- 
eters 

1 

M -+ g t M g ~ .  (3 .5)  

Here g L  and g R  are arbitrary matrices in S U ( N f ) .  
In this context it is important to note that the theory is not invariant under a simple phase 

change M 4 e i e M .  Such a rotation is anomalous and changes the strong CP violating angle. This 
is the reason there are only I$ - 1, rather than N f ,  Goldstone bosons. In the particular case of one 
flavor QCD, there should be no surviving chiral symmetry whatever. That theory is expected to be 
analytic in the fermion mass in the vicinity of the origin [12]. Unfortunately, a phase change in the 
mass term is an exact symmetry of the staggered fermion determinant and remains so on rooting. 
This incorrect behavior was the main subject of my discussion last year [ 11. 
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I 

Figure 2: In the overlap formulation a single exact zero eigenmode is possible. I n  transiting from winding 
number zero to one, a pair of complex eigenvalues disappear and are replaced with the exact zero mode and 
a compensating mode on the opposite side of the overlap circle. 

4. Where things go awry 

So the rooted theory appears to have some issues related to chiral symmetry and the anomaly. 
Before rooting, the one exact chiral symmetry is actually a non-singlet symmetry because the 
different tastes are associated with different gamma matrix conventions. Thus there are two tastes 
of each chirality. What happens to this symmetry on rooting? 

Consider the index theorem for a gauge configuration with unit winding. Near the continuum 
limit there should be one approximate zero mode for each of the tastes. These are not exact zero 
modes because of finite spacing effects, but that is not the issue here. Because the tastes differ in  
chirality, two of these modes will be left handed and two right handed in the sense of the physical 
helicity projectors for the corresponding fermions. What rooting does is average over these. While 
this allows the chiral symmetry to remain, it does not correspond to the single chirality mode of h e  
target theory. The issue is analogous to trying to make a living organism out of a racemic mixture 
of proteins; it won't work. 

Note that the staggered projection operator in Eq. 3.3 satisfies 

This means that the oscillating factor (- l)x1+x2+X3'x4 plays the role of E. This matrix is indepen- 
dent of gauge configuration and as such remains traceless independent of the gauge field winding 
number. This is another way to see that the approximate zero modes must come in  opposite chiral- 
ities. 

This behavior is unlike that with other formulations. In usual "continuum" discussions, the 
appearance of zero modes is compensated by modes that move in from infinity. With Wilson 
fermions the chiral zero modes are paired with heavy doubler states. With the overlap operator 
[ 131, a zero mode has a compensating mode occurring on the opposite side of the overlap circle. 
This behavior with the overlap is sketched in Fig. 2, taken from my Lattice '02 presentation [ 141. 
The overlap formulation introduces a modified chirality matrix A which does depend on the gauge 
fields. The winding number is given by the relation v = Tr f35/2. 
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Figure 3: In transiting between different winding number sectors, the clustering of the staggered Dirac 
eigenvalues into taste quartets must break down. 

The approximate zero modes have implications for how the staggered eigenvalues must evolve 
as one moves between topological sectors. For a smooth gauge field with zero winding number. 
near the continuum limit there is numerical evidence that the Dirac eigenvalues indeed cluster into 
taste quartets. A similar structure is desired with smooth gauge fields carrying a unit of winding, 
although in this case there should be one quartet of approximate zero modes. However on con- 
sidering rough gauge fields that interpolate between these situations, the quartets must necessarily 
break apart., In particular, two of the approximate zero modes must drop down from above in the 
complex eigenvalue plane, while two rise up from below. This necessarily leaves a mismatch in the 
form of “holes” that must be absorbed in the non-zero eigenvalue spectrum, as sketched in Fig. 3. 

Note that, despite claims to the contrary [4], this chiral mixing has nothing to do with the 
order of taking the continuum limit and going to zero mass. Even when the mass remains finite, 
a topologically non-trivial gauge configuration should still generate fermion eigenvalues with ap- 
proximately zero imaginary part. The mass merely gives these modes a finite real part. I do, of 
course, assume that the lattice spacing is small enough that the chiral modes corresponding to 
topology are clearly identifiable. 

5. The ’t Hooft vertex 

So the concerns with rooting involve zero modes of the massless Dirac operator. Through the 
index theorem, this in turn is tied to the topological structure of the gauge field. To explore the 
consequences of this connection, start with the usual integration of the fermionic fields in terms of 
determinant of the Dirac operator, D. For any given configuration of gauge fields, this determinant 
is the product of the eigenvalues of this matrix. To control infrared issues, insert a small mass and 
write the resulting path integral 

(5.1) 

Here the A, are the eigenvalues of the kinetic part of the fermion determinant .and S,q is the pure 
gauge part of the action. On taking the mass to zero, any configurations which contain a zero 
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Figure 4: Wlth N +  flavors the ’t Hooft vertex is a 2N, fermion interaction where each flmoi flip5 i t $  5pin 

eigenmode will have zero weight in the path integral. This suggests that for the massless theory 
one can ignore any instanton effects since the corresponding configurations don’t contribute to the 
path integral. Does this mean that “instantons” are irrelevant in the continuum limit’? 

Indeed, ’t Hooft [15, 161 pointed out long ago why this conclusion is incorrect. The issue is not 
whether the zero modes contribute to the path integral, but whether they can contribute to physical 
correlation functions. To see how this goes, add some sources to the path integral 

Z ( q , v )  = d y  d y  e-s,+yl(D+Ill)Y+TJrl+qW, (5.2) 

Differentiation (in the Grassmann sense) with respect to q and 71 gives any desired fermionic 
correlation function. Now integrate out the fermions 

Consider a source that overlaps with an eigenvector of D corresponding to one of the zero modes. 
i.e. 

