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Abstract

I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the

main EMMA ring. I then describe the mathematical model that is used to describe the EMMA lattice. Finally, I show how the

different lattice configurations were obtained and list their parameters.

Key words: linear non-scaling fixed field alternating gradient accelerator
PACS: 29.20.D-, 29.27.Bd, 41.85.-p

1. Goals of the Experiment and Lattice

The purpose of the EMMA experiment is to provide a
platform for the study of a linear non-scaling FFAG. Such
a machine has been contemplated for a number of applica-
tions: muon acceleration for a neutrino factory or muon col-
lider [1–4], high-power proton drivers [5,6], medical accel-
erators [7–9,6,10], and other applications [11,12]. The most
extensive studied of these applications is the muon acceler-
ation application, and was therefore used as a basis for the
design of the EMMA main ring. This application requires
that the acceleration be very rapid (under 20 turns in most
cases), and uses RF with a constant frequency. The par-
ticles are highly relativistic, and the lattice is adjusted to
minimize the variation of the time of flight with respect to
energy (which is what allows the use of constant-frequency
RF).

The EMMA experiment will not simply demonstrate
that one can accelerate a beam in a linear non-scaling
FFAG. The machine will be used to study single-particle
beam dynamics in such a system. While we may not have
a precise match between the dynamics predicted by simu-
lation and the behavior of the machine, due to imperfect
modeling of magnets as well as errors in the machine, we
should still be able to verify that the dependency of mea-
surable quantities in the machine on machine parameters
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(magnet excitations and positions, RF voltages and fre-
quencies, etc.) are correct.

There are several effects that appear in linear non-scaling
FFAGs, in particular for the configuration used for muon
acceleration, that are known to be of significance. The first
is the accelerating mode itself, often referred to as “ser-
pentine” acceleration, that appears in linear non-scaling
FFAGs that use high-frequency RF and are isochronous
within their energy range [13–17]. This mode of accelera-
tion is has never been used in an accelerator before. When
it is used to accelerate rapidly, it is linac-like, but it is more
interesting when it is used to accelerate as slowly as possi-
ble. The EMMA experiment will therefore try to probe the
parameter space of this accelerating mode, to verify that it
behaves as expected. In particular, this requires that one
be able to change the time of flight as a function of energy,
while making minimal changes to the tunes as a function
of energy. As a result, the machine must be able to vary
the dipole and quadrupole components of the lattice inde-
pendently. We chose to do this by constructing quadrupole
magnets and putting them on sliders that allowed them to
be moved horizontally. In addition to varying the time of
flight, we will vary the RF voltage in the lattice as well to
further explore the parameter space for serpentine acceler-
ation.

The second effect of interest is resonances (though “res-
onance” may not be precisely the right term [18]). Because
the machine tune varies with energy, one expects to cross
a number of resonances. A linear non-scaling FFAG is de-
signed to minimize the effect of these resonances by mini-
mizing the driving terms for the resonances and by cross-
ing any resonances rapidly. The driving of the resonances
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is minimized by constructing a lattice consisting entirely of
identical, compact cells, and by using linear magnets which
should reduce the driving of nonlinear magnets. Any break-
ing of the perfect symmetry can lead to emittance growth
and orbit distortion [18]. In addition, some authors have
found significant effects due to nonlinearities when realistic
magnets are used in a linear non-scaling FFAG [19,4,18].
To study imperfections, we plan to vary the position and
gradient in some individual magnets. For the study of non-
linear resonance effects, we will vary the tune of the lattice
to change which nonlinear resonances we cross during the
acceleration cycle.

2. Mathematical Description

The computations here are based on a code which sym-
plectically integrates Hamiltonian equations of motion. The
code also has a method for estimating the effects of mag-
net end fields by using a lumped approximation known as
a “hard-edge” approximation. Furthermore, the code care-
fully treats coordinate system translations and rotations.
This section gives a mathematical description of the algo-
rithms used in the code.

2.1. Hamiltonian

I will use a rectilinear coordinate system to describe the
motion. The coordinates are x, y, and s, the latter being
the independent variable in the equations of motion. x is in
the horizontal direction, and y is in the vertical direction.
There is a third coordinate variable, the arrival time t. The
three coordinates x, y, and t have conjugate momenta px,
py, and −E respectively.

