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Anisotropic Hexagonal Boron Nitride Nanomaterials – Synthesis and Applications  

 

Wei-Qiang Han 

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11733 

 

1. Introduction 

Boron nitride (BN) is a synthetic binary compound located between III and V group 

elements in the Periodic Table. However, its properties, in terms of polymorphism and 

mechanical characteristics, are rather close to those of carbon compared with other III-V 

compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally 

linked structure, like those of graphite and diamond, respectively, depending on the 

conditions of its preparation, especially the pressure applied. Such correspondence 

between BN and carbon readily can be understood from their isoelectronic structures [1, 

2]. On the other hand, in contrast to graphite, layered BN is transparent and is an 

insulator. This material has attracted great interest because, similar to carbon, it exists in 

various polymorphic forms exhibiting very different properties; however, these forms do 

not correspond strictly to those of carbon.   

 
Figure 1. Crystal structures of (a) graphite; (b) hexagonal boron nitride 

 

Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN 

(h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-

BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction 

product between molten boric oxide and potassium cyanide under atmospheric pressure. 
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Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed 

under ambient pressure. c-BN is synthesized from h-BN under high pressure at high 

temperature while w-BN is prepared from h-BN under high pressure at room temperature 

[1].  

Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen 

atoms linked by SP2 hybridized orbits and held together mainly by Van der Waals force 

(Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA’AA”… that 

differ from those in graphite: ABAB… (Figure 1(a)). Within the layers of h-BN there is 

coincidence between the same phases of the hexagons, although the boron atoms and 

nitrogen atoms are alternatively located along the c-axis. The rhombohedral system 

consists of three-layered units: ABCABC…, whose honeycomb layers are arranged in a 

shifted phase, like as those of graphite.  

Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, 

and hence, is widely used as a lubricant material. The material is stable up to a high 

temperature of 2300 ºC before decomposition sets in [2] does not fuse a nitrogen 

atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such 

properties, similar to those of graphite, the material is transparent, and acts as a good 

electric insulator, especially at high temperatures (10 6 Ωm at 1000 ºC) [1].  

c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type 

structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second 

hardest known material (the hardest is diamond),  the so-called white diamond. It is used 

mainly for grinding and cutting industrial ferrous materials because it does not react with 

molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It 

displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond.   

This chapter focuses principally upon information about h-BN nanomaterials, mainly 

BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good 

reviews book chapters about c-BN in [1, 4-6].  

 

2. Synthesis of BN nanotubes 

2.1. Introduction 



 3

Iijima’s discovery of carbon nanotubes (CNTs) in 1991 [7] occasioned intense 

experimental- and theoretical-researches during the last decade on other hollow tubular 

structures, i.e. inorganic nanotubes, because of the various intriguing properties 

associated with their small dimensions, high anisotropy, and interesting structures. 

Among such inorganic nanotubes, BNNT received the most attentions. h-BN has a 

layered structure to very similar to that of graphite; its tubular forms were predicated 

theoretically [8] before they were successfully produced [9]. Indeed, in 1981, Ishii et al. 

already had reported the formation of h-BN “whiskers”, that, in modern terminology, are 

called bamboo-like BNNTs, by heating oxidized BN powder [10]. Electronic-band 

structure calculations show that BNNTs, whose diameters are larger than 0.80 nm, are 

wide-band-gap semiconductors with a gap value of ~ 5.5 eV. Interestingly, and in sharp 

contrast to CNTs, this gap value is independent of their chirality and diameter [11]. The 

ionic B-N bonding in BNNTs provides richer, but more complex structural properties 

than those of CNTs. Accordingly, BNNTs may be more useful than CNTs for certain 

applications in electronic devices such as nanoscale insulating materials. Besides BNNTs, 

BxCyNz nanotubes have also been widely studied [12-14]; here I introduce only non-

carbon pure BNNTs.  

