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We compare two renormalization procedures, one based on the short distance behavior of heavy 
quark-antiquark free energies and the other by using bare Polyakov loops at different temporal 
entent of the lattice and find that both prescriptions are equivalent, resulting in renormalization 
constants that depend on the bare coupling. Furthermore these renormalization constants show 
Casimir scaling for higher representations of the Polyakov loops. 
The analysis of Polyakov loops in different representations of the color SU(3) group indicates that 
a simple perturbative inspired relation in terms of the quadratic Casimir operator is realized to a 
good approximation at temperatures TZT, for renormalized as well as bare loops. 
In contrast to a vanishing Polyakov loop in representations with non-zero triality in the confined 
phase, the adjoint loops are small but non-zero even for temperatures below the critical one. The 
adjoint quark-antiquark pairs exhibit screening. This behavior can be related to the binding energy 
of glue-lump states. 
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Figure 1: Renormalized fundamental Polyakov loop (left) and renormalization constants (right) in SU(3) 
pure gauge theory for two values of the temporal lattice extent N7. The lines in the left figure show the 
perturbative result [ 1,2] .The arrow represents the asymptotic high temperature limit, Lre” = 1. The line in 
the right figure shows a perturbative inspired fit. 

1. Introduction 

Studies of the transition from a confined to a deconfined medium as well as the fundamental 
question for a proof of confinement are strongly related to the Polyakov loop. Models based on the 
Polyakov loop are proposed to describe the transition to a quark gluon plasma phase and its prop- 
erties at zero as well as non-zero baryon density in a phenomenological manner [3,4,5,6,7,8,9,  
10, 11, 12, 131. Furthermore the connection of SU(3) theory to the large N,-limit (in a mean-field 
approximation) is widely discussed [4,5]. 
For a test of the reliability and comparison of these models to pure gauge theory and QCD with 
dynamical quarks, a detailed knowledge of the behavior of the renormalized Polyakov loop in the 
fundamental and higher representations in those theories is of fundamental importance. 
We will present two different renormalization procedures for the Polyakov loop for different rep- 
resentations, show their equivalence and discuss our main results of this study in pure SU(3) gauge 
theory. 

2. Fundamental and adjoint Polyakov loops 

The renormalization of Polyakov loops (in the fundamental representation) using the short 
distance behavior of static quark-antiquark free energies was outlined in [14]. For arbitrary repre- 
sentations of the static sources this can be written as, 

which is equivalent to the renormalization of the Polyakov loop itself, 

The renormalization constants are obtained by matching the free energies to the zero temperature 
potential at short distances. In fig. 1 we show the results for the renormalized Polyakov loop (left) 
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Figure 2: Renormalization procedure using different NT (left). Bare Polyakov loops from 323 x NT lattices 
and the resulting Ly. The lines are spline interpolations (right). 
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Figure 3: Comparison of the renormalized Polyakov loop (left) and the renormalization constants (right) 
obtained with the twp different renormalization procedures. 

and the renormalization constants (right) for two different Nr obtained in quenched QCD. The 
good agreement of Z3(g2)  and L3(T) for the NT = 4 and 8 indeed shows that the renormalization 
constants depend only on the bare coupling constants. In perturbation theory Casimir scaling for 
heavy quark potentials is realized (at least) up to two-loop order [15, 161. 

3. Direct renormalization in higher representations 

Using the observation that the renormalization constants depend only on the bare couplings 
opens the possibility for a direct renormalization procedure based on single bare Polyakov loops at 
different NT rather than using Polyakov loop correlation functions (a similar method was proposed 
in [ 171). 
The fist step in this procedure is to fix the arbitrary overall scale factor by fixing the value of the 
renormalized Polyakov loop at the highest temperature in our analysis, = T,, = 12Tc, where we 
use the same scheme as in the previous method. From this we obtain the renormalization constants 
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Figure 4: Renormalization constants obtained with the direct renormalization procedure (left). Also shown 
are the results obtained from the previous method for fundamental and adjoint loops, labeled DJ.ing. Casimir 
scaled bare Polyakov loops (right) for different representations D. 

at the corresponding coupling (at two different NT)  by assuming 

(3.1) 

(3.2) 

This procedure can now be iterated (see fig. 2 (left)) to obtain the renormalization constants and 
the renormalized Polyakov loop down to Tc. In fig. 2(right) we show the result of this procedure 
for the fundamental loop in SU(3) pure gauge theory obtained by applying this procedure for three 
values of N T .  

The comparison of the two renormalization procedures (fig. 3) indeed shows that the renormalized 
Polyakov loops (left) and the renormalization constants (right) are in good agreement and both 
procedures are equivalent. 
The prescription can easily be extended to Polyakov loops in any representation D [18, 191, thus 
giving the renormalized Polyakov loops Lg and the renormalization constants 22 (g2). Using these, 
one can then check Casimir scaling in the form 

z", &i ( g i ) L D  2 bare (g l?NT, i ) l -=T  2 E LF(F) and 

z", D N r j  ( g j ) L D  2 bare (gj,Nr,j)I-.+=T 2 E LF(C). 
a( 1 )N7,1 

a( 1 ) ~ 7 . j  

Z D k 2 )  = 23(g2), (3.3) 