The motion is governed by the Hamiltonian

H = −qAs −
√

(E/c)2 − (px − qAx)2 − (py − qAy)2, (1)

where Ax, Ay, and As are the components of the magnetic
vector potential in the x, y, and s directions respectively.
Hamilton’s equations of motion are

dx

ds
=

∂H

∂px

dy

ds
=

∂H

∂py

dt

ds
= −∂H

∂E

dpx

ds
= −∂H

∂x

dpy

ds
= −∂H

∂y

dE

ds
=

∂H

∂t
.

(2)

2.2. Quadrupole Field

The magnet will be described using a so-called “hard-
edge” model. In this model, the magnet consists of an en-
trance edge, the magnet body, and an exit edge. The han-
dling of the entrance and exit edges will be described in a
subsequent section. If the magnet has a gradient B1 and
extends from longitudinal positions s0 to s1, the field in the
body is described by the vector potential

As = −B1

2
H(s − s0)H(s1 − s)(x2 − y2), (3)

where

H(s) =











1 s > 0

1/2 s = 0

0 s < 0

(4)

Note the distinction between the function H(s) and the
Hamiltonian H: the function will always have an argument
in parentheses. The vector potential components Ax and
Ay are 0.

2.3. Integration Algorithm

The equations of motion (2) are integrated using the im-
plicit midpoint method which is turned into a fourth or-
der integrator using Yoshida’s algorithm [20]. This results
in a symplectic integrator. For the purposes of defining
the EMMA lattice, this discussion is merely academic: the
equations of motion are integrated to high accuracy, and
the results are thus independent of the integration method.

The implicit midpoint performs a step of size ∆s for a
vector field v(z, s) by solving the implicit equations

zf = zi + ∆sv
(

(zi + zf)/2, s + ∆s/2
)

, (5)

where zi are the initial phase space variables, and zf are the
phase space variables at the end of the step. If v is derived
from a Hamiltonian, for which case

vi =
∑

j

Jij

∂H

∂zj

, (6)

where Jxpx
= Jypy

= JEt = 1, Jpxx = Jpyy = JtE = −1,
and Jij = 0 otherwise, the algorithm is symplectic. The al-
gorithm is accurate to second order in ∆s. This algorithm
is particularly convenient for cases that have a transverse
vector potential. Its disadvantage is that it is iterative, typ-
ically requiring around 6 evaluations of the vector field v

and its derivative.
The implicit equation is solved using Newton’s method.

Application of Newton’s method requires the derivative A
of the vector field, which is

Aij =
∑

k

Jik

∂2H

∂zk∂zj

. (7)

Newton’s method then gives

zf,n+1 = zi,n + (I − ∆sA/2)−1
δn, (8)

where

δn = zi + ∆sv
(

(zi + zf)/2, s + ∆s/2
)

− zf. (9)

Note that A is evaluated at (zi + zf)/2 just as v is.
For the algorithm to be symplectic, the iteration must

converge to machine precision. The algorithm determines
that is has reached machine by keeping track of a boolean
bounce vector b. Initially every element of b is set to false.
After an iteration n of Newton’s method, the difference δn

is computed. If δni = 0, or if |δni| > |δnf |, then bi is set to
true. The iteration terminates once every component of b
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is true (note that a component of b may have become true
at the latest iteration or any prior one).

One can also obtain the derivative map about the orbit
that one finds by this algorithm. It is readily available since
the derivative of the vector field is needed for Newton’s
method anyhow. If z0(s) is a solution to the equations of
motion, then to lowest order in z − z0, the solution z near
z0 is given by

z(s) = z0(s) + M(s; s0)[z(s0) − z0(s0)]. (10)

The evolution of M from one step to the next is given by

Mf = (I − ∆sA/2)−1(I + ∆sA/2)Mi. (11)

Note that no additional iteration is needed to obtain M ;
iteration is only necessary for finding zf.

Instead of Newton’s method, one could use fixed-point
iteration to obtain the solution:

zf,n+1 = zi + ∆sv
(

(zi + zf,n)/2, s + ∆s/2
)

. (12)

One can always choose ∆s small enough so that the algo-
rithm does converge. while this avoids the computation of
A, it takes more steps to converge; the net result is that
there is little difference in the time taken for the fixed point
iteration and Newton’s method; I chose to use Newton’s
method since it converges over a broader range of step sizes.