 
Figure 2. (a) Simulated image of a single-walled BNNT (5 5); (b) simulated image of a 
double-walled BNNT; (c) high-resolution TEM images of a series of individual 
nanotubes with numbers of walls from 1 to 4; (d) EELS spectrum of a BNNT.  
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Multi-walled and single-walled-BNNTs were firstly prepared, respectively, in 1995 

[9] and 1996 [15]. Figure 1(a) and (b) are simulated images of a single-walled BNNT (5, 

5) and a double-walled BNNT, respectively. Figure 1(c) shows high-resolution 

transmission electron microscopy (TEM) images of BNNTs, ranging from single layered 

to four layered ones. Figure 1(d) is an electron energy loss spectrum (EELS) of a BNNT. 

BNNTs have been synthesized by several methods: Arc-discharge method [9]; laser 

heating/ablation [16]; CNT-substitution reactions [17]; chemical vapor deposition (CVD) 

[18]; solid-gas reaction [19]; low-temperature autoclave [20]; pore-template [21]; and arc-

jet plasma [22].  

 

2.2. Arc-discharge 

Chopra et al. reported in 1995 the first synthesis of pure crystalline BNNTs by an arc-

discharge method [9]. This synthetic route employs a high-temperature arc plasma similar 

to that used in the conventional production of CNTs. A tungsten rod loaded with pressed 

h-BN was arc-discharged against a cooled copper cathode, generating in numerous multi-

walled BNNTs with B:N ratio of ~ 1, as confirmed by EELS and consistent with 

theoretical prediction. The spacing distance of BNNTs is 0.33 nm, in agreement with the 

spacing distance of 0.333 nm in bulk h-BN. Later, Loiseau et al. also synthesized BNNTs 

by the arc-discharge method [15]. The establishment of a carbon-free plasma between 

HfB2 electrodes in a nitrogen atmosphere lead to the formation of BNNTs with very few 

layers, including single- and double-layer ones [15].  

 
Figure 3. Simulated image of a arc-discharge chamber. The conductive ingots are mounted as 

both anodes and cathode (the end of yellow lines) 

 



 5

Cumings and Zettl [23] modified the arc-discharge method by using conductive boron 

ingots as electrodes. The electrodes are formed by first thoroughly mixing elemental 

boron (99.5 % pure) with 1 atomic percent each of nickel and cobalt. After heating the 

mixture to its melting point in a copper-hearth arc furnace, it was cooled to form a 

macroscopically homogenous ingot. Using a crude two-probe method, the electrical 

resistivity of the ingots was measured to be less than 50 milliohmmeters. When the 

metals are not added, the conductivity of the boron ingots is insufficient to support the arc. 

The ingots themselves are mounted as both anode and cathode in a conventional-design 

water-cooled nanotube direct-current arc synthesis chamber (see Figure 3). The chamber 

is pumped down to less than 30 mtorr and then backfilled with N2 gas with the pressure 

dynamically stabilized to 380 torr. During a synthesis, the arc current is sustained 

nominally at 60 amperes DC, with the electrode voltage ranging from 30 to 45 V. During 

the arc, a gray web-like material grows preferentially near the top of the chamber, while a 

thin layer of gray soot is deposited on its side walls. Both contain an abundance of 

BNNTs, although the web-like material is significantly richer in them. This method can 

produce about 70% double-walled nanotubes (Figure 4), within ~ 10% single-walled 

nanotubes and fewer multi-walled nanotubes.  

 
Figure 4. High-resolution TEM image of BNNTs made by arc-discharge method.  

