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In this report we discuss the capabilities and limitations of the STAR detector to search for sig- 
natures of the QCD critical point in a low energy scan at RHIC. We find that a RHIC low energy 
scan will cover a broad region of interest in the nuclear matter phase diagram and that the STAR 
detector - a detector designed to measure the quantities that will be of interest in this search - 
will provide new observables and improve on previous measurements in this energy range. 
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STAR’S Capabilities 

Experiments at RHIC have found evidence that a strongly coupled quark-gluon plasma is cre- 
ated in heavy-ion collisions at & = 200 GeV [l]. At these high energies the baryon chemical- 
potential ( p ~ )  extracted from thermal model fits is small (approximately 0.025 GeV) [2]. Lattice 
calculations indicate that for p~ = 0, as the temperature ( T )  of nuclear matter is increased the 
transition from confined to deconfined matter is a smooth crossover [3] and that the chiral and 
deconfinement transitions happen at approximately the same temperature [4, 51. Model calcula- 
tions, however, suggest that for T = 0, the transition as p~ is increased is first order [6]. If this 
is the case, then a critical point should exist where the transition changes from first order, to a 
smooth-crossover [7]. 

It may be possible to ascertain the (T ,  p ~ )  coordinates of the critical point by decreasing the 
collision energy for heavy-ion collisions at RHIC [8]: p~ increases with decreasing &. A non- 
monotonic dependence of variables on 6 and an increase in event-by-event fluctuations should 
become apparent near the critical point [9, 101. The energy scan at the CERN-SPS (6.3 < 6 < 
17.3 GeV) found some possible signatures of a critical point, but the evidence remains inconclusive 
and sometimes contradictory [ 1 1,12,13]. Using a collider to perform such an energy scan, instead 
of fixed-targets, should provide two important advantages: acceptance won’t change with & 
and track-density at mid-rapidity will only vary slowly [14]. In addition, the detectors at RHIC are 
of a more advanced design [15]. Figure 1 shows lattice QCD estimates of the critical temperature 
TC for p~ = 0 [16], lattice QCD estimates of the location of the critical point [17] and an estimate 
of the region that can be covered by a RHIC low energy scan. We find that the RHIC low energy 
scan will cover a broad region of interest in the T ,  p~ plane [ 181. 

In this report, we will assess the capabilities of the STAR detector [19] at RHIC to perform 
a critical point search in which the center-of-mass energy of collisions may be reduced to as low 
as & N 4.5 GeV. We focus on several key measurements: yields, fluctuations in particle ratios, 
and elliptic flow. The STAR detector was designed for these measurements so we expect it to 
perform well. We present simulations that indicate this is the case. We also indicate where potential 
difficulties may arise. 

1. STAR Detector 

The layout of the STAR detector system as it was for Run-2 is shown in Figure 2. The active 
subsystems included two RHIC-standard zero-degree calorimeters (ZDCs) that detect spectator 
neutrons, a central trigger barrel (CTB) that measures event multiplicity, a time-of-flight detector, 
an electromagnetic calorimeter to measure photons, electrons and the transverse energy of events, 
and four tracking detectors. The tracking detectors are the main TPC, two forward TPCs, and the 
silicon vertex tracker (SVT). 

The TPC is STAR’s primary detector [20] and can track up to N 4 x lo3 particles per event. 
For collisions in its center, the TPC covers the pseudo-rapidity region 111 I < 1.8. It can measure 
particle p~ within the approximate range 0.07 < p~ < 30 GeVlc. The momentum resolution 6 p l p  
depends on q and p~ but for most tracks 6 p l p  N 0.02. The full azimuthal coverage of the STAR 
detector (-n < 4 < n) makes it ideal for detecting weak decay vertices, reconstructing resonances, 
measuring v2 and event-by-event fluctuations. 
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Figure 1: A sketch of the phase diagram of nuclear matter showing the chemical freeze-out curve, points 
from fits to heavy-ion collision data, estimates of the initial temperatures achieved in heavy-ion collisions, 
lattice QCD estimates of the critical temperature TC for p~ = 0 [ 161, and lattice QCD estimates of the location 
of the critical point [17]. The shaded region shows an estimate of the region of the phase diagram that can 
be covered by a low energy scan at RHIC. 

The read-out rate for the STAR TPC is N 100 Hz. For 6 < 20 GeV, without electron 
cooling upgrades to RHIC, the bunch crossing and event rates will be much slower than the TPC 
read-out rate. As such, STAR will be able to record every detected event. To trigger on the occur- 
rence of a collision, STAR will need to use it’s Beam-Beam Counters (BBC). In Figure 3 (right) 
UrQMD [21] simulations of the multiplicity of tracks versus pseudo-rapidity are shown. Although 
the Zero-degree Calorimeters will not register a signal for collisions with 6 < 20 GeV, tracks 
will impinge on STARs BBCs. Table 1 lists the number of charged particles within the BBC accep- 
tance for several energies and centralities. In all cases, the number of tracks is sufficient to detect 
the occurrence of a collision. 

