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A Hamiltonian Formulation for Spiral-Sector Accelerators

J. Scott Berg
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Abstract. I develop a formulation for Hamiltonian dynamics in an accelerator with magnets whose edges follow a spiral.
I demonstrate using this Hamiltonian that a spiral FFAG can be made perfectly “scaling.” I examine the effect of tilting an
RF cavity with respect a radial line from the center of the machine, potentiallywith a different angle than the spiral of the
magnets.
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INTRODUCTION

When one analyzes motion in an accelerator, one tried to determine what is going on at phase space at a points1 if
the particles started out at a points0. When one refers to phase space “a points,” one imagines a curve parametrized
by s. There are a series of surfaces passing through that curve.s tells you which surface you are speaking of, where
s is the point on the curve through which the plane passes. The phase space coordinates are the position coordinates
within the plane, their conjugate momenta, time, and energy. For a synchrotron, these planes are perpendicular to a
“reference orbit,” ands is the distance along that reference orbit. For a radial-sector cyclotron or FFAG, the planes are
oriented along radial lines from the machine center, ands is the length along a circle with some given radius. These
are convenient parametrizations, since magnets generallyextend from one value ofs to a different value ofs.

The question then arises as to how to handle a spiral machine,similar to what is shown in Fig. 1. One often uses
the same parametrization as for the radial-sector cyclotron or FFAG, but the planes now do not even come close to
following the magnet edges. Thus, to look at what occurs at the entrance to a magnet, for instance, one cannot look at

FIGURE 1. A diagram of a spiral FFAG accelerator. Black regions are magnets.



motion at a given value fors.
Thus, one would like to construct a mathematical formulation so that the planes described above match the spirals

of the magnets. The primary purpose of this paper is to present a Hamiltonian description for this situation.
In the first section, I will outline the basic theory of an accelerator in spiral coordinates, focusing particularly on

the case of a logarithmic spiral. I will write down a Hamiltonian, a magnetic field expansion, and an RF cavity field
expansion in these coordinates. In the following section, Iwill demonstrate that this Hamiltonian, when used with
appropriately defined scaling fields, obeys the usual scaling laws. Finally, I will discuss the effect of having a cavity
tilted in the machine.

HAMILTONIAN IN SPIRAL COORDINATES

One first transforms into spiral coordinates

R = r Y = y Θ = θ −

∫ r

r0

tanζ (r̄)
r̄

dr̄, (1)

whereζ (r) is the angle that the spiral faces make with respect to a radial line from the center of the machine, as
a function of the radiusr. For positiveζ , the magnet edges move in the direction of particle motion asthe radius
increases, assuming that the magnet edges are along lines ofconstantΘ. Note thatΘ will eventually be the independent
variable for the new system, but temporarily we will use timeas the independent variable for the purpose of performing
these transformations. This change of variables induces a change in the conjugate momenta to

pR = pr +
pθ
r

tanζ pY = py pΘ = pθ (2)

Note thatpR is different frompr, despite the fact thatR = r. Furthermore, note that the Hamiltonian withθ as the
independent variable is−pθ , and the Hamiltonian withΘ as the independent variable is−pΘ.

It is important to understand the change of independent variable: it means that the question that one is asking of the
equations of motion is changing. Withθ as the independent variable, one is asking about the radius,vertical position,
time, and their conjugate momentawith respect to θ at a given value ofθ . With Θ as the independent variable, one
is asking about the radius, vertical position, time, and their conjugate momentawith respect to Θ at a given value of
Θ. Notice two things have changed in the question: where you are looking, and the nature of the conjugate momenta.
Understanding this fact is essential to understanding why the spiral machine behaves differently than the radial sector
machine.

The Hamiltonian in these coordinates, withΘ as the independent variable, is

−Rcosζ
[

pR sinζ +qAΘ +
√

(E −qΦ)2/c2
− (pR cosζ −qAR)2

− (pY −qAy)2
− (mc)2

]

, (3)

where

AΘ = Aθ cosζ −Ar sinζ AR = Ar cosζ +Aθ sinζ . (4)

These are the components of the vector potential perpendicular and parallel to the spirals, respectively.

Vector Potentials for Magnets

It is most convenient at this point to assume thatζ is constant, which is required for meeting the scaling condition
in an FFAG. Writing the vector potentials in a power series about the midplane

AR(R,Y,Θ) =
∞

∑
n=0

1
n!

ARn(R,Θ)Y n Ay(R,Y,Θ) =
∞

∑
n=0

1
n!

Ayn(R,Θ)Y n AΘ(R,Y,Θ) =
∞

∑
n=0

1
n!