 

In the by-products, there is a large amount of BN fullerene-like nanoparticles (FNPs, 

or so-called nanococooons). HRTEM images together with EELS and electron-diffraction 

data revealed that these nanoparticles were B-rich nanocrystals coated with a few layers 

of graphitic BN; some of them contained cobalt and nickel impurities. The BN FNPs 
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ranged widely in size, from 5 to 100 nm. There was no clear correlation between the 

number of BN layers of the FNPs and their diameter. In general, only a few layers of 

graphitic BN were observed. But interestingly, very frequently the FNPs consisted of two 

layers of BN. Two types of contact between the FNPs and nanotubes were noted. In the 

first type, the FNPs were found on the side walls of nanotubes clearly distinct from them; 

presumably, these FNPs were attached by Van der Waals’ forces. The second type of 

contact took place at the end of nanotubes wherein the BN sheets were continuous 

between the FNPs and the nanotubes. The nanotube-FNP junctions occurred at the 

corners, rather than the facets [24]. In these samples, no transition metals were detected 

in any particle from which a nanotube grew. Hence, the transition metals simply may 

serve as dopants, enhancing the conductivity of the boron ingots. The possible growth 

mechanism is follows: The plasma contains various sized droplets of molten boron from 

the ingots, boron vapor, and nitrogen vapor; the larger droplets fall to the bottom of the 

chamber, while the smallest ones, nanometers in diameter, remain in the plasma. During 

their exposure to the plasma, boron and nitrogen atoms react on their surfaces to form BN 

sheets, probably after the droplets have solidified. The sheets have one or more layers; 

two is the commonest configuration. These sheets continue to extend whilst remaining 

flat. To introduce curvature there must be defects at the junction of two or more flat 

sheets. These defects are loci of nanotube growth. As boron and nitrogen atoms continue 

to be added to the sheets, they are incorporated into growing nanotubes at the tube’s base. 

Nanotube growth ends when the particle is transported out of the zone of hot gas [24]. 

BNNTs also were prepared by arc-melting ZrB2 [25], NbB2 [26], YB6 [26], YB6/Ni 

[26], and BN-Ta [27] powder in a nitrogen/argon gases.  

 

2.3 Laser ablation 

 

Golberg et al. [16] heated BN with a laser in a diamond anvil cell at high nitrogen 

pressure (5-15 GPa) to prepare BNNTs with 3-8 layers. These nanotubes were grown 

either in melted cubic BN, or in hexagonal + amorphous BN that had re-crystallized on 

the specimen’s surface from the fluid phase. Yu et al.[28] produced BNNTs by using 

excimer-laser ablation at 1200 ºC. The target was a mix of BN powder with Ni and Co 
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nanoparticles (1% each). The resulting nanotubes have one or a few layers. Their tips 

either are flat caps or polygonal terminations, in contrast to the conical ends of CNTs [28]. 

Continuous CO2 lasers also were used to generate BNNTs with or without metal catalysts 

[29, 30].  

Arenal et al. [31] demonstrated the production of high-quantity single-walled BNNTs 

by laser ablation without using any metal catalyst. They repeatedly bombarded an h-BN 

target with a CO2 (wavelength 10.6 µm) continuous laser under a partial pressure of 

nitrogen gas [31]. The temperature at the surface of the target was 3200-3500k based on 

measurement via an optical pyrometer. They also took the temperature of the nitrogen gas 

by coherent anti-Stokes Raman scattering (CARS) as a function of the distance to the 

target’s surface [32]. Reportedly, the nitrogen gas near the target’s surface is heated up to 

its temperature and acts as a local furnace. Above the target, its temperature decreases 

first rapidly, and then more slowly until, as a distance of 7 mm above the target’s surface, 

it is around 1200 K. They found that the optimized power lies between 1000 and 1200 w, 

equivalent to a temperature at the target’s surface above 2400 ºC. The yield of the raw 

products is about 0.5 g/h. The reaction products were collected on the filter and in a trap 

located in the outlet of the reactor chamber. Eighty percent of the nanotubes are single 

walled; the others are multi-walled with very few layers. The length and diameter of 

nanotubes typically are several hundred nm, and 2 nm, respectively.  

Combining the techniques of TEM and EELS [33], Arenal and his colleagues later 

reported that nearly spherical nanoparticles (or so-called cages) generally consist of a 

core of a pure boron particle covered by a thin layer of boron oxide, wrapped with h-BN 

shells. The same nanoparticles often are found at the ends of nanotubes. Though these 

nanoparticles are only a few nanometers (≤ 10 nm), very often they are larger than that of 

the tubes. Sometimes, a few tubes assembled into a bundle seem to emerge from the same 

particle.  

