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1. Introduction 

In 1982, Eguchi and Kawai introduced an important and interesting idea, which is now called 
Eguchi-Kuwui equivalence [ 11. Consider the S U ( N )  gauge theory (YM) on a periodic D-dimensional 
lattice with the Wilson plaquette action. In the large4 limit the space-time degrees of freedom 
can be neglected, and the theory is then equivalent to a model defined on a single hyper-cube, 
called the Eguchi-Kawai model (EK model). This correspondence was shown by observing that 
the Schwinger-Dyson equations for Wilson loops (loop equations) in both theories are the same. 
Naively, in the EK model the loop equations can have open Wilson lines, which do not exist in 
the original gauge theory due to gauge invariance. Therefore we need to assume that the global 
Z$ symmetry U, + e"*U,, which prohibits non-zero expectation values of the open Wilson lines, 
is not broken spontaneously. However, soon after the discovery of the equivalence, it was found 
that the symmetry is actually broken for D > 2 in the weak coupling region [2]. Although the 
naive EK equivalence does not hold, several modifications have been proposed for this issue; they 
are the "quenched" Eguchi-Kawai model (QEK model) [2, 3,4] and the "twisted" Eguchi-Kawai 
model (TEK model) [5]. Historically, more work has been performed on the TEK model because 
it is theoretically interesting and numerically more practical. In addition, this model also describes 
gauge theories on noncommutative spaces (NCYM) [6,7]. 

The TEK model is a matrix model defined by the partition function 

with the action 

where dU, and U, (p = l , . . ,D)  are Haar measure and link variables. The phase factors Z,,, are 

z,. = exp (%in,,/N), npv = -nvp E &. (1.3) 

The classical solution U f '  = Tr satisfies the 't Hooft algebra 

r,rv = zv,rvr,, (1.4) 
and is called "twist-eater". The twist-eater guarantees existence of the Z$ symmetry in the weak 
coupling limit. It is unclear whether or not the symmetry is unbroken in the intermediate coupling 
region, as there is no guarantee the symmetry is preserved. Numerical simulations performed 
during the early days of this model, however, showed that the symmetry is unbroken throughout 
the whole coupling region. This has encouraged the belief that the TEK model describes the large- 
N limit of SU(N) gauge theory. 

Surprisingly, some indications of Z$ symmetry breaking were recently reported in several 
contexts concerning the TEK model [8, 9, 101. In [lo], the D =4TEK model with standard twist 
was investigated up toN = 144and Z$ symmetry breaking phenomena in the intermediate coupling 
region was observed by Monte-Carlo simulations. The work presented in this article continues this 
investigation. We concentrate on investigating the locations of the symmetry breaking from the 
weak coupling side in the ( j3 ,N)  plane to determine if the continuum limits of the TEK models can 
be taken as the YM and the NCYM. 
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2. Twist prescriptions 

In this study we treat the D = 4 case. Among the various types of twist possible, we apply: 

nvV = L E;:!, N = L2 (minimal symmetric twist, standard twist), (2.1) 

npv = LE:?, N = L2 (minimal skew-diagonal twist), (2.2) 
nPv = mL E$'", N = mL2 (generic skew-diagonal twist), (2.3) 

where we define anti-symmetrization matrices as 

p -  IC" - [ -1 '1 -1 i 0 : :), 1 E:;w= [ '1 0 0 0 1  "), (2.4) 

-1 -1 -1 0 0 0 - 1 0  

These twists represent L4 lattices. The symmetric and the skew-diagonal form can be transformed 
into one another by an SL(4,Z) transformation for the coordinates on 'P [ll].  While these forms 
differ only by a coordinate transformation, they can give different results except the weak coupling 
limit. We note that the generic twist (2.3) can be regarded as the gauge theory on m-coincident 
fuzzy T4. (The minimal twists (2.1) and (2.2) are particular cases (m = 1) of the generic twist.) 

3. Theoretical discussion for the Z$ symmetry breaking in the TEK model 

As we mentioned in the introduction, the Z i  symmetry can be broken in the intermediate 
coupling region. In this section we give a theoretical discussion about this phenomena. 