Viewing the implicit midpoint method as a mapping on a
phase space vector which depends on the step size ∆s, I will
write it as the map S2(∆s). Since S2(−∆s) = S−1

2 (∆s), it
satisfies the conditions required for Yoshida’s method [20]
to construct higher order integrators. Thus, in particular,
a fourth order integrator with step size s is constructed as

S4(∆s) = S2(a1∆s)S2(a2∆s)S2(a1∆s) (13)

a1 =
3
√

4(
3
√

2 + 1)2/6 a2 = −(
3
√

2 + 1)2/3. (14)

Thus, the implicit midpoint method is applied three times,
with ∆s replaced by a1∆s, a2∆s, and a1∆s in sequence,
to obtain a fourth order integrator.

2.4. Step Size

The algorithm uses a fixed step size ∆s, in the examples
here it is 1 mm. However, the length of most elements will
not be an exact multiple of 1 mm. For the optimization
process, all results should be a continuous function of the
length of the elements. In addition, if an element is sym-
metric with respect to the direction through which one tra-
verses the element, the integration algorithm should pre-
serve that property. To satisfy all of these requirements,
the integration steps are chosen as follows: taking L to be
the length of the element, define

n =

⌊

L − ∆s

2∆s

⌋

ǫ =
L − (2n + 1)∆s

2
. (15)

The algorithm takes one step of ǫ, 2n + 1 steps of ∆s,
and one step of ǫ, in that order. One can straightforwardly
verify that this stepping algorithm satisfies all the desired
properties, and if L 6 ∆s, it takes a single step.

2.5. Magnet Ends

The effects of the variation of the fields at the ends of
the magnet are encapsulated into a single mapping at the
entrance and exit of the magnet. Such a mapping can be
computed to lowest order in the body field of the mag-
net and to lowest order in the transverse variables [21,22].
The map, assuming that the quadrupole field maintains its
quadrupole symmetry as the field magnitude varies, can be
written as a Lie algebraic map e:f : [23,24] with the genera-
tor (computed to lowest order in the transverse variables)

f = −∆B1

px(x3 + 3xy2) − py(3x2y + y3)

12
. (16)

Since the computation is only correct to first order in the
body field, the Lie map need only be evaluated correctly to
first order in the generator, but should be evaluated sym-
plectically. One can do this straightforwardly using the im-
plicit midpoint method, which evaluates the map symplec-
tically to second order in the generator. The method is sim-
ilar to the one used for integration: one iteratively solves

zf = zi − J∇f
(

(zf + zi)/2
)

(17)

for zf.
As for integration, the local derivative will transform as

Mf = (I + B/2)−1(I − B/2)Mi (18)

where
Bij =

∑

k

Jik∂j∂kf
(

(zi + zf)/2
)

. (19)

Note that this transformation can result in a nonzero
displacement at the magnet end. This is correct behavior.
It corresponds to a particle getting a large transverse mo-
mentum kick on entering the end field, moving a short dis-
tance in the end field, then receiving the opposite kick. In
the limit as the length of the end field goes to zero, the
displacement is nonzero.

2.6. Translations

Transverse coordinate translations are trivial: for a trans-
verse translation by (∆x,∆y), one simply transforms as

xf = xi − ∆x yf = yi − ∆y. (20)

Note the negative sign for ∆x and ∆y: this will depend on
what exactly one means by “translation,” so one should
think carefully about what these signs should be. With the
signs shown, the center of the coordinate system moves by
the vector (∆x,∆y).

2.7. Coordinate Rotation about Vertical Axis

A coordinate rotation about the vertical axis is not a sim-
ple coordinate transformation, since the independent vari-
able s must be involved. The transformation involves two
steps: one is transporting the beam to the plane defined by
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Fig. 1. Coordinate system defining a rotation about the vertical axis,
at the entrance to the magnet. The coordinate axes change from
(x, s) to (x̂, ŝ). The shaded area shows where the magnet would be.
The thickest line is the beam.

the post-rotation coordinates, the other is the actual rota-
tion. The primary purpose of the rotation in this context
is to change into the local coordinate system of a magnet
whose axis is not parallel to the current coordinate system.

