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We study the sign problem of the fermion determinant at nonzero baryon chemical potential. Par 
this purpose we apply a simple model derived from Quantum Chromodynamics, in the limit of 
large chemical potential and mass. For SU(2) color, there is no sign problem and the mean-field 
approximation is similar to data from the lattice. For SU(3) color the sign problem is unavoidable, 
even in a mean-field approximation. We apply a phase-reweighting method, wmbined with the 
mean-field approximation, to estimate thermodynamic quantities. We also investigate the mean- 
field free energy using a saddle-point approximation [I]. 
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1. Introduction 

One of the current thrusts of hadronic physics is to understand the extreme conditions at high 
temperature andor densities. The RHIC experiments reveal interesting features of a Quark-Gluon 
Plasma (QGP) phase above the critical temperature. In the core of a dense neutron star, various 
color superconductors should exist. Lattice calculations, based on Monte-Carlo simulation, are a 
powerful tool for the nonperturbative analysis of QCD. At zero baryon density, results from the 
lattice provide us with fundamental information, such as the phase transition temperature TC [Z], 
the equation of state [31, susceptibilities [4], the behavior of correlation functions, and so on. 

On the other hand, at nonzero quark density lattice simulations have a serious sign problem: 
the quark determinant is complex in the presence of the baryon chemical potential, so Boltzmann 
weights are complex, and imponantance sampling fails. There are ways to overcome the problem, 
including reweighting [SI, Taylor expansion in the chemical potential 161, and analytical continua- 
tion from imaginary values of the chemical potential [7]. These methods are applicable when the 
chemical potential is small, and the temperature high. The sign problem, is even more intractable 
at low temperature and high density. In this work we study the sign problem in a toy model using 
a mean-field approximation. 

Let us firstsee how the sign problem arises. The quark determinant is 

d e t . 4 k )  = d e t [ y , , p + + ~ ~ + + ~ l ,  (1.1) 

where DP = 8'' - igAP is the covariant derivative, m4 is the quark mass and pg is the quark chem- 
ical potential. The quark determinant is complex except for pq  = 0, due to a lack of gamma-five 
Hermiticity of &(I(P): det&(pq) =detys&(p& = {detA(-pq)y. In and of itself, a com- 
plex quark determinant is not necessarily fatal. While the quark determinant is complex for any 
given A,,, the functional integral over A, is real for real observables. This is seen from the relation 

det[r,(J" -k?(AP)c+y4~q+mq)l = IdedyPDP +wq twJ}*. (1.2) 

The real part of the quark determinant is C-even, and the imaginary part, C-odd. For a C-even (C- 
odd) observable, then, the imaginary (real) part of the determinant vanishes after integration over 
A,. Accordingly the real problem is that the contribution of the quark determinant changes sign, 
depending upon AP,  and there is no known method to replace importance sampling. 

2. Model 

We analyze a simple model to see the sign problem in the mean-field approximation. The 
model is obtained by taking double .limit of heavy mass, m -+ m, and large chemical potential, 
p 4 m, keeping the ratio & (e!'@"'2mqa)N~ fixed. In the heavy quark limit all excited quarks 
are static, while antiquarks axe suppressed at nonzero quark density, so that in the end, the quark 
determinant can be rewritten in terms of the Polyakov loop, 

e-sflLl =det[yp@ +%k+ms]  + [det(l +&L)INfl4, (2.1) 
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where L(2) = ni, U&(X) is the Wilson line, which is a color matrix. Here we set Nf = 4 in order to 
avoid the rooting problem with staggered quarks. The determinant can be explicitly calculated: 

where the Polyakov loop is the trace of the Wilson line, !(X) = trL(?)/N, in the fundamental repre- 
sentation. One can easily check that SU(2) color does not have the sign problem since the Polyakov 
loop is always real, -1 5 ! 5 1. For SU(3) case the Polyakov loop e is complex valued, and the 
determinant is complex. We analyze these two cases in the next section. 

For gluons, we take a simple action with nearest neighbor interactions between Polyakov 
loops, 

S, = -N:JCe(?)!'(F).  (2.3) 
n n. 

J is a parameter which can be interpreted as the temperature of the system. In the strong coupling 
expansion, J is related to the true tempenure, T, through J = exp[-aa/T], where a is the string 
tension. It is known that this action reproduces the gross features of the phase transition without 
quarks; Le., a second-order phase transition for SU(2) color, and a first-order phase transition for 
SU(3) color. In this work we leave J as a free parameter. 