Here, we consider the first breaking point from the weak coupling limit 6,". We assume that 
Z; symmetry breaking at this point is atransition from the twist-eater phase Up = Tr to the identity 

configuration phase Cr, = IN.' For simplicity we consider a ZN -+ Z$ type transition here. Of 
come we can treat ZN -+ Z i  2 Z i  -+ ZA 3 Z i  (cascade) type breaking, but the obtained 
behavior is not different from the former type. First, we focus on the classical energy difference 
between these configurations. The energy difference can be easily calculated from the action (1.2) 
as 

4 0," 

4 a," a," 

For the generic twist we have 

24rc2fim2L2 (symmetric form), 
8n2j3m2L2 (skew-diagonal form). 

(3.2) 

'Of course, the twist-ealer only has 75; symmetry for the hyists we apply. But we write it as 75; in this article. 
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Note that the symmetric form is roughly three times more stable than the skew-diagonal form if both 
twists have similar quantum Huctuations. Thus the Z$ symmetry breaking for the skew-diagonal 
form can occur at smaller N than that for the symmetric form. 

Going away from the weak coupling limit, the system experiences greater quantum fluctu- 
ations. Here, we naively expect that the Z$, symmetry is broken if the fluctuation around the 
twist-eater configuration exceeds the energy difference AS. Because the system describes O(N2) 
interacting gluons, it is natural to assume that their quantum fluctuations provide an O(N2) con- 
tribution to the effective action. For the generic twist, the Huctuation is O(m2L4). Combining this 
with eq. (3.2). we can estimate the critical point p," as 

6," - L2. (3.3) 

Although the above discussion is quite crude, the symmetry breaking behavior described by 
(3.3) is consistent with the numerical results discussed in the next section. 

4. Numerical simulations 

In this section we show the results of our numerical simulations for the Z$, symmetry breaking 
phenomena. In order to discuss the continuum and large-N limits for this model, we concentrate 
on the first breaking point from the weak coupling side. 

4.1 Simulation method 

In our simulation we use the pseudo-heatbath algorithm. The algorithm is based on [12], and 
in each sweep over-relaxation is performed five times after multiplying SU(2)  subgroup matrices. 
The number of sweeps is O( 1OOO) for each p.  We scanned for the symmetry breaking p i n t  with 
a resolution of Aj3 = 0.005, and thus quote i0.0025 as the error due to the finite resolution. Note 
that the breaking points are ambiguous because the breakdown of the Z i  symmetry is a first- 
order transition. As an order parameter for detecting the symmetry breakdown, we measure the 
expectation value of Polyakov lines 

4.2 Simulation results 

First we coilsider the minimal twists. Figures 1 and 2 show the critical lattice coupling from the 
weak coupling side p," for the symmetric and skew-diagonal twists, respectively. For the minimal 
skew-diagonal twist we also observe the critical lattice coupling from strong coupling side p,". 
We see that while the Z i  symmetry begins to break at N = 100 for the symmetric form, it is 
already violated at N = 25 for the skew-diagonal form, which is consistent with the theoretical 
considerations in section 3. Additionally, we observe a clear linear dependence of j3," on N(= L2): 

j3," - 0.001 IN f0.21 (minimal symmetric twist), (4.2) 
j3," - 0.0034N + 0.25 (minimal skew-diagonal twist), (4.3) 

4 
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Figure 1: j3fversusN(minimal symmetrictwist). 
Fit line is eq. (4.2), which is obtained using N > 
169 data. 

Figure 2: j3f and j3p versus N (minimal skew- 
diagonal twist). Fit lines are eqs. (4.3) and (4.4), 
which are obtained using N 2 64 and N 2 25 data, 
respectively. The symmetry is broken within 
the light blue shaded area. 

in the larger N region. This behavior was already obtained in the theoretical discussion. Note that 
the coefficient of N for the skew-diagonal twist is roughly three times larger than that for symmetric 
twist, which is also consistent with the theoretical analysis. For p,", we find the relation 

6," - 2.9 /N f0.18 (minimal skew-diagonal twist). (4.4) 

4 6: As N is increased, p," approaches a point where the phase transition ZN + Z i  takes place in the 
original EK model. 