First, let’s examine the transformation at the entrance
to the magnet. In the original coordinates, the particle has
transverse coordinates (xi, yi) and has corresponding mo-
menta (pxi, pyi), an initial time ti and an energy E (which
will not change). Figure 1 shows the geometry in the x-s
plane. The angle φi is related to the momenta by

sinφi =
pxi

√

(E/c)2 − (mc)2 − p2
yi

. (21)

The particle travels in a drift until it enters the magnet;
thus all trajectories are straight lines. Planar geometry can
then be used to relate xf and φf to xi and φi:

φf = φi + θ xf =
cos φi

cos(θ + φi)
xi. (22)

Converting the angles back into momenta, taking into ac-
count the fact that py is invariant,

xf =
psixi

psi cos θ − pxi sin θ
(23)

pxf = pxi cos θ + psi sin θ (24)

where

psi =
√

(E/c)2 − (mc)2 − p2
xi − p2

yi. (25)

The distance traveled in the x-s plane in the drift is

sin θ

cos(θ + φi)
xi =

xi sin θ
√

(E/c)2 − (mc)2 − p2
y

psi cos θ − pxi sin θ
. (26)

From this, the vertical displacement along that path is

yf = yi +
xipyi sin θ

psi cos θ − pxi sin θ
, (27)

and the time along that trajectory is

tf = ti +
xiE sin θ

c2[psi cos θ − pxi sin θ]
. (28)

The same set of transformations applies at the magnet exit.
The derivative of the transformation can be found

straightforwardly by differentiating the above equations.

3. Lattice Description

The machine was designed to accelerate from 10 to
20 MeV in kinetic energy. A factor of 2 in energy is typi-
cal and probably optimal for muon acceleration. Anything
significantly less would be a rather unimpressive amount
of acceleration for a ring. Lowering the energy would re-
duce the performance of the machine significantly [25,26].
Increasing the energy would require a longer lattice and ei-
ther more cells and higher fields or a reduced performance.

When operating in a rapid-accelerating mode, a linear
non-scaling FFAG should have a large dynamic aperture
due to its linear magnets and the fact that it accelerates
through resonances rapidly. The EMMA lattice is designed
so that in all operating configurations, it has a normalized
transverse acceptance of 3 mm. If a is the maximum beam
deviation from the energy-dependent closed orbit and the
motion is perfectly linear, the transverse normalized accep-
tance is a2p/(mcβ), where p is the momentum of the closed
orbit in question, β is the Courant-Snyder beta function
on that orbit, m is the particle mass, and c is the speed of
light. The quantity of 3 mm comes from scaling the muon
acceleration lattices, which are designed to have a normal-
ized transverse acceptance of 30 mm. For reaching to a
comparable level of dynamic aperture, the lattice angles
and fractional occupation of the magnet aperture should
be comparable. The result is that for similar numbers of
cells and ratios of momentum to rest mass, the acceptance
should scale with the cell length. In addition to exploring
the dynamic aperture of the machine, we wish also to have
sufficient transverse acceptance to explore the dependence
of time-of-flight on transverse amplitude, which is an im-
portant effect in linear non-scaling FFAGs which accelerate
beams with large transverse emittance [27–30].

The product of the number of cells and the number of
turns achievable with an a value (see [17]) of 1/12 (an esti-
mate of a minimal value for a which gives a reasonably-sized
longitudinal phase space acceptance) was used to charac-
terize the performance of the design. A higher value for
this quantity reduces the discretization in the acceleration
process (which is an important effect [18]) and reduces the
rate of resonance crossing (which we would like to be small
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so that the effect can be studied). Since muon accelera-
tors typically have that value in the range of 500–1500, and
since the size of the ring increases with that number, 500
was chosen for the goal for that quantity.

For the RF frequency, 1.3 GHz and 2.856 GHz were con-
sidered, since they are compact and power is readily avail-
able at these frequencies. The 2.856 GHz lattices required
significantly more lattice cells than the 1.3 GHz lattices,
and thus 1.3 GHz was chosen.

