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The dimension two gluon condensate has been used previously within a simple phenomeno- 
logical model to describe power corrections from available lattice data for the renormal- 
iaed Polyakov loop and the heavy quark-antiquark free energy in the deconfined phase of 
QCD 11, 21. The QCD trace anomaly of gluodynamics also shows unequivocal inverse tem- 
perature power corrections which may be encoded as dimension two gluon condensate. We 
analyze lattice data of the trace anomaly and compare with other determinations of the 
condensate from previous references, yielding roughly similar numerical values. 

Introduction. For zero and for infinite quark masses (gluodynamics) QCD is invariant under 
scale and conformal transformations at the classical level. This classical invariance is brqken, 
however, by quantum corrections due to  the necessary regularization of ultraviolet divergences 
which introduces a mass scale, AQCD; the divergence of the dilatation current equals the trace of 
the improved energy-momentum tensor e; [3) yielding the so-called “trace anomaly” [4]. At finite 
temperature, the energy density E and the pressure p enter as [5,  6, 7,8], 

where G,, = a,A, - &A, +ig[A,, A”] is the field strength tensor and p ( g )  = pag/ap is the beta 
function. Far from the conformal limit, where e = 3p, A = ( E  - 3 p ) / T 4  is a dimensionless quantity 
providing a measure of the interaction, so it is commonly known as “interaction measure”. A good 
knowledge of A is crucial to  understand the deconfinement process, where the non perturbative 
(NP) nature of low energy QCD seems to  play a prominent role. In this contribution we analyze 
the highly NP behaviour of the trace anomaly just above the phase transition and describe it in a 
way that is consistent with other thermal observables (see [9] for further details). 

Thermal  power corrections in gluodynamics. The interaction measure was computed one 
decade ago on the lattice by the Bielefeld group for gluodynamics [lo]. Fig. 1 shows the lattice data 
for A = ( e  - 3 p ) / T 4  as a function of T/T,. A is very small below T,, because the lightest glueball 
is much heavier than T, rs 270MeV. It increases suddenly near and above T, by latent heat of 
deconfinement, and raises a maximum at T x 1.1 T,. Then it has a gradual decrease reaching zero 
in the high temperature limit. The high value of A for T, 5 T 5 (2.5 - 3)Tc corresponds to a 
strongly interacting Quark-Gluon Plasma picture. 

From our previous experience 11, 21 and following a remark by Pisarski [ll], in Fig. 1 we plot 
( € - 3 p ) / T 4  as a function of 1/T2 (in units of T,) exhibiting an unmistakable straight line behaviour 
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FIG. 1: The trace anomaly density (e - 3P)/T' as a function of T (left) and 1/T2 (right) (in units of Tc). 
Lattice data are from 1101 for N: x N ,  = 163 x 4 and 323 x 8. The fits use Eq. (2) with atra and bt,. 
adjustable constants. 
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FIG. 2: The temperature dependence of the renormalized Polyakov loop in units of the critical temperature. 
Lattice data are from [14], for N: x N,  = 323 x 4 and 323 x 8. We plot the perturbative result at LO and 
NLO, and the fit using apol + b,,! (TJT)'. 

in the region slightly above the critical temperature, of the form 

A = ( E  - 3P)/T4 atra + btm (TJT)' , (2) 
and corresponding to a "power correction" in temperature. A fit of the lattice data (Ni x N, = 
323 x 8) for T/T, > 1.13 yields atra = -0.02(4), btra = 3.46(13), x2/DOF = 0.35. Power 
corrections also appear in e and P, just by applying the standard thermodynamic relations. 

This behaviour clearly contradicts perturbation theory (PT) which contains no powers but only 
logarithms in the temperature, a feature shared by hard thermal loops and other resummation tech- 
niques (see e.g. (12, 13]), explaining why they have failed to describe lattice data of the free energy 
below 3T,. Fig. 2 shows the lattice data of Polyakov loop from Ref. [14], suggesting again 11, 21 a 
linear fit of the form -2 log L = apol + bpol (TC/T)'. In what follows, we show a phenomenological 
model that describes consistently all these power corrections in an unified way. 

Dimension two gluon condensate. The gluon condensate (G') 5 g2((GE,)2) describes 
the anomalous (and not spontaneous) breaking of scale invariance, and hence is not an order 



parameter of the phase transition. Actually, the order parameter is the vacuum expectation value 
of the Polyakov loop which signals the breaking of the Z(N,) discrete symmetry of gluodynamics as 
well as the deconfinement transition. A dimension two gluon condensate naturaJly appears from a 
computation of the Polyakov loop in which a Gaussian distribution of eigenvalues is considered. In 
the static gauge, &Ao(x,zo)  = 0, this Gaussian-like, large A', motivated, approximation gives [l] 

valid up to U(g6) in PT. A0 is the gluon field in the (Euclidean) time direction. From here it is 
immediate to relate the Polyakov loop to the gluon propagator in the dimensionally reduced theory 