( W O l r l )  f 0.  (5.4) 

The source contribution introduces a l/m factor into the path integral. This cancels the 111 from the 
determinant, leaving a finite contribution as 177 goes to zero. 

With multiple favors, the determinant will have a mass factor from each. When several masses 
are taken to zero together, one will need a similar factor from the sources for each. This product 
of source terms is the famous “‘t Hooft vertex.” [15, 161 While it is correct that instantons do drop 
out of Z ,  they survive in correlation functions. 

So, with N f  flavors the theory generates a 2Nf-fermion effective interaction, as sketched in 
Fig. 4. This is a purely non-perturbative phenomenon. In this interaction, all flavors flip their spin, 
and this forms the basis of the anomaly. With several flavors this is a high dimensional operator, but 
it remains relevant since the high dimensions are compensated by powers of the strong interaction 
scale, Arlcd. Indeed, the resulting interaction is non-local at this scale. 
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Figure 5: In  calculating the instantodanti-instanton interaction, a contribution will arise f rom the exchange 
of all tastes. This introduces an unphysical singularity in the rooted theory. 

For the unrooted staggered theory with its four tastes, the expected ' t  Hooft vertex is an octi- 
linear interaction N ( W W ) ~ .  It strongly couples all the tastes, even in the.continuuni limit. It does 
not violate the exact chiral symmetry of the theory because i t  involves two tastes of each chirality. 

Now for the target one flavor theory, the 't Hooft vertex should reduce to a simple bilinear 
interaction N yy. This has the form of a mass shift and is inconsistent with any exact chiral 
symmetry, including that of the unrooted theory. Indeed, that symmetry forbids the generation of 
such a term in the rooted theory. The absence of this vertex in the rooted approximation has serious 
consequences; in particular, the rooted theory will have an incorrect renormalization group flow for 
the fermion mass. 

One might try to argue that since the unrooted determinant goes as the mass to the fourth 
power, the rooted formula goes only linearly in the mass. Then to cancel the zero only requires one 
taste source. So why not just measure the vertex for one taste and ignore the others'? 

Unfortunately this will not work. The basic vertex strongly couples all tastes. In the unrooted 
theory the strength of this coupling scales as the product of niP4 from the sources times n~' from 
the determinant. This leaves a mass independent contribution. However the rooted theory still has 
the m-4 factor from the sources but only (m4)'I4 - n z  from the rooted determinant. Thus the rooted 
vertex displays a m-3 singularity at vanishing mass. The scale of this singularity is set by and 
there is no lattice spacing suppression. Note also that high gluon momenta are not involved, unlike 
the taste mixing arising in perturbation theory. 

Because of this strong coupling between the tastes, all four must be considered in intermediate 
states. This will give unphysical contributions to quantities such as multi-instanton interactions. To 
be more explicit, imagine trying to calculate a correlation function of two pseudo-scalar glue-ball 
operators F p ( x )  and F p ( y ) .  This will receive a contribution from instantonhnti-instanton pairs. 
That, in turn, will have a contribution from the exchange of all four tastes, as sketched in Fig. 5 .  
In the unrooted theory the contribution of this diagram scales as the mass to the zeroth power and 
has a spatial dependence arising from the overlap of the approximate fermion zero modes of the 
two topological objects. On rooting the determinant factors associated with the instantons havc 
a reduced mass dependence, leaving behind a n - 6  mass dependence for this correlation. This is 
dramatically different from the desired target one flavor theory, where the exchange of the single 
physical fermion scales again as a mass independent constant. Note that for the physical case the 
exchange of four copies of the fermion in the zero mode is forbidden by the Pauli principle. 

- 

6. Questions 

Several open questions remain on the rooting procedure. Would a square root 01  the determi- 
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nant be better? 'In particular, the doublers do occur in equivalent pairs. Also the reduction from 
four to two flavors should leave behind a residual chiral symmetry; so, the exact symmetry is not 
in itself necessarily bad. The detaiied form of the 't Hooft vertex will still couple the extra tastes, 
but this might be a small effect. 

Are these issues all associated with light quarks and could the wrong chiral behavior of the 
rooting become unimportant for massive quarks? Indeed, if this is the case and the square root is 
also a better approximation, then the numerical successes of staggered fermions for the two light 
plus one intermediate mass quark case would be easier to understand. 

Can counter-terms fix things? One might try to add a counter-term to mimic the desired ' t  
Hooft vertex and another to cancel the unphysical singularity. This would require some tuning of 
the strengths of the counter-terms. Also, given the non-local nature of the ' t  Hooft vertex, i t  is 
unclear whether these terms would have to be non-local. But perhaps this would be an acceptable 
price to pay for the gained efficiency of the staggered approach. 

Instead of rooting, i t  might be possible to cancel the extra tastes with bosonic ghosts. To avoid 
the unphysical averaging over chiralities, this would require a chiral formulation for the ghosts. But 
since they are bosonic, this might not impose the computational costs of directly simulating chiral 
fermions. 

7. Conclusion 

The conclusions of this discussion are quite succinctly stated. First, rooting is a justified 
perturbative procedure. As such, it can be accurate for many physical quantities. However it cannor 
become exact in the continuum limit because it does not generate the correct ' t  Hooft vertex. This 
makes the scheme particularly dangerous for the treatment of non-perturbative physics in singlet 
channels. 
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