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A Hamiltonian Formulation for Spiral-Sector Accelerators
J. Scott Berg

Brookhaven National Laboratory; Building 901A; P. O. Box 5000; Upton, NY 11973-5000; USA

Abstract. | develop a formulation for Hamiltonian dynamics in an accelerator with retgwhose edges follow a spiral.
| demonstrate using this Hamiltonian that a spiral FFAG can be made perfetaling.” | examine the effect of tilting an

RF cavity with respect a radial line from the center of the machine, potentiétya different angle than the spiral of the
magnets.

Keywords: spiral, Hamiltonian, fixed field alternating gradient accater, radio frequency cavity
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INTRODUCTION

When one analyzes motion in an accelerator, one tried tordeterwhat is going on at phase space at a psirit
the particles started out at a posgt When one refers to phase space “a pgjhbne imagines a curve parametrized
by s. There are a series of surfaces passing through that catells you which surface you are speaking of, where
sis the point on the curve through which the plane passes. hsgpspace coordinates are the position coordinates
within the plane, their conjugate momenta, time, and end¥gy a synchrotron, these planes are perpendicular to a
“reference orbit,” ang is the distance along that reference orbit. For a radialsegclotron or FFAG, the planes are
oriented along radial lines from the machine center, sigdthe length along a circle with some given radius. These
are convenient parametrizations, since magnets genesdaiynd from one value afto a different value o$.

The question then arises as to how to handle a spiral madim#ar to what is shown in Fig. 1. One often uses
the same parametrization as for the radial-sector cyaiatro-FAG, but the planes now do not even come close to
following the magnet edges. Thus, to look at what occurseetitrance to a magnet, for instance, one cannot look at
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FIGURE 1. A diagram of a spiral FFAG accelerator. Black regions are magnets.



motion at a given value fas.

Thus, one would like to construct a mathematical formufaso that the planes described above match the spirals
of the magnets. The primary purpose of this paper is to ptesklamiltonian description for this situation.

In the first section, | will outline the basic theory of an decator in spiral coordinates, focusing particularly on
the case of a logarithmic spiral. | will write down a Hamiltan, a magnetic field expansion, and an RF cavity field
expansion in these coordinates. In the following sectionillldemonstrate that this Hamiltonian, when used with
appropriately defined scaling fields, obeys the usual sg#diws. Finally, | will discuss the effect of having a cavity
tilted in the machine.

HAMILTONIAN IN SPIRAL COORDINATES

One first transforms into spiral coordinates
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where{(r) is the angle that the spiral faces make with respect to alrbéafrom the center of the machine, as
a function of the radius. For positive{, the magnet edges move in the direction of particle motiothasadius
increases, assuming that the magnet edges are along licesstdn. Note that® will eventually be the independent
variable for the new system, but temporarily we will use tesehe independent variable for the purpose of performing
these transformations. This change of variables induckamage in the conjugate momenta to

m—m+@mw Py = Py Pe = Pe 2

Note thatpg is different fromp,, despite the fact tha&® = r. Furthermore, note that the Hamiltonian wihas the
independent variable is pg, and the Hamiltonian witk® as the independent variable-ige.

Itis important to understand the change of independenabtei it means that the question that one is asking of the
equations of motion is changing. Withas the independent variable, one is asking about the raditt&gal position,
time, and their conjugate momentkdth respect to 6 at a given value oB. With © as the independent variable, one
is asking about the radius, vertical position, time, andrtbenjugate momentwith respect to © at a given value of
©. Notice two things have changed in the question: where yedoaking, and the nature of the conjugate momenta.
Understanding this fact is essential to understanding Wwhyspiral machine behaves differently than the radial secto
machine.

The Hamiltonian in these coordinates, wihas the independent variable, is

—Reost [pRsinz+qu+¢<E—q¢>2/c2—<pRcosz—qAR>2—<m—qu>2— (mo)2|. ©
where

Ag = Agcosl — A;sind Ar = Ar cos{ + Agsind. 4)

These are the components of the vector potential perpdad@nd parallel to the spirals, respectively.

Vector Potentialsfor M agnets

It is most convenient at this point to assume thas constant, which is required for meeting the scaling ctiordli
in an FFAG. Writing the vector potentials in a power seriesultioe midplane
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one can obtain a recursion relation for the coefficients fkdaxwell’s equations using the gauge A = 0:
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Starting with the gauge choidgn (R, ©) = 0, one also has an equation figg from By(R,0,0):
cos( d
If we have scaling fields, where
BY(R7 0, @) = ByO(@)(R/m)ka (10)

then

Arn(R,0) = Am(©)(R/10)™ ™" Apn(R ©) = Ap(©)(R/ro)"* ™™ Agn(R ©) = Aon(®)(R/ro)* ™", (11)

and the recursion relations become
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Vector Potentialsfor Cavities

For cavities, it is best to take the gauge with zero electrdes potential, in which case the recursion relations for
the power series in the midplane become
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To start the recursion sequence, we assume there are efedtts Erg(R, ©) cof wt + ¢) andEgg(R, ©) coq wt + @)
in the midplane (parallel and perpendicular to the logarithspirals respectively), and thus

Eoo(R O) _ Ero(RO)
w w

Agp = — sin(wt + @) Aro = sin(wt + @). (29)