The lattice consists of a combined-function doublet
cell, repeated 42 times. Doublet cells generally give most
cost-effective lattice configuration for a linear non-scaling
FFAG [25], though there are exceptions. The choice of 42
cells was motivated by several considerations. First, one
has the desire to achieve 500 cell-turns. A multiple of 6
cells was considered helpful from the point of view of re-
ducing the driving of resonance terms, and in any case is
a reasonable level of discretization. The number of cells
required is reduced slightly as the pole tip fields are in-
creased, but levels off once the magnet pole tip fields get
very high, since the cell length becomes dominated by el-
ements other than magnets. Thus, it becomes impractical
to reduce the number of cells to 36, and therefore 42 is the
minimum multiple of 6.

From an engineering point of view, it is convenient to lay
the cavity and two magnets in a single cell out with their
axes aligned. The penalty for doing so instead of aligning
the magnets and cavities separately was an aperture in-
crease of less then 1 mm. Thus, the ring is described in a
coordinate system based on a 42-sided polygon. The cor-
ners of the polygon are just at the ends of the D magnets
adjacent to the drifts which hold cavities, since the D mag-
net is where most of the bending occurs, and one wants the
magnet axes within the doublet itself aligned (as opposed
to the magnet axes on opposite sides of the cavity drift).
The long drift which can hold a cavity was chosen to be
21 cm long to give sufficient space for the cavity, and the
drift between the (idealized) quadrupoles was chosen to be
5 cm.

Once these lattice parameters were chosen, eight lattice
configurations were chosen based on their tunes and on the
behavior of the time of flight as a function of energy. To
be precise, tunes and times of flight as a function of energy
are computed by first finding the closed orbit and a linear
matrix for motion about the closed orbit at the energy in
question. The time of flight is then the time a particle needs
to follow the closed orbit, and the tunes are derived from
the eigenvalues of the matrix about the closed orbit.

3.1. The Baseline Lattice (070221b)

The baseline lattice will be used to set the magnet
lengths, which will remain fixed for subsequent lattice
configurations. It was chosen to have a relatively high hori-
zontal tune, which reduces the time of flight variation with
energy and therefore increases increases the number of

Table 1
Lattice parameters common to all configurations.

Cells 42

RF frequency 1.3 GHz

Harmonic number 72

Long drift length 210.000 mm

F quad length 58.782 mm

Short drift length 50.000 mm

D quad length 75.699 mm

turns over which one can accelerate [31], and to avoid the
νx − 2νy = 0 resonance line, which was found to give sig-
nificant nonlinear coupling between the transverse planes
in some circumstances [18].

In the design of this lattice, there are 6 parameters
that can be varied: two magnet lengths, two quadrupole
strengths, and two quadrupole displacements. The lattice
will meet the following constraints:

(i) The time of flight is identical at the low and high
energy.

(ii) The 15 MeV kinetic energy closed orbit crosses the
line segment that defines the coordinate system at
the center of the long drift.

(iii) The following three distances in the single-cell tune
plane are equal (giving two constraints):
(a) The distance from the low-energy tune to the

νx − νy = 0 resonance line, with the low-energy
tune on the high-νx/low-νy side of the line.

(b) The distance from the low-energy tune to the
νx +2νy = 1 resonance line, with the low-energy
tune on the high-νx/high-νy side of the line.

(c) The distance from the high-energy tune to the
νx−2νy = 0 resonance line, with the high-energy
tune on the low-νx/high-νy side of the line.

(iv) 0.75 times the minimum time of flight plus 0.25 times
the maximum time of flight, all multiplied by 42, is
72 times the period of 1.3 GHz RF.

(v) The maximum fields on a circle that encloses the
3 mm normalized acceptance linear ellipses (i.e., mo-
tion is assumed to be linear about the closed orbit
for this purpose) for all energies is the same for both
quadrupoles. See [32] for a method for computing this.

There are six parameters and six constraints, so if there
is a solution, it should be locally unique. The resulting
quadrupole lengths are given in Tab. 1 and the required
magnet displacements, quadrupole gradients, magnet and
vacuum chamber apertures, and RF frequency range are
given in Tab. 2. The range in RF frequencies is defined
so that any energy within the 10–20 MeV energy range of
the machine can be synchronized with the RF. This is not
only used for varying the parameters for the longitudinal
dynamics (the b parameter in [17]), but is also potentially
useful during commissioning to keep the beam energy fixed
even in the presence of losses from beam loading or other
wakefield losses.

