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Abstract 

Generally, mechanical polishing is performed to diminish the cutting damage 
followed by chemical etching to remove the remaining damage on crystal surfaces. In this 
paper, we detail the findings from our study of the effects of various chemical treatments 
on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe 
(CMT) crystals by mechanical polishing with 5 pm and/or lower grits of A1203 abrasive 
papers including final polishing with 0.05-pn particle size alumina powder and then 
etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and 
also with an E-solution (HN03:H20:&Cr207). The material removal rate (etching rate) 
from the crystals was found to be 10 pn, 30 pm, and 15 pm per minute, respectively. 
The roughness of the resulting surfaces was determined by the Atomic Force Microscopy 
(AFM) to identify the most efficient surface processing method by combining mechanical 
and chemical polishing. 

Key words: CdZnTe, CdMnTe, chemical polishing, surface roughness, atomic force 
microscopy. 

Introduction 

The favorable properties of CdZnTe have made it the most promising material for 
room-temperature radiation detectors [ 1-21. CdMnTe similarly has attracted attention due 
to its potentially useful characteristics and its similarities to CdZnTe [3-51. However, for 
both materials, many drawhacks remain associated with the various steps from crystal 
growth to detector fabrication, which must be resolved to produce a good quality 
detector. We are particularly interested in the fabrication process wherein surface 
processing is an important step as it plays a critical role in determining the detectors' 
performance. Many studies have explored the surface processing of CdZnTe radiation 
detectors [6-lo], but only a few have studied CdMnTe detectors. Studies show that 
surface properties can influence the electric field inside the device, and significantly 
affect charge transport and signal formation [ 1 1-12]. A rough surface enhances leakage 
current into the medium and creates additional trapping centers, thereby adversely 
affecting the detector's performance. Therefore, it is essential to evaluate the surface 
processing steps to identify those that deliver the best surfaces for developing good 
quality radiation detectors. 



The crystal surfaces first are polished mechanically to diminish the damage from 
cutting, followed by chemical etching to remove any remaining damage from crystal 
cutting, and damage induced during mechanical polishing. Several etchants are suitable 
for chemically etching CdZnTe and CdMnTe crystal surfaces [ 13-15]; typically, a 
bromine-methanol (B-M) solution is used. Chemical etchants react with the crystal 
surfaces, remove a certain amount of material from the top layers, and leave behind a 
smoother surface. Each chemical has certain etching strength, and hence, the material- 
removal rate varies depending on the strength of the etchants and the material that is 
being etched. To ensure a reasonably good surface outcome, we need data to optimize the 
type of etchant, its concentration, and the etching time for particular crystal surfaces. 

In this paper, we describe our study of the effects of various chemical treatments on 
the roughness of crystals’ surfaces. We prepared several CdZnTe and CdMnTe crystals 
by mechanically polishing them with alumina powder of 0.05-pm particle size, followed 
by etching with a 2%, 5% Bromine-Methanol (B-M) solution and also with an E-solution 
(HN03:H20:K2Cr207), and a P-solution (HN03:HCl:HzO). We observed repeatedly that 
the P-solution reacted vigorously with the CdZnTe and CdMnTe surfaces, leaving highly 
non-uniform uneven surfaces; hence, we did not continue to work with it. We etched the 
samples with these different etchants for different periods, and recorded the removal 
trend with time. For both CdZnTe and CdMnTe the material removal rates in 2% B-M 
solution, 5% B-M solution, and the E-solution respectively, were about 10 pm, 30 pm, 
and 15 pn per minute. The etching rate of the B-M solution slowed down with time, but 
remained linear for the E-solution. 

The roughness of the resulting surfaces was determined by the Atomic Force 
Microscopy (AFM) to identify the most efficient means of surface processing, using a 
combination of mechanical and chemical polishing to obtain a quality surface for 
fabricating radiation detectors. 