Based on these results, these authors proposed a root-growth mechanism originating 

in pure boron particles for the formation of BNNTs. Their modified vapor-liquid-solid 

(VLS) growth model for the formation of SW-BNNTs is illustrated in Figure 5.  
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Figure 5. Sketches showing the phenomenological model for the formation of the tubes (a), 
and of the cages of BN (b). (a) The model is as follows: (a-i) formation of boron drops from 
the decomposition of h-BN and from the boron oxide of the target; (a-ii) reaction of these 
drops of boron with the nitrogen injected into the reaction chamber and with that coming from 
the h-BN target. Recombination of the boron and nitrogen to form boron nitride; (a-iii) 
incorporation of the nitrogen atoms at the root of the boron particle from which the tube grows. 
Concerning the cages and the carbon and boron oxide filling them (carbon may also be found 
inside some BNNTs), the growth mechanism is (b-i) and (b-ii) these steps correspond to (a-i) 
to (a-iii) taking into account the dissolution of oxygen and carbon in the boron drops; (b-iii) 
and (b-iv) correspond to the segregation of the carbon and oxygen. For carbon, the segregation 
occurs at temperatures close to 2000 °C, whereas oxygen segregation at lower temperatures, 
around 700 °C. (Reproduced with permission from Ref. 31. Copyright 2007 American 
Chemical Society)  
 

According to the thermodynamic phase diagram of the B-N system, upon heating by 

the laser beam, the h-BN compound of the target does not sublimate as does graphite, but 

decomposes above 2600 K into gaseous nitrogen and liquid boron. Boron then is 

vaporized even though the equilibrium vaporization temperature is far from that realized 

at the target’s surface. Above 1800 ºC, the boron-oxide binding also is decomposed and 

vaporized. Therefore, there are two sources of boron available to form the nanotubes; the 

efficiency of their formation is less with boron oxide. Upon cooling within the 

temperature gradient created by the flow of nitrogen gas, the boron vapor condenses into 

small droplets. When the temperature falls below 2700 K, the droplets react with the 

nitrogen gas to form a sp2 BN structure. Despite the strong stability of the nitrogen 

molecule, the high reactivity of the liquid boron’s surface at 2700 K can degrade this 

molecule. The source of the nitrogen gas either is the carrier gas or issued from the 

decomposition of the BN target. This latter was confirmed as the source by using argon 

as the carrier gas [31]. As a consequence of the chemical reaction B-N2, a sp2 BN cap is 

formed at the surface of the particle (step I in Figure 5). It progressively is transformed 

into a tube by the continuous supply and the decomposition of nitrogen at the surface of 

the particle (step II in Figure 5). This finding implies that initially the size of the BN cap 
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to be less than that of the particle; thereby, its surface would be ensured free access to the 

nitrogen gas. The nucleation process implies a root growth mechanism wherein nitrogen 

and boron atoms are incorporated in the BN network at the foot of the nanotube via its 

interface with the particle’s surface where the bonds are the most active. In this 

mechanism, the boron particle has a dual role, as a support for growth, and a reactant. 

This pattern of growth persists as long as the boron particle is liquid (i.e., as long as 

the temperature is above 2300 K (step II in Figure 5)). The boron particle begins to 

solidify in a zone of the reactor chamber where the cooling rate is between 100 and 200 

K/ms. Accordingly, the growth of the tubes abruptly stops, so explaining the relative 

short length of SW-BNNTs compared to their carbon analogs synthesized via a 

continuous CO2 laser vaporization of a NiCo-graphite target [34]. Finally, when the 

boron solidifies, the nitrogen atoms remaining at the surface of the particle react with 

surface boron atoms to build a BN sheet encapsulating the B particle.  