In reality, there is a slight inaccuracy in this description:
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Table 2
Lattice parameters for individual configurations. The maximum and minimum positions are for a rectangle which encompasses all of the

3 mm normalized beam ellipses for all energies. Coordinates are defined relative to the position of the coordinate system defined in the text.
In addition, rectangles are given relative to the quadrupole center.

070221b 070221c 070221d 070221e 070221f 070221g 070221h 070221i

D displacement (mm) 34.048 39.195 46.532 40.797 28.751 39.491 37.142 48.559

F displacement (mm) 7.514 8.171 9.535 7.684 4.903 10.030 6.329 10.212

D gradient (T/m) -4.704 -4.126 -3.597 -3.764 -4.843 -4.551 -3.832 -3.593

F gradient (T/m) 6.695 6.108 5.230 6.553 6.847 6.526 6.642 6.346

Minimum coordinate in D (mm) -4.280 -4.836 -7.416 -3.875 -5.690 -3.069 -4.409 -3.109

Maximum coordinate in D (mm) 17.620 17.966 18.789 17.215 17.620 17.435 17.391 16.619

Minimum quad coordinate, D (mm) -38.328 -44.031 -53.948 -44.672 -34.441 -42.560 -41.551 -51.661

Maximum quad coordinate, D (mm) -16.428 -21.228 -27.743 -23.581 -11.130 -22.056 -19.750 -31.939

Half height, D (mm) 10.987 10.129 9.764 11.668 11.015 10.961 11.664 11.676

Minimum coordinate in F (mm) -19.000 -18.806 -21.638 -17.434 -19.347 -18.815 -17.250 -17.999

Maximum coordinate in F (mm) 19.509 19.345 19.509 18.660 20.700 18.185 19.509 16.783

Minimum quad coordinate, F (mm) -26.514 -26.977 -31.173 -25.117 -24.250 -28.845 -23.579 -28.212

Maximum quad coordinate, F (mm) 11.995 11.174 9.974 10.977 15.797 8.155 13.180 6.571

Half height, F (mm) 5.596 6.183 6.511 8.897 5.544 5.633 8.895 8.906

Minimum coordinate in cavity (mm) -13.680 -14.031 -16.936 -12.491 -14.431 -13.089 -12.588 -12.515

Maximum coordinate in cavity (mm) 17.026 17.026 17.408 16.247 17.814 16.048 16.882 -14.708

Half height, cavity (mm) 7.806 7.453 7.499 10.554 7.875 7.731 10.571 10.513

Minimum frequency deviation (kHz) -2198 -2311 -2571 -2100 -2244 -3930 -2183 -4019

Maximum frequency deviation (kHz) 723 882 1367 457 1554 -4 -842 -193

this procedure was followed for an earlier version of the lat-
tice where the magnets and cavity didn’t have their axes
parallel. At that point the magnet lengths were fixed. The
last two constraints above were then removed and the pre-
cise parameters for this lattice were computed. If the full
procedure here were followed, however, the results should
be almost identical.

3.2. The Medium Tune Lattice (070221c)

This lattice is similar to the baseline lattice, except that
it will not cross the νx + 2νy = 1 resonance. Due to the
lower horizontal tunes, this lattice will have a larger time
of flight range than the baseline lattice, and will therefore
not allow for as many turns of acceleration.

The lengths from the baseline lattice are adopted for
this lattice and all subsequent lattices. We will vary the
quadrupole strengths and displacements, giving 4 variable
parameters (similarly in all subsequent lattices). The lattice
will meet the following constraints:

(i) The time of flight is identical at the low and high
energy.

(ii) The following three distances in the single-cell tune
plane are equal (giving two constraints):
(a) The distance from the low-energy tune to the

3νx = 1 resonance line, with the low-energy tune
on the high-νx side of the line.

(b) The distance from the low-energy tune to the
νx +2νy = 1 resonance line, with the low-energy
tune on the low-νx/low-νy side of the line.

(c) The distance from the high-energy tune to the
νx−2νy = 0 resonance line, with the high-energy
tune on the low-νx/high-νy side of the line.