For the generic twist we use the skew-diagonal form because Z i  symmetry breaking occurs at 
smaller N than for the symmetric form, which makes our investigation much easier. We measure 
,¶," for this twist up tom = 4. The simulation results are plotted in figure 3. From this figure we find 
that for each L, the p," show weak l/m behavior. The points at l / m  = 0 are linearly extrapolated 
values. (m = m means that an infinite number of fuzzy ton are superimposed.) The behavior for 
L = 5 is particularly interesting. While Z? symmetry breaking is observed form = 1,2 ,  and 3, it is 
not seen form = 4 because p," reaches a bulk transition point as m is increased. Figure 4 represents 
the same data as figure 3, but with Lz as the horizontal axis. As we have seen in the minimal 
case, the data for L 2 8 can be fitted by a linear function in Lz for each m. From these figures, we 
discover that the data for L 2 8 are well fitted globally by: 

+0.19 (generic skew-diagonal twist). (4.5) 
0.060 ,¶," - 0.0034L' + - 

m 

The discussion in section 3 did not predict the observed dependence of p," on l/m. While we do 
not have a clear reason for this phenomenon at present, we suspect that it is related to collective 
modes of the eigenvalues of the link variables. 

5 
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Figure 3: p," versus l / m  for each L (generic skew- 
diagonal twist). s," form = is obtained by linear 
extrapolation. 

Figure 4: 6: versus L2 for each m (generic skew- 
diagonal twist). We also include m = m data, which 
is obtained by the extrapolation shown in figure 3 

5. Continuum limit 

Although our simulation is restricted to the small N region, we may use our theoretical con- 
siderations to make statements about the large-N limit. Thus the EK equivalence is valid only in 
the region fi  > fi," - N, not only in the smaller N region, but also in the large-N limit. 

As is well known, the one-loop perturbative calculation of the YM lattice theory shows that its 
beta function behaves as fi  - loga-' near the weak coupling limit, where a is lattice spacing. If we 
wish to make the TEK model correspond to the YM theory, the scaling of the TEK model should 
obey that of the YM. In the TEK model, the lattice size L is related to N. (For the generic twist, the 
relation is N = mLz.) Then the continuum limit of the YM system with fixed physical size 1 = aL 
can be obtained using the scaling 

fi-loga-'-logN. (5.1) 

In order to obtain the large-N limit with infinite volume, we should keep fi  lower than eq. (5.1). 
Otherwise, the system would shrink to a point. However, the simulation results obtained in this 
study show that fit grows faster than the logarithm. Therefore we conclude that EK equivalence 
breaks down and the TEK model does not have YM as its continuum limit. 

In the case of the NCYM, the beta function is essentially the same as that of the YM theory at 
the one-loop level [13], and thus the scaling near the weak coupling limit is fi  - loga-'. But if we 
wish to make the TEK model correspond to the NCYM, there is the constraint a2L =fixed, which 
means that we take a scheme in which the noncommutative parameter 6 is fixed. And then both 
the continuum limit and the infinite volume limit are simultaneously taken (double scaling limit). 
Regardless of the constraint, by the nature of the logarithm scaling, the scaling for the NCYM is 
the same as that of the ordinary YM (eq. 5.1). Therefore we conclude also that the TEK model 
does not have NCYM as its continuum limit. 

6 
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6. Conclusions 

We carefully investigated the Z i  symmetry breaking phenomena in the TEK model using 
Monte-Carlo simulation. We found a clew linear dependence on Lz for the symmetry breaking 
point from the weak coupling side. Regrettably, this means that the TEK models which use simple 
twists cannot be made to correspond to either ordinary Y M  or NCYM in the continuum limit. 

Finally, we  mention the partial reduction [14], which has been actively used in recent years. 
[14] showed that the large-N reduction is valid above some critical physical size I,. This means 
that for a lattice size L the reduction holds only below some lattice coupling j3(L). In order to take 
continuum limit we  should avoid the bulk transition at p,", and thus there is a lower limit to the 
lattice size L&) used for the reduction. It is clever that the twist prescription is applied to this 
reduction [15], and we believe it would be very efficient. 
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