In summary, the growth process involves three steps: (1) The laser-induced 

decomposition of boron oxide contained in the target’s binder and in its h-BN crystallites 

into nitrogen gas and liquid boron, both of which finally are vaporized; (2) Upon cooling, 

boron vapor condenses into small boron liquid droplets that react with nitrogen gas, either 

coming from the carrier gas or issued from the decomposition of the target, to form BN 

caps at the droplets surface; (3) Growth of the nanotubes from the progressive 

incorporation of nitrogen and boron at the interface between the cap and the particle. The 

growth stops on the solidification of this core particle of boron. 

Plasma-enhanced pulsed-laser deposition (PE-PLD) was used to generate multi-

walled BNNTs directly on substrates at 600 ºC. Oxidized Si substrates with Fe films 

(12.5 nm) were installed on the heater and sealed inside the vacuum chamber at base 

pressures up to ~5 x 10-7 mbar. With a RF generator (13.56 MHz) capacitively coupled to 

a steel substrate holder, plasma was generated on the substrate’s surface over 10 minutes. 

This RF plasma induced negative dc voltages on the substrates, so-called substrate bias, 

that accelerates the positive ions in the rf plasma and the BN vapor to bombard on the 

substrate’s surface between -360 and -450 V. When sufficiently high kinetic energies of 

these ions are achieved, the deposition rate of BN films is balanced by the rate of re-

sputtering and result in total re-sputtering [35].  
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Figure 6. SEM images of BNNT bundles grown at a substrate bias of (A) -380 V, and (B) -450 V 
and (C) their corresponding bundling configurations (left and right, respectively). (D) Patterned 
growth of BNNTs. (Reproduced with permission from Ref. [35]. Copyright 2005 American 
Chemical Society) 
 

Scanning electron microscopy (SEM) revealed that multiple BNNTs grown from 

adjacent Fe catalyst particles tend to form vertical bundles. BNNTs grown at -380 V 

appear conical, as shown in Figure 6A. For samples grown at higher substrate bias (-450 

V), individual BNNTs inside the bundles can be resolved clearly because of the increase 

in the diameters (~20 nm) of individual BNNT grown from larger Fe nanoparticles that 

formed by the enhanced plasma heating (Figure 6B). Figure 6C depicts the bundling 

configurations of BNNTs with such small (left) and large (right) diameters. These BNNT 

bundles can be grown into arrays of regular patterns (Figure 6D) with a patterned Fe film 

created by a shadow mask. These results demonstrated that the location of BNNTs is 

controllable during their growth by the patterns of the Fe nanoparticles [35].  

 
Figure 7. Schematic drawing representing the growth region of BNNTs. (A) Deposition of BN 
films on Fe nanoparticles due to low re-sputtering rate of the growth species. (B) Reduced growth 
rate of BN films with an energetic growth species. (C) Total re-sputtering region wherein BNNTs 
grow and BN films are suppressed (Reproduced with permission from Ref. [35]. Copyright 
2005 American Chemical Society) 
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The growth of these BNNTs is obtained through an optimum combination of the Fe 

film’s thickness, the laser’s energy density (deposition rate), and the substrate bias. For 

example, for substrate with 12.5 nm thick Fe film at a substrate bias of -300 V, the 

resultant excessive deposition rate generates a coating of BN films on the Fe 

nanoparticles (Figure 7A). These insulating BN coatings are recognized by the charging 

effect during the SEM measurement; in such cases, the growth of BNNTs is difficult to 

identify. Under these conditions, the deposition rate of BN films is faster than the 

diffusion rate of the BN growth species into the Fe catalyst particles. Thus, the BN films 

coated on the catalyst terminate the contact between Fe and the reactive growth species 

(Figure 7A); this phenomenon is termed the poisoning effect. The thickness of BN films 

gradually decreases as the substrate bias increases (Figure 7B). BNNTs start to grow at a 

higher substrate bias as a balance is reached between the rate of film deposition and re-

sputtering rate (Figure 7C). At this total re-sputtering region, there is suppression of the 

deposition of BN thin films. BNNTs grow on the Fe nanoparticles according to the VLS 

mechanism. The rf plasma creates a directional flux of the BN growth species with 

sufficient kinetic energies to diffuse into the Fe nanoparticles. Thus, the Fe captures the 

energetic BN growth species and confines them in a nanoscopic space; otherwise, they 

are re-sputtered off. Supersaturation of the Fe nanoparticles with BN vapor causes the BN 

species to condense into ordered nanotubular structures [35]. 

