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Abstract. The joint research and development program is continued to develop steady-state ion 

source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion 
source for ion implantation industry. The new simulation code was developed for the Bemas ion 

source discharge simulation. We present first results of the simulation for several materials 

interested in semiconductors. As well the comparison of results obtained with experimental data 

obtained at the ITEP ion source test-bench is presented. 

Introduction 

The joint research and development program is continued to develop steady-state ion 

source for ion implantation industry. Bemas ion source is the wide used ion source for ion 

implantation industry. Therefore, in framework of investigation of low energy beam generation 
for ion implantation, we use ITEP version of Bemas ion source [ 11 - [ 31. As the technology and 

applications continue to grow, there is a need for development of plasma and ion sources with 

clearly specified characteristic. Manufacturing sources of this kind at present could not be 
accomplished without comprehensive numerical studies at the project stage. It is even more 

important when the ion source for low energy implantation is developed. Universal plasma 

models based on Vlasov-Boltzmann equation can be used to describe a wide variety of these 
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. 
sources. Recently the most commonly encountered numerical approach to solve this equation is 

the Monte-Carlo Particle-In-Cell (MCPIC) method also known as Particle-In-Cell method with 

Monte-Carlo collisions. In this paper we present the 2D3V numerical code PICSIS-2D realizing 

MCPIC method and the results of simulations as applied to Bernas ion sources. The numerical 
results are compared with experimental data. 

Simulation model 

Plasma filling an ion source is supposed to consist of electrons and different kinds of ions 

of all charge states, which are represented by distribution functions f k  (x’,G,t) , where x’ is the 

particle position and v’ is the particle velocity. As usual the distribution functions f k  give the 

probability of finding particles of sort k in a given volume of phase space. The electrons and ions 

in the plasma under consideration are assumed to interact via electricEfields, static 

magnetic fields and binary collisions. The neutral gas is treated as a uniform background of 

atoms or molecules with a constant temperature. 
An appropriate equation set can be written as follows: 

dfk  --+v-+---I, af, -af, ‘k af, - 
dt d t  dx’ mk C5 

Here mk is the particle mass. The right-hand member I ,  in this equation is the collision 

integral which defines changes of distribution functions f k  under collisions. The following 

electron collisions are included into consideration: elastic electron-electron, electron-ion and 
electron-neutral collisions; and inelastic ionizing and exciting collisions with neutrals and ions. 

Ion collisions included are elastic ion-neutral collisions and charge exchange collisions. 

The force Fk on the particles with the charge qk is the Lorentz force given by: 

Fk = q , ( E + v ’ x B )  

The electric field 2 appeared in the equation is defined by plasma self-field and external 
~ electrodes. It is obtained from solution of the Poisson equation: 

i j  .E = 4zp 

The static external magnetic field $ should be calculated as a preliminary in analytical or 
numerical ways. It can be set also as an experimental data table. The time varying magnetic field 

induced by currents of charged particles is neglected here since for the problem involved it is 

much smaller than other forces acting on the particles. 



The Monte-Carlo Particle-In-Cell numerical approach chosen for solving the equations 

makes use of finite elements or quasi-particles to represent the distribution functionsf,, Each 

finite particle stands for the group of physical particles and has a mass and charge accordingly to 

the type of ions or electrons. Trajectories of these particles in phase space represent the evolution 

of the respective distribution functions and'can be found by time integrating of the motion 

equations: 

These two equations are solved using explicit time-centered leapfrog [ 41, [ 51. A spatial 

grid (or mesh) overlaying all of the particles is used in order to calculate charge densities p at the 

grid points from the particle positions (so-called charge weighting to grid). These densities are 

then used to solve the Poisson equation on the grid. Then the particles forces are interpolated 

from the grid (so-called field weighting to particles). The code provides various interpolated 

functions for charge and force: zero-, first- and second-order splines depending on the problem 

under consideration. The solution of Poisson equation is found by the double fast Fourier 

transformation [ 61 in a 2D frame of reference (plane or cylindrical). The Dirichlet boundary 

conditions are used at conductive surfaces with known potentials and the Neumann conditions - 

at the axis (in case of cylindrical geometry). These tree procedures: charge weighting, field 

calculation and force weighting are performed at an every integration step to provide a self- 

consistent solution of these equations. 

The collisions events are modeled using a Monte-Carlo technique, where random 

numbers are used to choose a time between collisions, to pick a particular event and to define 

post collision velocities. Depending on collision frequencies we use an approach proposed [ 41 
(if a cumulative probability at an integration step >0.01), or a simplified scheme [ 71 - in the 

opposite case. To shorten consumption time an ad hoc table of collision frequencies is generated 

in the beginning of simulation. 

Elastic collisions with neutrals are regarded in hard sphere approximation. For inelastic 

collisions the respective analytical or experimental differential cross-sections are applied. 

Binary collisions of charged particles are regarded in the way described by [ 81, [ 91. To define 

an interaction range for colliding particles we use the same mesh as on solution of the Poisson 

equation. Small-angle scattering probabilities are supposed to follow the well-known Spitzer 

equation [ lo]. 