SCALING LAWSFOR SCALING FFAGS

Now we can see precisely what “scaling” means for a scalily@FAssume that the vector potentials are described
by Eq. (5), with the coefficients in those equations given by @1). The spiral anglé is assumed to be constant.
The vector potentials are taken to be independent of timenTér any of those vector potentials,

AARAY,0) = AKIARY,0). (20)
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FIGURE 2. Cavity walls and assumed electric field lines for a logarithmic spiral cavitgesha

Change variables frori to A, whereE = Eg + A, and assume that the scalar poterntids zero. The Hamiltonian is
then

~Rcos{ {pRSinZ +0Ao + \/ P5+2E0A/c? +A2/¢? — (PrCOS, — GAR)Z — (Py — qu)Z] : (21)

wherep = E2/c2 — (mc)2.
Consider the following transformation

R=R(po/po) ™ pr=prpo/po ¥ =Y(Po/Po)”* Py = pvPo/po
po Eo + A (f’o) 1/(k+1) (22)
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wherepg = E3/c? — (mc). The Hamiltonian which governs the new variables is

~Roos? {ﬁRsinz + Ao+ /BB -+ 2£0b/? + 7/ — (Preost — GAR)2 — (Py - qu>2] , (23)

where nowAg, Ay, andAg are all evaluated a andy'instead ofR andy.

The Hamiltonians for the two sets of variables are cleargntital, with the exception thal is replaced bypg.
The interpretation of this is that if you know the phase sphggamics near a total momentupg, you can find the
phase space dynamics near any other total momeptuby applying the transformations (22). Several conclusions
can be drawn from this:

- Transverse tunes are independent of reference momentum.

« Closed orbits for different momenta are geometrically Eimand their size is proportional tné/<k+1>.

« Normalized dynamic aperture in each plane is proporticmafﬁ*z)/(k*l)

independent of momentum, except that the transverse catedilirection is proportional to lptl)
transverse momentum direction is proportionapgo
« The Courant-Snyder beta functions in normalized coordmdtvith units of m/(eWs)) are proportional to
Po K/ <k+1>, and thus the usual beta functions (units of m) are propuatito pé/ D The Courant-Snyder alpha
function is independent qfp.

« The momentum compaction ig (k+ 1), independent of energy.

. The shape of the dynamic aperture is
/D) and the

ANALYSISOF CAVITY PLACEMENT

Start with a cavity which makes an anglefefwith respect to radial lines. To be able to produce some &inaBsults,
| assumelc to be constant. The cavity thus has a logarithmic spiral shapless/c = 0. The center of the cavity is
given by

6 = 6 +tandcIn(r/rc). (24)



Assume that the midplane electric fields in the cavity ar@@edicular to lines that make an andlewith respect to
radial lines (see Fig. 2). We will define the cavity fields iroodinates which are along the logarithmic spirals making
angle{c with respect to radial lines and which are along curves whighperpendicular to those spirals. We define
these coordinates to bbe and6; as follows:

6, = 6 — 6 —taneIn(r /rc) ry = reo¥ &S axp(9 — 6o) cosle sindc (25)
Now, assume that the magnitude of the electric field in theptaitk is of the form
c(r1)d(61) (26)

Integrating in6; to find the on-crest energy gain in the cavity (ignoring tieetidependence of the electric field), one
finds the voltage to be

rlc(rl)/d(el) exp(—61sin{c cos(c)db;. 27)

If one wishes the energy gain to be independent of the linegalehich you integrated, thesir) O rl‘l.
Thus, in terms of and@, one can write the electric field component in thedirection to be

(r /rc)~ 4 exp[— (6 — 6c) sindc cos{c]d (6 — 6c —tandcIn(r /rc)). (28)
Redefiningd to eliminate the exponential, one can rewrite this as
LEo(6 b —tandcIn(r/rc)) (29)

On performing the integral (27), we find the voltage to be

fecoslc / Eo(6)d6. (30)

In terms of the spiral coordinates for the Hamiltonian arel ¢kectric field components used earlier (and taking
rc =ro and{ constant),

Eo(R ©) = 12¢04{ — {c)Eo(® — o + (tan —tanic) In(R /o)) (31)
ER(R ©) = 2 sin(¢ — {c)Eo(@ — 6+ (tand — tandc) In(R/ro)) (32)

Note that if{ = {c, thenEg = 0 (thusAgr = 0 as well), and the onlRR dependence remaining Fy (and therefore
Ap) is an inverse dependence i Thus, such a cavity following the spiral coordinates wiNegterms in the
Hamiltonian which do not depend on the transverse varialaled which should therefore minimize longitudinal-
transverse coupling.

DISCUSSION AND CONCLUSIONS

| have developed a Hamiltonian formulation for dynamics gpaal machine. In particular, it appears that having any
RF cavities follow the spiral of the magnets will minimizentgitudinal-transverse coupling effects.

However, this latter conclusion is still somewhat spedwatThere is longitudinal-transverse coupling that &ise
from the having dispersion in the RF cavities. It is concdeligdhat giving the cavity a different angle would be able to
reduce this coupling. However, it initially appears that thvo effects do not come into the Hamiltonian in the same
way. However, to verify this, the longitudinal-transversmupling due to finite dispersion in the cavities should be
computed.
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