 

2.4 Carbon nanotubes-substitution reaction  
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Figure 8 Schematic illustrations of using CNTs as a template to produce new one 

dimensional nanoscale materials by (a) filling, (b) coating, (c) CNT confined reaction to 

produce carbide and nitride nanorods, and (d) CNT substituted reaction to produce 

BNNTs  

 

One important application for CNTs is their use as templates to prepare other one-

dimensional nanomaterials, such as, filling, coating and other nanorods. (Figure 8)  [36, 

37] In 1998, Han et al. [17] developed a method involving a CNT substitution reaction to 

synthesize mass quantities of BNNTs. This method involved reacting boron oxide vapor 

with nitrogen or ammonia at high temperature in the presence of carbon nanotubes to 

form BNNTs. The proposed reaction is expressed as 

B2O3 + 3C (nanotubes) + N2 → 2 BN (nanotubes) + 3CO                       (1) 

 
Figure 9 (a) Low-magnification TEM image of BNNTs, and (b) High-magnification 

TEM image of BNNTs.  

 

Although the starting multi-walled CNTs are curved and contain many defects, the 

BNNTs produced are straight and nearly perfect. They usually are a few nanometers in 

diameter and have a few shells; their length similar to that of the starting CNTs (Figure 9). 

Depending upon the temperature and the starting CNTs, the nanotubes thus formed can 

be pure BN, or a mixture of pure BN and BxCyNz. The latter made by this route easily can 

be transformed into pure BNNTs by oxidation at 650 ºC. Metal oxides, such as MoO3, 

can serve as a promoter for synthesizing the BNNTs [38]. Most BNNTs made by this 

route have open tips at the both ends [39]. XRD spectra showed that both the hexagonal 

(two-layered repeating units) and the rhombohedral (three-layered repeating units) 
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nanotubes exist in the final product [17], as was confirmed by TEM (Figure 10) [40]. 

Pure BN conical nanotubes also were obtained by this method (Figure 11) [41-43], while 

aligned BxCyNz nanotubes and BNNTs resulted from using aligned CNTs and aligned 

CNx nanotubes as templates [14, 44].  

 
Figure 10 HRTEM images of multi-walled BN NTs.  A definite, but different stacking order is 
apparent in marked areas in (a) and (b) as highlighted in the insets. Hexagonal type stacking in (a) 
and rhombohedral-type stacking in (b) are confirmed by corresponding computer simulated 
HRTEM images (right-hand side images) for BNNTs having the axes parallel to the  [1 0 -
10]orientation (zigzag tubes) (Reproduced with permission from Ref. 40. Copyright 2000 
American Institute of Physics). 

 

 
 

Figure 11 TEM image and schematic of a conical BNNT.  
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Han et al. showed that CNTs made by CVD contain many defects, the preferred sites 

for the substitution reaction. Advantageously, boron oxide can flow into the hollows of 

nanotubes with open tips or breaches so the reaction can start from both outer- or inner-

layers [45]. Bando et al. confirmed this assumption based on EELS mapping results, 

suggesting that the conversion of carbon to BN in the tubular layers occurs through 

inhomogeneous crystallization of B/N domains onto and within undulating defective 

graphite C shells opened by oxidation [46]. These models can simply explain the major 

growth processes, but they cannot explain some important phenomena, such as that the 

outer and inner diameters of BNNTs (typically are 3-9 nm and 2-4 nm, respectively) are 

smaller than those of the starting carbon nanotubes (typically are 8-15 nm and 4-7 nm, 

respectively), and the decrease in the number of layers. 