Table 1: Number of particles impinging on STARs Beam-Beam Counters for Au+Au collisions in 
UrQMD [21] simulations. 

impact &= 5 GeV 6 = 8.15 GeV 

21 51 
22 35 39 40 

STARs ability to effectively trigger on events at these low energies coupled with our proven 
ability to statistically extract particle identification information over a broad p~ [22] range will 
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Figure 2: The STAR detector [19]: a cross-section view (left panel) and perspective view (right panel). 
STAR an azimuthally symmetric, large acceptance, solenoidal detector designed to measure many observ- 
ables simultaneously. The detector consists of several subsystems and a large Time Projection Chamber 
(TPC) [20] located in a 0.5 Tesla solenoidal analyzing magnet. 

Figure 3: Beam rapidity versus & (left panel) and the corresponding acceptance for STARS Beam-beam 
counters. UrQMD simulation of charged hadron yields for & = 8.75 GeV (right panel). 

make measurements of particle spectra and ratios possible. As such, T and p~ can be extracted 
from statistical model fits. We note, however, that many of these particle identification methods are 
statistical and therefore cannot be used to identify particles on an event-by-event basis: as will be 
needed for particle ratio fluctuation measurements. For event-by-event particle identification over 
a broad p~ range, a Time-of-Flight detector [23] is being constructed that will cover 27c in azimuth 
and - 1 < 7 < 1 in pseudo-rapidity. This detector upgrade is expected to be finished by 2010. 

2. Analysis 

The STAR detector will be able to improve on many of the measurements of interest in a 
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critical point search. Since event rates are not expected to be particularly large (approximately 5 
Hz at 6 = 5 GeV), rare probes such as the J / y  will likely be inaccessible. Below, we discuss 
some of the key measurements for a low energy scan at RHIC. In these proceedings we do not 
discuss in detail such important measurements as HBT [24], v1 [25], balance functions [26] and 
multiplicity, net charge, or ( p ~ )  fluctuations [27]: all of which are measurements STAR will be able 
to perform well. Rather, we present a subset of measurements - v2, v2 fluctuations, and dynamical 
fluctuations of the kaon-to-pion ratio - in order to illustrate the STAR detectors capabilities for a 
critical point search at RHIC. 
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Figure 4: Top left: The expected number of tracks within the STAR TPC acceptance and simulations of the 
event-plane resolution correction factor (bottom left). The left figure also shows the corresponding NA49 
quantities for comparison [12]. Top right: The expected shape of the distribution of the length of the q- 
vector (curve) for the given values of v2 and simulation results (histograms) with and without v2 fluctuations. 
Bottom right: Deviations between simulations and the expected shape due to v2 fluctuations demonstrating 
that the distribution of the length of the q-vector distribution is sensitive to v2 fluctuations. 

A key indicator of the ability to measure elliptic flow is the reaction-plane resolution correc- 
tion factor [28]. When the factor is large (close to unity), the direction of the reaction plane can 
be well determined on an event-by-event basis and fewer events will be needed for an accurate 
determination of y. The resolution depends on the number of tracks used and the magnitude of the 
event asymmetry. For the most peripheral events the small number of tracks available reduces the 
resolution while for the most central events the symmetry of the collision overlap region degrades 
it. For Au+Au collisions, the resolution is typically greatest at a centrality corresponding to roughly 
20-30% of the collision cross-section [29]. In Fig. 4 (bottom left) we show the expected resolution 
correction factor for Au+Au collisions at & = 8.75 GeV in the STAR detector along with the 
resolution correction factor achieved by the NA49 collaboration. The observed y value must be 
divided by the resolution correction factor to get the true y. When this factor is closer to zero than 
one, both the observed v2 and the statistical errors must be scaled up by a large number. A large 
improvement is expected with the STAR detector due to it’s full azimuthal coverage extending over 
2 units of pseudo-rapidity. This leads to a large increase in the number tracks available for the mea- 
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surement of v2. Figure 4 (top left) shows the number of tracks available for analysis by NA49 and 
STAR. 

In the most peripheral collisions the resolution correction factor for NA49 is apparently larger 
than our simulation results for STAR. Given the larger coverage of the STAR detector, it is unlikely 
that the NA49 detector can have a better resolution. Either the STAR resolution is under-estimated 
for this bin or the NA49 measurements lose accuracy where the multiplicity is at its lowest value. 

The right panel of Fig. 4 shows the distribution of the length of the flow vector q from simula- 
tions [30]. The histograms in the top panel are the simulated data with and without v2 fluctuations. 
The curve shows the expected shape of the distribution derived from the central limit theorem [31]. 
The difference between the two histograms shows how much the distribution changes if v2 fluctu- 
ates from event-to-event. The bottom panel shows deviations between the simulated data and the 
expected shape. The simulations use v2 = 0.03, and a multiplicity of 120 tracks. v2 fluctuations 
in the simulation are Gaussian with either zero width or a width of 0.04. The figure demonstrates 
that v2 fluctuations can be measured using the distribution of the length of the flow vector. This 
measurement will remove a dominant source of systematic uncertainty in y measurements and 
provide a robust critical point signature. Preliminary results have already been presented [30,32]. 