(iii) The increase in the horizontal pipe size in the mag-
nets and cavity from the baseline is minimized. To
compute this, the maximum and minimum coordi-
nates of a 3 mm normalized acceptance linear ellipse
about the energy-dependent closed orbit over the en-
tire length of each element and over all energies is
computed (6 quantities, two for each element). If the
quantity in question is larger, in the case of a maxi-
mum, or smaller, in the case of a minimum, than the
corresponding quantity in the baseline lattice, the dif-
ference (always a positive number) is added to a sum.
If the sum is zero (because the beam is always inside
the beam pipe from the baseline), then instead, one
computes the amounts by which a maximum was less
than the corresponding maximum for the baseline or
a minimum was greater than the corresponding min-
imum for the baseline, chooses the smallest of these
6 numbers, takes its negative, and replaces the sum
with that. This “sum” is the quantity that is mini-
mized.

The required magnet displacements, quadrupole gradients,
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magnet and vacuum chamber apertures, and RF frequency
range are given in Tab. 2 (and for all subsequent lattice
configurations).

3.3. The Low Tune Lattice (070221d)

This lattice is similar to the medium tune lattice, except
that it will not cross the 3νx = 1 resonance. This lattice will
have an even larger time of flight range than the medium
tune lattice, and its beam size will generally define the pipe,
cavity, and magnet apertures.

The lattice will meet the following constraints:
(i) The time of flight is identical at the low and high

energy.
(ii) The following three distances in the single-cell tune

plane are equal (giving two constraints):
(a) The distance from the low-energy tune to the

νx − νy = 0 resonance line, with the low-energy
tune on the high-νx/low-νy side of the line.

(b) The distance from the low-energy tune to the
3νx = 1 resonance line, with the low-energy tune
on the low-νx side of the line.

(c) The distance from the high-energy tune to the
νx−2νy = 0 resonance line, with the high-energy
tune on the low-νx/high-νy side of the line.

(iii) The increase in the horizontal pipe size in the mag-
nets and cavity from the baseline is minimized, as
described in the previous subsection.

3.4. The High Efficiency Lattice (070221e)

This lattice is at attempt to imitate the design of a opti-
mal performing muon acceleration lattice, in the sense that
it maximizes the number of turns in the machine (by re-
ducing the time of flight range) and minimizes the required
magnet fields. It accomplishes this by making the horizon-
tal tune as high as practical and the vertical tune as low as
is practical.

The lattice thus meets the following constraints:
(i) The time of flight is identical at the low and high

energy.
(ii) The low-energy horizontal tune is 0.4.
(iii) The high-energy vertical tune is 0.05.
(iv) The increase in the horizontal pipe size in the magnets

and cavity from the baseline is minimized.

3.5. The Baseline Lattice, with Minimum Time at Lower
Energy (070221f)

This lattice, as well as the next three, allow for the study
of the dependence of the longitudinal dynamics on the en-
ergy of the minimum in the time of flight as a function of
energy. This lattice meets the same tune constraints as the
baseline lattice, but moves that minimum to approximately
the lowest energy that we can without unduly increasing
the aperture requirement.

The lattice meets the following constraints:
(i) The minimum time of flight is at 14 MeV kinetic en-

ergy.
(ii) The following three distances in the single-cell tune

plane are equal (giving two constraints):
(a) The distance from the low-energy tune to the

νx − νy = 0 resonance line, with the low-energy
tune on the high-νx/low-νy side of the line.

(b) The distance from the low-energy tune to the
νx +2νy = 1 resonance line, with the low-energy
tune on the high-νx/high-νy side of the line.

(c) The distance from the high-energy tune to the
νx−2νy = 0 resonance line, with the high-energy
tune on the low-νx/high-νy side of the line.

(iii) The increase in the horizontal pipe size in the magnets
and cavity from the baseline is minimized.

3.6. The Baseline Lattice, with Minimum Time at Higher
Energy (070221g)

This lattice is like the previous lattice, but instead the
minimum in the time of flight is shifted to approximately
the highest energy possible without unduly increasing the
aperture requirement.

The lattice meets the following constraints:
(i) The minimum time of flight is at 15.5 MeV kinetic

energy.
(ii) The following three distances in the single-cell tune

plane are equal (giving two constraints):
(a) The distance from the low-energy tune to the

νx − νy = 0 resonance line, with the low-energy
tune on the high-νx/low-νy side of the line.