 
Figure 12 A schematic processes for carbon nanotube-substitution reaction that 
develop with temperature (T) and time (t).  (a) Areas of voids in carbon layers that are 
formed by their oxidation reactions with oxygen or metal oxides (MO); (b) More voids 
form in the carbon layers, and some outer layers peel off; (c) B2O3 and nitrogen react 
with the carbon layers to form BN domains, and more voids are formed in the carbon 
layers; (d) The substitution reactions are completed with all BN layers having 
numerous large voids; and (e) The inner and outer diameters of BN start shrinking by 
the rearrangement of B and N atoms so to eliminate to the large voids, yielding near-
perfect layers of BNNTs (Reproduced with permission from Ref. 47. Copyright 2006 
American Institute of Physics).  
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A detailed growth model was proposed, depicted in Fig. 12 [47], within the oxidation 

reaction of carbon layers, defects, and tips play the important roles. Although the reaction 

tube was purged with 99.99% nitrogen before heating (nitrogen also was used as the 

reaction gas), some oxygen remained in the reaction chamber. Furthermore, some 

remnant oxygen comes from the reaction chamber’s wall. Oxygen reacts with the carbon 

layers after the temperature is above about 500 ºC, especially happens at the weakest 

parts of CNTs, such as the defects and tips. This process produces small voids in the 

carbon layers of the CNTs (Process (a) in Figure 12). The reaction is expressed as 

2C (nanotube layer) + O2 (gas) → 2CO (gas)                    (2) 

The vapor pressure of the metal-oxide additive (MO) arising at high temperature also 

helps to disrupt the carbon layer by the following reaction:  

MO (g) + C (nanotube layer) → M + CO (gas)               (3) 

At higher temperatures, larger and more numerous areas of carbon are consumed and 

thus, more voids form. Some outer layers may partially peel off, or even completely 

(Process (b) in figure 12). This is one reason why the outer diameter is smaller, and the 

number of layers is fewer in the final BNNTs than those of the starting CNTs.  

Above the melting temperature of B2O3 (about 450 ºC), boron oxide is molten, but its 

vapor pressure is quite low until the temperature reaches about 1200 ºC, which is high 

enough to start the reaction. According to the experimental results, the B2O3 partial 

pressure is high enough to create a flow into the CNT area, and temperature is adequate 

for initiating the carbon-substitution reaction. BN formation starts from open edges of the 

broken areas made by the oxidation reactions (1) and (2). Meanwhile, oxygen and the 

metal oxide continue to react with the carbon layers, a process that ruptures more areas 

on carbon (Process (c) in figure 12). Since h-BN is a near-perfect lattice match with 

graphitic carbon, the substitution-reaction proceeds smoothly. 

The carbon layer-substitution reaction occurs at specific areas and is expressed as 

fellows: 

B2O3 (gas) +3C (layer) + N2 (gas)  → 2BN (layer) + 3CO (gas)            (4) 

Should the final reaction temperature be high enough to start the reaction, but not 

sufficiently high to fully substitute the carbon, then only low B/C ratio BxCyNz nanotubes 
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are formed [46]. At 1500 ºC, the main boron oxide is B2O2, which is mainly formed by 

the reaction below:  

B2O3 (liquid) + CO (gas) → B2O2 (gas) + CO2 (gas)                              (5) 

The carbon substitution reaction then is written as:  

B2O2 (gas) + 2C (layer) + N2 (gas)→ 2BN (layer) + 2CO (gas)             (6) 

 At a steady temperature of 1580 ºC, most or all of the carbon layers have been 

replaced by BN layers via reactions (4) and (6), or consumed by oxygen or metal oxide in 

reactions (2) and (3), leaving small or large voids (process (d) in the figure 14).   