Numerical results 

At first, the model described above was tested on the problems having analytical 

solutions: the development of two-beam instability, the ion charge state relaxation, the drift in 

crossed electric and magnetic fields, the momentum isotopization and establishing of thermal 

equilibrium in plasmas. After that, it has been applied to the simulation of DC glow discharge. 

We have simulated the development of DC glow discharge in a tube of 20cm long and 1 cm in 

diameter filled with hydrogen under the pressure of 0.2 torr. It was assumed that the voltage of 

1200V was applied through the resistor of lo7 Ohm to the platinum electrodes. Elastic 

scattering, ionization and excitation of vibration, rotation and main electronic levels were taken 

into account as well as secondary electron emission from the cathode under ion impacts. All 
particles reaching the walls or electrodes are considered as killed. 

To initiate the discharge we have supposed that the cathode can emit electrons with the 
temperature of filament (-0.1 eV). About 1 O6 finite particles were under consideration. 

The results obtained are depicted in Fig. 1 - Fig. 3. In 5 ps after the beginning the 

discharge became stabilize and steady state discharge current remain approximately the same 

during all computational time (up to 50 ps). Since the total light emission usually follows the 

electron density one can see the most intensive negative glow and a stratified positive column. 

The values of cathode drop U, (- 280 V) and the thickness of cathode layer d, (- 5.lcm) good 

agree with tabulated experimental data - 276 V and 5 cm respectively. Moreover in the Fig. 3 

one can see that the strata are not stable and run towards the cathode in accordance with 

experimental observations. The more fine structure of the discharge (Aston and cathode dark 

spaces) can be also distinguished by analyzing of electron energy distribution. 

Finally, the code has been applied for simulation of Bemas ion sources. Schematic sketch 

of an ion source is shown in Fig. 4. It was found that there are different modes of ion source 

operating. One of them does not lead to arising of self-sustaining discharge (see Fig. 5 and Fig. 

6) due to significant suppression of electron emission by the negative space charge. Another one 

initiates a discharge shown in Fig. 7 - Fig. 10. In this case we have used for simulation the real 

parameters of the ion source operating in ITEP, Moscow [ 11. Both the steady-state value of 

current discharge (Id=260mA) and the current of the extracted ions (Il=lOmA for Sb+' ) are in a 

good agreement with experimental data [ 31. 

Conclusion 

The results obtained clearly confirm that the numerical code depicted in this paper 

represents an adequate model of physical processes in the wide range of ion source plasmas. It 

can be successfully used for ion source development for low energy implantation. As well it can 



be used in the course for development of various kinds discharge ion sources. For example, we 

hope that after some modifications and improvements undertaking at present time it will work 

for ECR ion sources modeling. 
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Figures. 

Fig. 1 Electron density distribution along the discharge. Position of the anode x=O; cathode - 

x=20 cm 

Fig. 2 The distribution of potential along the discharge. Position of the anode x=O; cathode - 
x=20 cm. 

Fig. 3 Time evolution of electron density 

Fig. 4 Pictorial description of the Bema’s ion source. Blue - cathode and anticathode, Black - 

anode, U - discharge voltage, B - magnetic field, I, - electrons’ flow cathode to plasma, I, - 
electrons’ flow from plasma to anode, I; - ions flow from plasma to electrodes. 

Fig. 5 Electric field distributions in the ion source vs time: a) longitudinal b) radial. 

Sb, L=5cm; R=lcm; no=1013 cm”; B=2 kGs; U=280 V; T,=2700K. 

Fig. 6. 2D distribution of the electric field vs time. a) initial distribution; b) 0 . 1 ~ ~ ;  c) 0.5 ps; d) 

2 P 

Fig. 7 Electric field distributions in the ion source vs time: a) longitudinal b) radial. Sb, L=5cm; 

R=0.5 cm; no=1013 cm”; B=600Gs; U=280 V; Tem=2700K. 

Fig. 8.2D distribution of the electric field vs time. a) initial distribution; b) lps; c) 3 ps; d) 5 ps 

Fig. 9. Steady-state electric field distribution t-10 ps 

Fig. 10 Steady-state 2D distribution of the electric field. a) 5 ps; b) 10 ps; c) 15 ps; d) 20 ps 
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Fig. 1. Electron density distribution along the discharge. 

Position of the anode x=O; cathode - x=20 cm 
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Fig. 2. The distribution of potential along the discharge. 

Position of the anode x=O; cathode - x=20 cm 
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Fig. 3 Time evolution of electron density 
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Fig.4 Sketch of a Bema's ion source. 
B - magnetic field, U - discharge voltage, I, - electrons flow from cathode to plasma, Ii 

- ion flow from plasma, I, - electron flow from plasma to anode. 
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Fig. 6. 2D distribution of the electric field vs time. 

a) initial distribution; b) 0 .1~s ;  c) 0.5 ps; d) 2 ps 





Fig. 8 2D distribution of the electric field vs time. 

a) initial distribution; b) lp; c) 3 ps; d) 5 ps 
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Fig. 10. Steady-state 2D distribution of the electric field. 
a) 5 ps; b) 10 ps; c) 15 ps; d) 20 ps 