3. Mean-field approximation 

At nonzero temperature the free energy is related to the functional integral as 

/3 = 1/T. Assuming that the action S is real, exp(-S) is positive semidefinite, and in a mean-field 
approximation the free energy is: 

e-@"' = DLexp(-S,r(x)+S,f(x) -s) = &,r(p)(exp(s,t(x) -s))mr 

(3.2) 
s 

2 &f(P)exp((s,r(x)-s)mf) e-pvf(r). 

The average (. . .)mf is taken with respect to mean-field action S&); x is a parameter of mean- 
field theory. In eq. (3.2), the first line is an identity, while the second line follows from Jensen's 
inequality, ((expt7)) 2 exp((6')). The mean-field free energy is larger or equal than the exact free 
energy for any x. The inequality ensures that the f ( x )  has a mnlmum at x = xo, 

Our ansatz for the mean-field action is 

S,f[L] EE -XC[!(X)+P(jr)]. 
2 '  
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Once Smf[L] is known, and x determined, the expectation value of any observable OIL] is given by 
integrating with repsect to the Wilson line, L, over the group measure, with the action of mean- 
field theory, S,r[L]: (@[L]) (@[L]),r. If the action is not real, inequality IS not ensured, and 
convexity is violated. This how the sign problem manifests itself in a mean-field approximation, 
and occurs for three or more colors. Charge-conjugation symmetry is violated at non-zero quark 
density, which is seen from (e) # (e*).  Here we note that both (e) and (e') are real valued, from the 
argument in Sec.1. This difference has been observed in both lattice simulations 161 and in other 
models [SI. It is necessary to extend the mean-field ansatz (3.4) to include two variables, x and y. 
in order to represent the difference between (e) and (P): 

While the mean-field action is complex, x and y are real, so that after integrating over L, the free 
energy f,f(x,y) is a real function of x and y. Their values are then determined by requiring that the 
free energy is a stationary point. At pq # 0, y # 0. It turns out that about the stationary point, while 
the free energy f,f(x,y) is minimal in the x direction, it is maximal in they direction. That is, the 
solution is a saddlepoint in x andy, consistent with Ref. [SI. 

The phase reweighting method is one way to deal with the complexity of the action. The 
magnitude of the quark determinant is C-even, while its phase is C-odd. Accordingly, the quark 
action is 

Sf = p + i@(L], (3.6) 

where 

@[LI = -~arg( l+e3+3EP+3&*P) .  
2 

(3.8) 

With these definitions the expectation value of @[L] is 

(@[L]) rr (~[L]e-'OILl)mf/(e-'QILi)mf. (3.9) 

Here S,@.] orx is fixed from the free energy with the action Sg[L] +SY8[L], so that x encompasses 
the information of Syg[L]  implicitly. This scheme is the same as what has been adopted in the lat- 
tice simulations of Ref. [9]. We compare these two methods for SU(3) color, and find qualitatively 
similar behavior. 

4. Results 

4.1 SU(2) 

We first consider SU(2) color, to see how a mean-field approximation works when there is 
no sign problem. We look for a phase transition by considering how the Polyakov loop changes 
as J increases. In the pure glue theory, the deconfining phase transition is known to be of second 
order for two colors, in the universality class of the Ising model. In our model, at E = 0 there is a 
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Figure 1: For SU(2), comparison of the model to lattice data, Fig. 2 of Ref. [91. Left: the PolYakov 
Imp versus the temperature parameter. Center: the Polyakov loop versus the density parameter. Right: the 
number density versus the density parameter. 

continuous transition at J = J ,  N 0.083, as indicated by the solid curve in the left figure of Fig. 1. 
The presence of dynamical quarks acts on the Polyakov loop variable as an external field which 
breaks the center symmetry. In fact, the results at E # 0 in the left figure of Fig. 1 indicate not a 
me phase transition, but only crossover. 