(b) The distance from the low-energy tune to the
νx +2νy = 1 resonance line, with the low-energy
tune on the high-νx/high-νy side of the line.

(c) The distance from the high-energy tune to the
νx−2νy = 0 resonance line, with the high-energy
tune on the low-νx/high-νy side of the line.

(iii) The increase in the horizontal pipe size in the magnets
and cavity from the baseline is minimized.

3.7. The High Efficiency Lattice, with Minimum Time at
Lower Energy (070221h)

This lattice is like that of Sec. 3.5, except that the tune
range matches that of the high efficiency lattice.

The lattice meets the following constraints:
(i) The minimum time of flight is at 14 MeV kinetic en-

ergy.
(ii) The low-energy horizontal tune is 0.4.
(iii) The high-energy vertical tune is 0.05.
(iv) The increase in the horizontal pipe size in the magnets

and cavity from the baseline is minimized.
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Table 3
Summary of parameters related to the magnets. Note that the max-

imum pipe size does not occur for the largest magnet displacement,
so the pipe will penetrate further into the magnet aperture than the
beam ever will.

D F

Minimum shift (mm) 28.751 4.903

Maximum shift (mm) 48.559 10.212

Maximum gradient (T/m) -4.843 6.847

Minimum pipe horizontal (mm) -7.416 -21.638

Maximum pipe horizontal (mm) 18.789 20.700

Maximum half height (mm) 11.676 8.906

Maximum pipe horizontal in quad (mm) -55.975 -31.850

Maximum beam horizontal in quad (mm) -53.948 -31.173

Table 4
Summary of parameters related to the cavity.

Minimum pipe horizontal -16.936 mm

Maximum pipe horizontal 17.814 mm

Maximum half height 10.571 mm

Cavity center position 0.439 mm

Cavity aperture diameter 34.751 mm

Minimum frequency deviation -4019 kHz

Maximum frequency deviation 1554 kHz

3.8. The High Efficiency Lattice, with Minimum Time at
Higher Energy (070221i)

This lattice is like that of Sec. 3.6, except that the tune
range matches that of the high efficiency lattice.

The lattice meets the following constraints:
(i) The minimum time of flight is at 15.5 MeV kinetic

energy.
(ii) The low-energy horizontal tune is 0.4.
(iii) The high-energy vertical tune is 0.05.
(iv) The increase in the horizontal pipe size in the magnets

and cavity from the baseline is minimized.

3.9. Summary of Lattice Parameters

From the parameters for all of these lattices, one can
construct the minimum dimensions of a rectangular pipe
that will enclose all of the beam ellipses. One can determine
the maximum distance which this pipe will penetrate into
the magnet aperture. One can also determine minimum
dimensions for a cavity aperture. All of these parameters
and some more are summarized in Tabs. 3 and 4.

Figures 2–5 show the tune and time of flight for a single
cell of these lattices.

4. Acknowledgments

The general choice of the EMMA lattice parameters in-
volved the input of a number of individuals. An overall pic-

10 12 14 16 18 20
Kinetic Energy (MeV)

0

0.1

0.2

0.3

0.4

0.5

T
un

e

070221b
070221c
070221d
070221e

Fig. 2. Tune for a single cell as a function of kinetic energy for four of
the lattices. Solid lines are horizontal tunes, dashed lines are vertical.
Lattices are color coded. The tunes for the lattices 070221f, 070221g,

070221h, and 070221i are nearly identical to the tunes for the lattices
from which they are derived (either 070221b or 070221e; see Fig. 3).
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Fig. 5. Time of flight for a single cell as a function of kinetic energy,
relative to a time that is synchronized with 1.3 GHz RF at harmonic

number 72.

ture of the machine arose from discussions at the FFAG
workshop at Brookhaven National Laboratory which oc-
curred October 13–17, 2003 (http://www.cap.bnl.gov/
mumu/conf/ffag-031013/). At this point we had the ap-
proximate size and range of RF frequency for the machine.
Subsequent phone meetings at the beginning of 2005 of
what is now the EMMA collaboration helped refine these
parameters to the point where we had chosen 1.3 GHz RF
and 42 doublet cells.
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