AΘn(R,Θ)Y n, (5)



one can obtain a recursion relation for the coefficients fromMaxwell’s equations using the gauge∇ ·A = 0:

AR,n+2 = −

∂
∂R

[

1
R

∂
∂R

(RARn)

]

+
2tanζ

R
∂ 2ARn

∂Θ∂R
−

sec2 ζ
R2

∂ 2ARn

∂Θ2 +
2

R2

∂AΘn

∂Θ
(6)

AΘ,n+2 = −

∂
∂R

[

1
R

∂
∂R

(RAΘn)

]

+
2tanζ

R
∂ 2AΘn

∂Θ∂R
−

sec2 ζ
R2

∂ 2AΘn

∂Θ2 −

2
R2

∂ARn

∂Θ
(7)

Ay,n+1 = −

cosζ
R

∂
∂R

(RARn)+
sinζ

R
∂

∂R
(RAΘn)−

secζ
R

∂AΘn

∂Θ
(8)

Starting with the gauge choiceAR0(R,Θ) = 0, one also has an equation forAΘ0 from By(R,0,Θ):

By(R,0,Θ) = −

cosζ
R

∂
∂R

(RAΘ0). (9)

If we have scaling fields, where
By(R,0,Θ) = By0(Θ)(R/r0)

k, (10)

then

ARn(R,Θ) = ÂRn(Θ)(R/r0)
k+1−n Ayn(R,Θ) = Âyn(Θ)(R/r0)

k+1−n AΘn(R,Θ) = ÂΘn(Θ)(R/r0)
k+1−n, (11)

and the recursion relations become

ÂR,n+2 = −(k +2−n)(k−n)ÂRn +2(k +1−n) tanζ
∂ ÂRn

∂Θ
−sec2 ζ

∂ 2ÂRn

∂Θ2 +2
∂ ÂΘn

∂Θ
(12)

ÂΘ,n+2 = −(k +2−n)(k−n)ÂΘn +2(k +1−n) tanζ
∂ ÂΘn

∂Θ
−sec2 ζ

∂ 2AΘn

∂Θ2 −2
∂ARn

∂Θ
(13)

Ây,n+1 = −(k +2−n)cosζ ÂRn +(k +2−n)sinζ ÂΘn −secζ
∂AΘn

∂Θ
(14)

By0(Θ) = −(k +2)cosζ ÂΘ0. (15)

Vector Potentials for Cavities

For cavities, it is best to take the gauge with zero electric scalar potential, in which case the recursion relations for
the power series in the midplane become

AR,n+2 = −

∂
∂R

[

1
R

∂
∂R

(RARn)

]

+
2tanζ

R
∂ 2ARn

∂Θ∂R
−

sec2 ζ
R2

∂ 2ARn

∂Θ2 +
2

R2

∂AΘn

∂Θ
+

ω2

c2 ARn (16)

AΘ,n+2 = −

∂
∂R

[

1
R

∂
∂R

(RAΘn)

]

+
2tanζ

R
∂ 2AΘn

∂Θ∂R
−

sec2 ζ
R2

∂ 2AΘn

∂Θ2 −

2
R2

∂ARn

∂Θ
+

ω2

c2 AΘn (17)

Ay,n+1 = −

cosζ
R

∂
∂R

(RARn)+
sinζ

R
∂

∂R
(RAΘn)−

secζ
R

∂AΘn

∂Θ
. (18)

To start the recursion sequence, we assume there are electric fieldsER0(R,Θ)cos(ωt +φ) andEΘ0(R,Θ)cos(ωt +φ)
in the midplane (parallel and perpendicular to the logarithmic spirals respectively), and thus

AΘ0 = −

EΘ0(R,Θ)

ω
sin(ωt +φ) AR0 = −

ER0(R,Θ)

ω
sin(ωt +φ). (19)

SCALING LAWS FOR SCALING FFAGS

Now we can see precisely what “scaling” means for a scaling FFAG. Assume that the vector potentials are described
by Eq. (5), with the coefficients in those equations given by Eq. (11). The spiral angleζ is assumed to be constant.
The vector potentials are taken to be independent of time. Then for any of those vector potentials,

A(λR,λY,Θ) = λ k+1A(R,Y,Θ). (20)



FIGURE 2. Cavity walls and assumed electric field lines for a logarithmic spiral cavity shape.

Change variables fromE to ∆, whereE = E0 + ∆, and assume that the scalar potentialΦ is zero. The Hamiltonian is
then

−Rcosζ
[

pR sinζ +qAΘ +
√

p2
0 +2E0∆/c2 +∆2/c2

− (pR cosζ −qAR)2
− (pY −qAy)2

]

, (21)

wherep2
0 = E2

0/c2
− (mc)2.