Experimental procedures 

We employed several different shaped and sized detector-grade CdZnTe and 
CdMnTe crystals in this experiment. The CdZnTe samples were bar shaped with 
dimensions of -5x5x10mm3, while the CdMnTe samples were planar with dimensions of 
-8~10x2 mm3. Three sets, each comprising one CdZnTe and one CdMnTe crystal, were 
mechanically polished with 5 pm and/or lower grits A1203 abrasive papers including final 
polishing with 0.05-pm particle size alumina powder and then rinsed in distilled water. 
To compare the surface roughnesses before and after chemical etching of identical 
surfaces, we first covered half of the polished surfaces of all crystals with nonstick 
insulating tape while the second half was chemically etched for 2 minutes with a 2%, a 
5% B-M solution and with the E-solution, then rinsed with pure methanol and quickly 
blow dried with pressurized nitrogen gas. 

We recorded infrared (IR) refection images before and after etching the surfaces. To 
measure the roughness of those surfaces, atomic force microscopy ( A m )  was used to 
image the polished and etched area of each sample. AFM was used to image both the 



polished and etched areas of each sample. The instrument was an Innova Scanning Probe 
Microscope (SPM) with a nanodrive controller for an Innova large area single-tube 
piezoelectric scanner. A contact mode etched Silicon probe with symmetric tip of height 
of 15 microns and thickness of 4 microns was used. 

Another two sets of CdZnTe and CdMnTe crystals were employed for a series of 
observations of the etchants actions, viz., the dissolution rate and a chemical aging 
experiment. We etched the crystals with the same three solutions for periods up to 10 
minutes at room temperature. In each case before and after etching, we measured the 
crystal thickness with a micrometer to quantify the amount of material removed from 
each surface. We note that the entire crystal was dipped into the chemical solution to 
ensure the etchants uniformly acted on all the crystal surfaces. 

Results and discussions 

Fig. 1 shows two set of IR reflection images of six representative crystal surfaces. All 
samples were lapped and finally polished with 0.05-pm grit alumina powder. Half of 
each sample was etched with the three different etchants and other half remained as 
polished. We note that all CdZnTe crystals were from the same batches, and all CdMnTe 
crystals were from a single batch. They were all subjected to the same polishing 
procedure so that we could use one polished surface as a reference. From the IR images, 
it can be seen that chemical etching removed the surface damage significantly. Although 
the E- solution also removed the polishing damage, it created some pits so yielding a non- 
homogeneous surface. Longer etching times enhanced the number of pits and the 
unevenness of the surface. We were unable to generate a flat uniform surface in either 
CdZnTe or CdMnTe crystals by etching in the P solution, either for 30 sec or up to 2 
minutes (Fig. 2). Longer etching also enhanced the roughness in this case. Seemingly, 
the concentrated nitric acid reacted with Cd(Zn/Mn)Te, left black tellurium layers on the 
etched surface, possibly the reason for the unevenness. This effect was reproducible in 
both the CdZnTe and CdMnTe crystal surfaces, so we ceased further work with it. 
However, we note that Inoue et. al. [16] used both the E and P solutions for chemical 
etching of CdTe crystals and obtained mirror-like surfaces. 



Fig. 1 . 4 ~  IR reflected images of the polished and etched surface of the crystals. The polishing damage 
was removed substantially by etching with different chemical etchants. The top row is images of the 
CZT crystals, and the bottom row those of the CMT crystals. Note the pits in the su$aces treated with 
the E solution. 

Fig. 2. 4x IR reflected image of the CZT (top) and the CMT (bottom) crystal surfaces before and ajier 
etching with the P-solution. 30 seconds etching leji uneven surfaces, and 2 minutes etching leji some Te- 
spots. 



We carried out a series of experiments to demonstrate the etching rate of different 
chemical etchants after different exposure times. Fig. 3 plots the average amount of 
material removed from CdZnTe crystals after treating with different etchants for times 
from 30 seconds to 10 minutes. Etching with the 5% B-M solution removes an average 
layer of about 125 pm from the crystal's surface in 10 minutes; however, the removal 
rate is not linear, and gradually decreased with the time. The average etching rate was 
estimated to be about 30 pm per minute. Etching with a 2% B-M solution showed a 
similar trend, but the rate was 10 pm per minute and the etching rate of the E solution 
was estimated to be about 15 pm per minute. Burger et al. [17] reported an etching rate 
about 50 pm per minute for a 2-10% B-M solution. For our solution-aging experiments 
shown in Fig. 4, we prepared the 5% B-M solution and E-solution at room temperature 
and left them exposed to air for 2 hrs, 4 hrs, and 8 hrs before using them to etch the 
samples for 2 minutes slots. The samples exposed to fresh B-M solution had a higher 
etching rate than those treated with solutions aged for 4 hours, and even greater for those 
left 8 hours. Furthermore, the aged solutions left readily visible layers of black tellurium 
on the etched surfaces. However the reaction of E-solution was more or less linear over 
the aged period. The aging effect may reflect a change in the solution's pH. Rouse et al. 
[18] found that the acidity of etching solutions increase significantly over 8 hrs. The 
increasing acidity could be due to the uptake of moisture or CO2 from air with time [19]. 
As the acidity of the solution increases, selectivity for cation etching increases, leading to 
an increasingly Te-rich surface. 

