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Abstract 

We discuss the calculations of quarkonium spectral functions in potential models 
and their implications for the interpretation of the lattice data on quarkonium cor- 
relators. In particular, we find that melting of different quarkonium states does not 
lead to significant change in the Euclidean time correlators. The large change of the 
quarkonium correlators above decoufinement observed in the scalar and axial-vector 
channels appears to be due to the zero mode contribution. 

1 Introduction 
It was argued long ago that melting of quarkonia above the deconfinement transition can 
serve as a signature of quark-gluon plasma formation in heavy ion collisions [l]. The basic 
idea behind this proposal was that due to color screening the potential between a quark 
and anti-quark will not provide sufficient binding at  high temperature. This problem can 
be formulated more rigorously in terms of quarkonium spectral functions, which can be, 
in principle, extracted from Euclidean-time meson correlation functions calculated on the 
lattice. Attempts doing this based on the Maximum Entropy Method (MEM) have been 
discussed over the last few years. The initial interpretation of data led to the conclusion 
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that the 1s charmonium states survive in the deconfined medium up to temperatures 
of about 1.6TC, with T, being the transition temperature [2, 3, 4, 51. Recent analysis, 
however, has shown that, although MEM can be used to extract reliably quarkonium 
spectral functions at zero temperature, at finite temperature it has severe limitations [GI. 

At zero temperature quarkonium spectrum is well described in non-relativistic poten- 
tial models. Since the seminal paper by Matsui and Satz the problem of charmonium 
dissolution has been studied in potential models [7, 8, 9, 10, 11, 12, 13, 14, 15, 161. While 
the early studies used phenomenological potential, more recent studies rely on static quark 
anti-quark free energy calculated on the lattice. In fact significant progress has been made 
in understanding the in-medium modification of inter-quark forces via lattice calculations 
of the free energy of static quark anti-quark pair. Calculations have been done in pure 
gluodynamics, 3-flavor and 2-flavor QCD [17, 18, 191, and preliminary results are also 
available in the physically relevant case of one heavy strange quark and two light quarks 
[20, 211 (the light quark masses correspond to pion mass of about 220 MeV). 

Recently attempts to calculate quarkonium properties at finite temperature using re- 
summed perturbation theory have been made [22, 231. Resummed perturbation theory 
appears to be successful in calculations of bulk thermodynamics properties [24, 25, 261. 

Since the lattice calculations of spectral functions have severe limitations, in [12, 131 
it has been pointed out, that comparison between the lattice data and potential models 
should be done in terms of the Euclidean time correlators, for which the numerical results 
are much more reliable. Recent studies following this line have also been presented in 
Refs. [14, 15, 161. In this contribution we discuss the calculation of quarkonium spectral 
functions in a potential model, which uses the lattice data of the free energy of a static 
quark anti-quark pair. Since reliable calculations of the quarkonium correlators are avail- 
able only in quenched approximation we consider QCD with only heavy quarks. Further 
details about this approach can be found in Ref. [27]. 

2 Charmonium Spectral Functions in Potential Model 
For heavy quarks the spectral function can be related to the non-relativistic Green’s 
function 

~ ( w )  = K-ImGn’(~,r’,E)li,j,o, 
- 

(1) 
6 
7r 

for S-wave, and P-wave charmonia, respectively. Here E = w - 2m . At leading order 
K = 1. Relativistic and higher order perturbative corrections will lead to a value different 
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from unity 1271. The non-relativistic Green’s function satisfies the Schrodinger equation 

The numerical method for solving this equation is presented in [27]. At zero temperature 
we use the Cornell potential V ( T )  = -a/r + UT with parameters motivated by lattice re- 
sults on static potential : cy = n/12 and u = (1.65 - n/12)-i2. In the actual calculations 
we use a potential which is screened beyond some distance T > ~ , , d  with screening length 
p to mimic many body effects at large energies (see Ref. [27] for further details). At finite 
temperature we use a potential motivated by lattice results on the singlet free energy of 
a static quark anti-quark pair and which is defined in section IV of Ref. [27]. At large 
energies, away from the threshold, the non-relativistic treatment is not applicable. The 
spectral function in this domain, however, can be calculated using perturbation theory. 
We smoothly match the non-relativistic calculation of the spectral function to the rela- 
tivistic perturbative result [27], Euclidean time correlators G(7,T) at some temperature 
T can be calculated from the spectral functions using the integral representation 

G(7,T) = Lmdwu(w,T)K(w,r ,T) .  (4) 

Here the integration kernel is 

coshw(T - 1/(2T)) 
sinh ( w / ( 2 T ) )  K(w, 7, T )  = (5) 

3 Correlators at Zero Temperature 
In this section we discuss the comparison of the model calculations with zero temper- 
ature lattice data from isotropic lattices [4]. The lattice spacing has been fixed using 
the Sommer-scale TO = 0.5fm. Its value is slightly larger than the one used in Ref. [4], 
since there the string tension of fi = 420 MeV has been used to set the scale. Cal- 
culations have been done at the charm quark mass which corresponds to an qc mass of 
about 4 GeV. The renormalization constants of the lattice operators have been calculated 
in 1-loop tadpole improved perturbation theory (see Ref. [4] for further details). The K 
factors in Eq. (2) have been chosen such that at large distances the correlators calculated 
in potential models agree with the lattice results. In Fig. 1 we show the pseudo-scalar 
correlator calculated on the lattice and in the potential model for several screening param- 
eters, together with the corresponding spectral functions. As one can see from the figure 
the choice of the ad-hoc screening parameters have almost no effect on the Euclidean 
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correlator. We see a reasonably good agreement between the lattice data and potential 
model calculations. Also shown in the figure is the correlator corresponding only to the 
non-relativistic spectral function. At small Euclidean times this falls below the lattice 
data by more than an order of magnitude. Thus correlators calculated on the lattice are 
sensitive to the relativistic continuum part of the spectral functions. Similar analysis of 
the correlators have been done in the vector, axial vector and scalar channels. 
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Figure 1: The pseudo-scalar charmonium correlator calculated in our model and compared 
to the lattice data of Ref. [4]. In the inset, the corresponding spectral functions c (w) /w2  
are shown. 