2 

Figure 5: Left panel: The efficiency versus p~ for detecting pions, kaons, and protons with the STAR 
detector. Right panel: The z-variable for kaons derived from ionization energy loss measurements dE/dx 
in the STAR TPC. This variable illustrates how well a particular particle species can be distinguished from 
other particles. 

The left panel of Fig. 5 shows the STAR detectors efficiency for detecting pions, kaons, and 
protons versus p ~ .  The efficiency for detecting kaons is lower than for pions or protons. This 
reduction is due to the failure to detect kaons that decay before they traverse the TPC volume. In 
a fixed target experiment, the momentum boost in the lab frame makes it much less likely that a 
weak-decay will occw before the kaon has traversed the detector. The efficiency near the kaon 
( p ~ )  is approximately 45%. 

The right panel of Fig. 5 shows the z-variable for kaons which illustrates the ability of STAR 
to distinguish between kaons and other particle species using ionization energy loss measurements 
dE/dx in the TPC volume. z is the logarithm of the ratio of the measured dE/dx to the expected 
dE/dx [33] for a particular particle species. Kaons can be identified with good certainty when the 
particle momentum is below 400 MeV. Above that value though, electrons begin to contaminate the 
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kaon sample. Many electrons come from pion decays so they need to be excluded from the kaon 
sample in order to accurately extract the kaon-to-pion ratio event-by-event. In addition, since pions 
can yield more than one electron in their decay chain, mixed events may not be able to account 
for electron contamination of the kaon sample. Requiring a good purity for the kaon sample will 
further reduce the efficiency for kaon detection: typical kaon efficiency values in STAR kaon-to- 
pion fluctuation analyses can be as low as 10%-15% [34]. For this reason, these measurements are 
challenging. 
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Figure 6: Left panel: Simulation of the event-by-event kaon-to-pion ratio for Au+Au collisions at & = 
8.76 GeV with or without a Time-of-Flight (TOF) detector available to improve particle identification. Right 
panel: Dynamic fluctuations of the kaon-to-pion ratio measured by STAR [34] and NA49 [13] along with 
estimates of the errors for 100,000 central Au+Au collisions with, or without TOF information. 

In Fig. 6 (left) we show simulation results for the event-by-event distribution of the kaon-to- 
pion ratio observed by the STAR detector with or without the TOF upgrade. The simulations are 
for 100,000 central Au+Au collisions at 6 = 8.76 GeV. The reduction of the size of the kaon 
sample without the TOF upgrade causes the distribution to narrow and squeeze against the zero 
axis: in many events, no kaons are found. This may make it more difficult to extract a meaningful 
width relative to mixed events for the distribution. 

In the right panel of Fig. 6 we show preliminary STAR [34] and NA49 [13] measurements of 
the width of the dynamic kaon-to-pion fluctuations: these are extracted from the difference between 
the width of real and mixed events. We also show estimates of the statistical errors expected with 
the STAR detector for 100,000 central Au+Au collisions at 6 < 18 GeV. The TOF detector 
allows the errors to be reduced by a factor of two compared to STAR without the TOF. The errors 
are similar to or smaller than the corresponding NA49 errors. We note however that systematic 
errors on this measurement are dominant. In particular, we find that misidentifying 0.5% of pions 
as kaons in our simulations reduces the width of the distribution by 5%. That systematic uncertainty 
is as large as the expected signal. The TOF upgrade is therefore important for this measurement 
since it will significantly improve the purity of the kaon sample. 
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3. Conclusions 

We’ve investigated the performance capabilities of the STAR detector for a low energy scan at 
RHIC. We find that STAR will be able to effectively trigger on collisions at these low energies and 
given the same number of events will be able to significantly improve on previous measurements. 
Measurements taken in a collider geometry will have smaller 6 - p o i n t - t o - p o i n t  systematic er- 
rors than for a fixed target geometry. The efficiency for detecting kaons however will be smaller 
due to weak-decays of the kaon. If TOF information is not available the available sample of kaons 
will become even smaller and dynamical kaon-to-pion fluctuation measurements will become chal- 
lenging. Elliptic flow measurements will be significantly improved because of the STAR detectors 
large acceptance at mid-rapidity and symmetric two-K azimuthal coverage. Elliptic flow fluctuation 
measurements based on the shape of the flow vector distribution will also be possible. Although 
not shown here, other measurements such as V I ,  HBT, and (pr) fluctuations will be made much 
better by the STAR detector than by previous experiments which had smaller acceptances which 
changed with 6. 

In summary, a RHIC low energy scan to search for the QCD critical point will cover a broad 
region of interest in the nuclear matter phase diagram. The STAR detector - a detector designed 
to measure the quantities that will be of interest in this search -will provide new observables and 
will improve on previous measurements in this energy range. 
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