Consider the following transformation

R̂ = R(p̂0/p0)
1/(k+1) p̂R = pR p̂0/p0 Ŷ = Y (p̂0/p0)

1/(k+1) p̂Y = pY p̂0/p0

∆̂ =
√

Ê2
0 +2cE0(p̂0/p0)2∆+(p̂0/p0)2∆2

− Ê0 t̂ = t
p0

p̂0

Ê0 + ∆̂
E0 +∆

(

p̂0

p0

)1/(k+1)

,
(22)

where ˆp2
0 = Ê2

0/c2
− (mc)2. The Hamiltonian which governs the new variables is

−R̂cosζ
[

p̂R sinζ +qAΘ +
√

p̂2
0 +2Ê0∆̂/c2 + ∆̂2/c2

− (p̂R cosζ −qAR)2
− (p̂Y −qAy)2

]

, (23)

where nowAR, Ay, andAΘ are all evaluated at̂R andŷ instead ofR andy.
The Hamiltonians for the two sets of variables are clearly identical, with the exception thatp0 is replaced by ˆp0.

The interpretation of this is that if you know the phase spacedynamics near a total momentump0, you can find the
phase space dynamics near any other total momentum ˆp0 by applying the transformations (22). Several conclusions
can be drawn from this:

• Transverse tunes are independent of reference momentum.

• Closed orbits for different momenta are geometrically similar, and their size is proportional top1/(k+1)
0 .

• Normalized dynamic aperture in each plane is proportional to p(k+2)/(k+1)
0 . The shape of the dynamic aperture is

independent of momentum, except that the transverse coordinate direction is proportional to top1/(k+1)
0 , and the

transverse momentum direction is proportional top0.
• The Courant-Snyder beta functions in normalized coordinates (with units of m/(eV·s)) are proportional to

p−k/(k+1)
0 , and thus the usual beta functions (units of m) are proportional to p1/(k+1)

0 . The Courant-Snyder alpha
function is independent ofp0.

• The momentum compaction is 1/(k +1), independent of energy.

ANALYSIS OF CAVITY PLACEMENT

Start with a cavity which makes an angle ofζC with respect to radial lines. To be able to produce some analytic results,
I assumeζC to be constant. The cavity thus has a logarithmic spiral shape, unlessζC = 0. The center of the cavity is
given by

θ = θC + tanζC ln(r/rC). (24)



Assume that the midplane electric fields in the cavity are perpendicular to lines that make an angleζC with respect to
radial lines (see Fig. 2). We will define the cavity fields in coordinates which are along the logarithmic spirals making
angleζC with respect to radial lines and which are along curves whichare perpendicular to those spirals. We define
these coordinates to ber1 andθ1 as follows:

θ1 = θ −θC − tanζC ln(r/rC) r1 = rcos2 ζC rsin2 ζC
C exp[(θ −θC)cosζC sinζC] (25)

Now, assume that the magnitude of the electric field in the midplane is of the form

c(r1)d(θ1) (26)

Integrating inθ1 to find the on-crest energy gain in the cavity (ignoring the time dependence of the electric field), one
finds the voltage to be

r1c(r1)
∫

d(θ1)exp(−θ1sinζC cosζC)dθ1. (27)

If one wishes the energy gain to be independent of the line along which you integrated, thenc(r1) ∝ r−1
1 .

Thus, in terms ofr andθ , one can write the electric field component in theθ1 direction to be

(r/rC)−cos2 ζC exp[−(θ −θC)sinζC cosζC]d
(

θ −θC − tanζC ln(r/rC)
)

. (28)

Redefiningd to eliminate the exponential, one can rewrite this as

rC

r
E0

(

θ −θC − tanζC ln(r/rC)
)

(29)

On performing the integral (27), we find the voltage to be

rC cosζC

∫

E0(θ)dθ . (30)

In terms of the spiral coordinates for the Hamiltonian and the electric field components used earlier (and taking
rC = r0 andζ constant),

EΘ(R,Θ) =
r0

R
cos(ζ −ζC)E0

(

Θ−θC +(tanζ − tanζC) ln(R/r0)
)

(31)

ER(R,Θ) =
r0

R
sin(ζ −ζC)E0

(

Θ−θC +(tanζ − tanζC) ln(R/r0)
)

(32)

Note that ifζ = ζC, thenER = 0 (thusAR = 0 as well), and the onlyR dependence remaining inEΘ (and therefore
AΘ) is an inverse dependence inR. Thus, such a cavity following the spiral coordinates will give terms in the
Hamiltonian which do not depend on the transverse variables, and which should therefore minimize longitudinal-
transverse coupling.

DISCUSSION AND CONCLUSIONS

I have developed a Hamiltonian formulation for dynamics in aspiral machine. In particular, it appears that having any
RF cavities follow the spiral of the magnets will minimize longitudinal-transverse coupling effects.

However, this latter conclusion is still somewhat speculative. There is longitudinal-transverse coupling that arises
from the having dispersion in the RF cavities. It is conceivable that giving the cavity a different angle would be able to
reduce this coupling. However, it initially appears that the two effects do not come into the Hamiltonian in the same
way. However, to verify this, the longitudinal-transversecoupling due to finite dispersion in the cavities should be
computed.
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