CZT crystal etched with different etchants 
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Fig. 3. Plot of the effect of different chemical etchants on CdZnTe crystals. The etching rate of the 2%-, 
5%- B-M solutions and the E solution is about 10 ,urn, 30 pm, and 15 pn, respectively. 
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Fig. 4. Graph of the effect of aging the etchants in air on the removal of materials from two crystals. 
The etching rate of 5% B-M solution decreased with increasing exposure time, but remained more or 
less linear for E-solution over the aged period. 

We found that it is hard to evaluate the uniformity as well as the roughness of the 
etched surfaces by IR images. Therefore, we have used the AFM method to study more 
precisely the surface roughness of those polished and etched surfaces. We chose areas for 
imaging from the polished and etched portion of each crystal. As in Fig. 1 we displayed 
one polished surface of each type of crystal as a reference. Fig. 5 shows AFM images of 
one polished surface and three different etched surfaces of CdZnTe crystals. The rms 
roughness of the polished surface was estimated to be around 9 nm. Etching with 2% B- 
M solution lowered the rms roughness value to about 2.5 nm, while etching with 5% B-M 
solution reduced the rms roughness to about 1.3 nm. From AFM images it can be seen 
that etching with 5% B-M solution has removed the surface damage that can be estimated 
to be about 88%, whereas 74% with 2% B-M solution and 35% with E-solution. 

Fig. 6 shows the same measurement for CdMnTe crystals. Chemically etching these 
crystal surfaces provided even better rms roughness values than did the CdZnTe surfaces. 
Starting with an rms roughness of polished surface of around 7 nm, etching with 2% B-M 
solution lowered it to about 2 nm, and to 0.9 nm with the 5% B-M solution. Etching 
CdMnTe crystal's surface with the E solution left a comparatively rougher surface than 
did the B-M solution at either concentration. 
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Fig. 5. AFM images of polished and etched sugaces of the CdZnTe crystals. The lowest rms roughness 
was obtained after etching with 5% B-M solution followed by the 2% B-M solution: the E- solution was 
not as efficacious. 
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Fig. 6. AFM images of the polished and etched sulfaces of CdMnTe crystal. The lowest rms roughness 
was attained after etching with 5% B-M solution as compared to a 2% B-M solution and the E solution. 



Conclusions 

We demonstrated that polishing damage can be substantially removed by chemical 
etching with either type of chemical etchant i.e., a B-M solution at different 
concentration, and an E solution, although to different extents. We estimated the amount 
of material removed with different concentrations of these etchants and different 
immersion times. We believe this information will help to enhance the process of 
preparing smooth crystal surfaces. As we have understood from this study, it can be 
assumed that higher percentage of B-M solution with shorter etching time can be helpful 
to yield a smoother surface, which is suitable for detector fabrication. We have also 
found that E- and P-solutions are not useful for etching of CdZnTe and CdMnTe crystals 
in this particular study. However we need further investigation to understand the reason 
behind it. We used AFM to obtain detailed information about the topography of the 
etched surfaces, especially roughness and uniformity, which will help in selecting the 
appropriate surface-etching preparations for making good detectors. We showed the 
effects of different chemical etchants on the surfaces of CdZnTe and CdMnTe detectors, 
and the differences in etching rates between the E solution and the B-M solution that 
reduced with time over 10 minutes. However, further investigation is needed to optimize 
conditions, using the smallest sized polishing grit and the subsequent most suitable 
chemical etchant. In combination with other surface processing, this may yield a crystal 
surface of suitable quality for fabricating a good detector. 
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