4 Temperature-dependence of Quarkonium Correla- 
tors 

In this section we study the temperaturedependence of quarkonium spectral functions 
and correlators. Since the correlators depend on the temperature through the integration 
kernel and the spectral functions, it is customary to study the temperature dependence 
of the correlators in terms of the ratio G(T,T)/G,,,(T,T), where 

co 
Grec(~ ,  T) = d w ~ ( w , T  = O)K(w, T ,T )  . (6) 

This way the trivial temperature dependence due to the integration kernel is taken care 
of. Also many uncertainties of the lattice calculations cancel out in this ratio. The finite 
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T 0 1.2T, 1.5Tc 2.0TC 
SO 10.975 9.541 9.462 9.384 

M(1S) 9.405 9.390 9.374 9.343 
Ehnd 1.570 0.151 0.088 0.041 

Table 1: The mass and the binding energy of the 1s bottomonium state at different 
temperatures, and the continuum threshold. 

temperature spectral functions are shown in Fig. 2 for the pseudo-scalar channel. The 
1s charmonium state is melted at  1.2TC. We see, however, a large enhancement of the 
spectral functions near the threshold. Note, that the height of the spectral functions near 
the threshold is comparable to the height of the bump in the spectral function calculated 

, from MEM [6]. It is therefore possible that the bump of the spectral functions calculated 
from lattice correlators using MEM actually corresponds to a threshold enhancement, 
and was mistakenly interpreted as the 1s state. In the case of bottomonium all states, 
except the 1s state, are dissolved above the deconfinement transition. The 1s state can 
survive as a resonance until temperatures of about 227,. Note, however, that the binding 
energy of the 1s bottomonium is significantly reduced due to  color screening, as shown in 
Table 1. The binding energy is defined as the distance between the continuum threshold 
so and the bound state peak. Due to the small binding energy the 1s state will acquire 
a sizable thermal width, and may not show up as the resonance in the corresponding 
spectral function. Therefore, the actual dissolution temperature of the 1s bottomonium 
will be smaller then the one estimated based on the simple potential model calculations 
which do not include the effect of the thermal width [28]. In the insets of Fig. 2 we also 
show the corresponding ratio G/G,,,. The large changes in the spectral functions are not 
visible in the correlation functions. These agree quite well with the lattice results. This 
is because even in the absence of bound states the spectral function is significantly larger 
than the spectral function corresponding to a freely propagating quark anti-quark pair. 
In the vector, scalar and axial-vector channels significant temperature dependence has 
been found 14, 6, 291. It has been shown that this is due to the zero mode contribution, 
Le. due to the wb(w)-like contribution to the quarkonium spectral functions [30]. In the 
vector channel the zero mode contribution corresponds to the heavy quark transport [31]. 
The zero mode contribution can be estimated in the free case. It can also be shown that 
the zero mode contribution is absent in the pseudo-scalar channel. If we add the free 
theory result for the zero mode contribution to the spectral function calculated in the 
potential model we can reproduce the temperature dependence of the scalar and axial- 
vector correlator both for charmonium and bottomonium. This is demonstrated by Fig. 
3 where G/G,,, for the scalar and axial-vector channels is shown. 
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Figure 2: The charmonium (left) and bottomonium (right) spectral functions at  different 
temperatures. For charmonium we also show the spectral functions from lattice QCD ob- 
tained from the MEM at  1.5'7,. The error-bars on the lattice spectral function correspond 
to the statistical error of the spectral function integrated in the w-interval corresponding 
to the horizontal error-bars. The insets show the corresponding ratio G/G,,, together 
with the results from anisotropic lattice calculations [6]. For charmonium, lattice calcu- 
lations of G/Grec are shown for T = 1.2'7, (squares), 1.5TC (circles), and 2.0'7, (triangles). 
For bottomonium lattice data are shown for T = 1.5'7, (circles) and 1.8'7, (triangles). 

5 Conclusions 
We discussed the calculations of quarkonium spectral functions and the corresponding 
Euclidean time correlators in a potential model. We have found that all quarkonium 
states, 'except the 1s bottomonium state, dissolve at  temperatures smaller than about 
1.2'7,. This, however, does not lead to significant change of the correlators. Zero mode 
contribution on the other hand could, give a large change in the correlators above the 
deconfinement transition. We have found that the spectral functions calculated in our 
model can explain quite well the temperature dependence of the quarkonium correlators 
obtained in lattice QCD. 

Acknowledgments 
This work has been supported by U S .  Department of Energy under Contract No. D E  
AC02-98CH10886. 

6 



3 lattice, scalar I..-., 
lattice axial-veCLor ," * '' 

scalar - aXia,."eCtor .............. 

e..." lanice, scalar I-.- 

lanice axial-vector 
.............. 

1 
1 [irn 

0.05 0.1 0.15 0.2 0.05 . 0.1 0.15 0.2 

Figure 3: The ratio G/G,,, in the scalar and axial-vector channel a t  T = 1.5Tc for 
charmonium (left) and bottomonium (right). Lattice calculation on isotropic lattices 
[4, 291 are shown as filled symbols. Open symbols refer to results from anisotropic lattice 
calculations of Ref. [ti]. 
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