6,b2'Doo(k) = /d3~(Ao,a(x)Ao,,(y))e-'" ( x - y ) .  (4) 

The dimension two gluon condensate g2(A;,,) is obtained from Eq. (4) in the limit x - y. The 
perturbative propagator D:o(k) = l/(k2 + m i )  + O(g2), being m~ - 2' the Debye mass, leads to 
the known perturbative result of Gava and Jengo [15], which fails to reproduce lattice data below 
6Tc. A NP model is proposed in Ref. [l] to describe the lattice data of the Polyakov loop, and it 
consists in a new piece. in the gluon propagator driven by a positive mass dimension parameter: 

Doo(k) = D&(k) + D:f(k), Dt:(k) = m:/(k2 +m%)'. ( 5 )  

This ansatz parallels a zero temperature one [lS], where the dimension two condensate provides 
the short-distance NP physics of QCD and at zero temperature this contribution yields the well 
known NP linear term in the qq potential. A justification of Eq. (5) based on Schwinger-Dyson 
methods has been given [17 The new propagator generates a NP contribution to the condensate, 

where d~ mo/T, so that it leads to the thermal power behaviour that we observe in Fig. 2. 
The Gaussian approximation has also been used in Ref. [2] to compute the singlet free energy of a 
heavy qq pair [14, 181, through the correlation function of Polyakov loops. 

Non perturbative contribution to the Trace Anomaly. The model of Eq. (5) can be 
easily used to compute the trace anomaly Eq. (1) in gluodynamics. Assuming the leading NP 
contribution to be encoded in the Ao,. field and taking A%,= = 0 yields 

(A;,,) = (A;,,)' + (Ao+) 2 N k  , which . .  IS related to m& through (A&JNP = (N: - l ) m & / ( S ~ d ~ ) ,  

(G;,G;JNP = 2 ( & . 4 0 , ~ 0 ~ A o , ~ ) ~ ~  = -6m~(Ao,.Ao.dNP. (6) 

The r.h.s. is obtained from Eq. (4) by expanding in the limit x -t y and looking at the quadratic 
term in T = Ix - yI. Note that the NP model is formulated in the dimensionally reduced theory, 
so the gluon fields are static. This formula produces the thermal power behaviour of Eq. (2) with 

b t d ;  = -3db(Ao,,) P(S)/S. 

If we consider the perturbative value of the beta function p(g)  - g3 + S(g5), the r.h.s. of Eq. (7) 
shows a factor g2 in addition to the dimension two gluon condensate gz(Aa,,)NP. So the fit of the 
trace anomaly data is sensitive to the value of the smooth 2'-dependent g, without jeopardizing the 
power correction. For the Polyakov loop the sensitivity in g is only through the perturbative terms, 
which are much smaller than the NP ones. When we consider the perturbative value gp up to 2- 
loops, we get from the fit of the trace anomaly g2(A&JNP = (2.63f0.05T,)2, which is a factor 1.5 
smaller than what is obtained from other observables. This disagreement could be partly explained 
on the basis of certain ambiguity of g in the NP regime. A better fit of the Polyakov loop and heavy 
quark free energy lattice data in the regime T, < T < 4T, is obtained for a slightly smaller g than 

(7) 2 NP 
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Observable 

Heavy qq free energy [2] 
Polyakov loop [l] 

l h c e  Anomaly 

g’(ALJNr , 

(3.33 f 0.19TC)* 
(3.22 f 0.07TJ’ 

(2.86 i 0.24 TC)’ 

TABLE I: Values of the dimension two gluon condensate from a fit of several observables in. the deconfined 
phase of gluodynamics: Polyakov loop, singlet free energy of heavy quark-antiquark and trace anomaly. 
Values are in units of T,. We show the fit for lattice data with N, = 8. Error in last line takes into account 
an indeterminate value of the coupling constant g = 1.26 - 1.46, being the highest value the perturbative 
g p  up to %loops at T = ZT,. The critical temperature in gluodynamics is T, = 270 f 2MeV [14]. 

g p ,  i.e. g = 1.26 - 1.46 [2]. Taking this value we get from Eq. (7) g2(A&JNP = (2.86 rt 0.24Tc)2, 
in better agreement with other determinations, see Table I. Nonetheless, an alternative method to 
compute the trace anomaly based on the direct computation of E - 3p from the partition function 
of gluodynamics does reproduce the power correction, however with different coefficients [9]. 

Summary and conclusions. The trace anomaly in gluodynamics shows, near and above the 
critical temperature, a clear pattern of power corrections which cannot be matched to perturba- 
tion theory or resummations thereof. It can instead be explained in terms of a dimension two 
gluon condensate whose numerical value agrees with other determinations based on other thermal 
observables and it is also remarkably close to existing studies at T = 0 (see e.g. Refs. 119, 201). 
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