Our mean-field outputs are to be compared with the lattice simulations in Ref. [9]: the center 
and left figures in Fig. 1 correspond to Figs. 1 and'2 of Ref. [9], respectively. We cannot expect 
exact agreement, because our ansatz for the pure gluonic action S&] is only a crude approximation 
of QCD, and in any case, we neglect the renormalization of the Polyakov loop in a mean-field 
analysis. Nevertheless, the agreement turns out to be surprisingly good, beyond naive expectation, 
if the parameter J is treated as'an adjustable parameter as a fitting parameter. In this way, we fix 
J = 0.0042 and J = 0.04 to reproduce the SU(2) Polyakov loop only at E = 1 for 4/g2 = 2.0 and 
4/g2 = 1.5, respectively. We stress that we do not use the data of the Polyakov loop at E # 1, nor 
the results on the number density. Nevertheless, as clearly seen from Fig. I; our numerical results 
fit all of the lattice data remarkably well. We conclude from this that the main corrections to our 
.ansatz (2.3) can be represented by a shift in the parameter J .  This gives us confidence in using a 
mean-field approximation for this problem. 

4.2 SU(3) 

We next consider SU(3) color. The Polyakov loop is compared in the phase reweighting 
method, and the saddle point approximation, in the left figure in Fig. 2; this is to be compared 
with the lattice results from Fig. 7 of Ref. [9]. We find a first-order phase transition for E = 0 
at J = Jc = 0.132 and for E = 0.1 at J = J, = 0,123. Nonzero E smears the transition, so that it 
eventually ceases to be of first-order. The line of first-order transitions ends with a second order 
transition, which is then a critical end-point. For larger values of & there is only crossover. The 
global picture is consistent with results from a Potts model. In the left figure in Fig. 2 one sees that 
both reweighting, and the saddlepoint approximation, have qualitatively the same behavior for the 
expectation value of the Polyakov loop. 

At ~.r, # 0, (e) # (P). The observable (e  - e*) is C-odd, where the imaginary part of the 
fermion determinant is responsible for this difference. In the center figure of Fig. 2 we present our 
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Fieurn 2: For SU(3), comparison of the model to lattice data, Fig. 2 of Ref. 191. Left: comparison 
of the Polyakov loop between phase reweighting and the saddle point approximation. Center: difference 
between (e) and (e'), Venus the temperature parameter. Right: expectation value of the phase of the quark 
determinant versus the density parameter. 

numerical results for the difference (e)  - (e*) as a function of J .  The difference is trivially zero 
at E = 0 and E = 1 where the fermion determinant is real. As long as the density parameter stays 
smaller than E N 0.5, a larger density parameter E leads to a bigger difference. For example, at 
E = 0.5 we find (e) -(e') = -0.076, which is comparable to (e) = 0.073. 

One can intuitively understand why (e*) is greater than (e) at nonzero &, as seen in [6]. It is 
because at nonzero quark density, the presence of quarks enhances the screening of antiquarks, so 
that an antiquark costs less energy [6]. 

Finally we present the results for the expectation value of the phase factor of the quark deter- 
minant, &@. We plot (e-ia) as a function of E in Fig. 2, where e is the phase at each lattice site; 
~ ~ - a r g ( l + & 3 + 3 & ~ + 3 & 2 t * ) , i . e .  @=&;-e .  ComparingitwithFig. 9inRef. [9],weseethat 
our results qualitatively reproduce the lattice data. For more quantitative agreement, we approxi- 
mate the phase factor by (e-ia)216, taking the lattice volume of a3 = 216 from [9]. For instance, our 
J = 0 result has a minimum at E = 0.61 where (@) N 0.977, while we obtain 0.977*16 = 0.0066. 
The minimum value in Fig. 9 of Ref. [9] is FZ 0.01, which is close to our value. 

5. Summary 

We have explored a simple model applicable in the limit of heavy quark mass and large chem- 
ical potential, and seen how the sign problem, at nonzero quark density, manifests itself in a mean- 
field approximation. All results from mean-field theory are reasonable, and are in quantitative 
agreement with lattice data. There is no sign problem for SU(2), and we find that a mean-field 
approximation works well, for both the quark number density and the Polyakov loop. 

For SU(3), we compared two methods, a saddle point approximation with a complex action, 
and phase reweighting. We find that both methods give qualitatively the same behavior for the 
expectation value of the Polyakov loop. The complex action implies that (e) # (e*), which is 
also Seen with phase reweighting. We computed (e)  - (e*), as a function of the parameters for 
temperature and density. 
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While it may appear odd to find a saddle point in the mean field approximation, i t  is known 
that this happens in other theories, such as for a nonlinear sigma model. There, the constraint of 
the nonlinear model is eliminated by introducing a new field. The effective action, including the 
constraint field, is complex, so that the stationary points thereof are true saddle points. For QCD, 
the Ao field is a consfraint field which imposes Gauss’ law. This may provide a clue to resolving 
the sign problem with dense quarks. 
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