L F ( T )  = (Ly(7'))dD (3.4) ' 

for the renormalization constants and 

for the Polyakov loops, where do = Cz(D)/C2(3) is the ratio of quadratic Casimirs. The test of 
Casimir scaling is then the independence of 2 from D. Note that (3.3) together with (2.2) implies 
that, if Casimir scaling is realized for the renormalized Polyakov loop, it holds for the bare loops 
as well. 
In fig. 4 we show the results for the renormalization constants (left) and the Casimir scaled bare 
Polyakov loops (right) for representations up to D = 15. For comparison we also include the results 
obtained from the previous method. We observe a good agreement of ZD for all representations in 
the whole coupling range and for the scaled Polyakov loops for temperatures down to the critical 
one. 
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Figure 5: Renormalized adjoint Polyakov loop compared to the fundamental loops (left). Heavy quark- 
antiquark free energies for adjoint sources in the color singlet and color averaged channel compared to 
Casimir scaled color singlet free energy of fundamental sources at T = 0.959 T,. The lines show the asymp- 
totic value and estimates for the string breaking distance. 

4. Adjoint Polyakov loops and string breaking 

In contrast to Polyakov loops with non-zero triality, which have vanishing expectation values 
in the confined phase (in the infinite volume limit), for all triality-zero representations (r=8,10,27, ...) 
one expects to see string breaking below T, also in pure gauge theory, and hence a non-vanishing 
Polyakov loop in the infinite volume limit (see also discussions in [20, 21,221). 
We have computed the infinite volume, renormalized adjoint Polyakov loop below T,. Fig. 5 (left) 
shows the results compared to the fundamental loop around T,. While the fundamental renormal- 
ized Polyakov loop is zero below T,, the adjoint loop is small but clearly non-vanishing. 
For the other triality-zero representations (r  = 10,27) we expect the same behavior, but we cannot 
give the infinite volume limit below T,, since the corresponding data is still too noisy for the statis- 
tics achieved in this work. 
For the heavy quark-antiquark free energies of adjoint sources we observe string breaking below 
Tc (fig. 5 (right)). The asymptotic value of the static quark-antiquark free energy of adjoint sources 
(fig. 6) can be related to the binding energy of gluelump states, i.e. bound states of a dynamical 
gluon with a static adjoint source. In the upper part of fig. 6 we show the results for the asymptotic 
values of the adjoint heavy quark free energies and in the lower part an estimate for the string- 
breaking radius defined through 

where v8 is the zero temperature potential and F, is the asymptotic value of the quark-antiquark 
free energy, both for adjoint sources. 
An extension of this study will be the analysis of color octet states of heavy quark-antiquark free 
energies with fundamental sources combined with a static adjoint source, forming a color singlet 
state in total. 
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Figure 6: Asymptotic value of the adjoint heavy quark free energies (upper panel). Estimate of the string 
breaking radius (lower panel). 

5. Conclusions and Outlook 

We have extended the renormalization procedure outlined in [ 141 to quark sources in the ad- 
joint representation. We observed that the resulting renormalization constants only depend on the 
bare coupling g2. This led to the proposal of a new (direct) renormalization procedure for the 
Polyakov loop itself measured at different temporal lattice extent in contrast to the (indirect) renor- 
malization using two-point correlation functions of Wilson lines or Polyakov loops. 
We have shown that both procedures are indeed equivalent leading to a solid description of the 
renormalized Polyakov loop. Furthermore we applied the new prescription to Polyakov loops in 
the fundamental and higher representations up to D = 27. 
The direct renormalization procedure is solely based on gauge invariant quantities, while the qq- 
renormalization is based on color singlet correlation functions of Wilson lines which are (in prin- 
ciple) gauge dependent quantities. The equivalence of both procedures, i.e. the agreement of the 
renormalization constants and the renormalized Polyakov loops, shows that (at least) the short 
(temperature independent) as well as the (asymptotic) large distance part of the heavy quark free 
energies obtained in Coulomb gauge become gauge independent as proposed in [23,24]. 
The analysis of Polyakov loops in higher representations up to D = 27 led to the the observation 
that Casimir scaling for the Polyakov loops and the corresponding renormalization constants in 
different representations is a surprisingly good approximation even down close to T,. This may 
indicate that non-Casimir scaling terms in a perturbative series may only play a sub-dominant role. 
Due to the 2(3)-symmetry of the pure gauge theory, all Polyakov loops with non-zero triality van- 
ish in the confined phase even in the absence of dynamical quarks, Le. pure gauge theory. For the 
adjoint representation we have observed small, but non-zero values below T,. The static adjoint 
sources can couple to the dynamical adjoint constituents (gluons) of the theory and the quark- 
antiquark pair gets screened even in the confined phase. This screening phenomenon (string break- 
ing) is visible in the heavy quark free energies which have a finite asymptotic value while for 
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zero-zero triality they rise linearly with distance. The finite asymptotic value for adjoint sources 
may be related to the binding energy of glue-lump states. 
A more detailed study and discussion of the renormalization of Polyakov loops in higher represen- 
tations as well as the application to QCD with dynamical quarks is in preparation [ 191. A future 
extension of this study will be the analysis of correlation functions of different representations, 
e.g. a baryonic system made up of a color octet state of a quark-antiquark pair in the fundamental 
representation combined with a static adjoint source forming a color singlet state in total. 
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