However, since the temperature is high enough, BN atoms can be in a near-fusion 

state and rearrange to eliminate these voids. Then, the diameter of the inner layer of 

BNNTs tends to shrink such that the B and N atoms in the same layer are numerous 

enough to settle into a perfect cylinder, which makes the structures more energetically 

stable. The final inner and outer diameters might be regulated by the size of the open-tips 

that can range from very small one to that of the original diameters of the nanotubes. 

Such rearrangement of BN atoms, corresponding to the shrinking of the diameter, thus 

starts from the tip area and extends along the whole length of the tube. This process leads 

to BNNTs with inner and outer diameters much smaller than those of the starting CNTs. 

Indeed, some B and N atoms can migrate between the different layers. Hence, outer 

layers might be eliminated by the occurrence of such migration to inner layers to mend 

the voids therein. In this way, the number of layers in the BNNTs is reduced (Process (e) 

in figure 12). The process (d) and (e) can happen simultaneously. Finding with EELS 

show that the atomic ratio of B/N usually is closed to 1, signifying that that B and N 

atoms preferentially rearrange and migrate as a pair. Frequently, there are double or 

triple-layered BNNTs along with single-walled ones. In addition, the process of 

rearrangement and fusion of the B and N atoms are similar to the graphitization process 

in the carbon layers of CNTs during heating and irradiation by an electron beam during 

in-situ TEM observations [48].  

This model also is good for explaining the formation of nearly-perfect BxCyNz 

nanotubes with very high B/C atomic ratios that similarly exhibit much narrower outer 

and inner diameters compared with those of the starting carbon nanotubes.    
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The CO gas formed during the reactions (2), (3), (4), and (6) can also react with B2O3 

and N2 to form BN in the following manner:  

B2O3 + 3CO + N2→ 2BN + 3 CO2                              (7) 

This reaction may help mend the voids in BN layers, or, form new BN layers on 

existing inner or/and outer ones. However, it is also the main source for the formation of 

by-products, such as BN FNPs and BN pieces. If the reaction temperature is too high, 

reaction (7) will predominate and thus, more BN by-products will be produced.  

Using this route, isotopic 10BN and 11BNNTs respectively were synthesized by 

replacing natural B2O3 with 10B2O3 and 11B2O3 [47, 49].  

 

2.5 Chemical vapor deposition  

 

CVD involves the dissociation and/or chemical reactions of gaseous reactants in an 

activated (heat, light, plasma) environment, followed by the formation of a stable solid 

product. The deposition involves homogeneous gas-phase reactions, which occur in the 

gas phase, or heterogeneous chemical reactions, which occur on/near the vicinity of a 

heated surface, or both, leading to the formation of powders, films, and 1D-nanomaterials, 

respectively. CVD is a successful route to synthesize high-purity and good-quality CNTs. 

It also is expected to be invaluable in synthesizing highly pure BNNTs.  

Lourie et al. used borazine (B3N3H6) as a precursor and nickel boride as a catalyst to 

synthesize BNNTs at 1100 ºC. They made borazine by an in-situ reaction of (NH4)2SO4 

with NaBH4 [18]. The produced nanotubes have large diameters and exhibit a bamboo-

like structure.  

Using B and MgO as staring materials to react with ammonia, Tang et al. formed 

BNNTs. At 1300 ºC, boron reacted with MgO to form B2O2 and Mg vapor. The vapor 

was carried by argon into a reaction chamber at 1100 ºC, and a flow of ammonia was 

introduced. BN was produced by the interaction of B2O2 with ammonia [50]. The 

chemical reactions are represented by the following equations:  

2B(S) + 2MgO(S) → B2O2 (g) +2Mg (g)                         (8)                                                

B2O2(g) + NH3 (g) → 2BN (s) +2H2O (g) + H2                (9) 



 18

Extensive follow-up experiments revealed that the quantity, quality, and purity of 

such as-grown BNNTs strongly depend on the growth temperature when a mixture of 

MgO and boron powder is employed. Below 1100 ºC, BNNTs of good quality and purity 

are obtained, though the yield is only about tens of milligrams. An increase in the growth 

temperature improves the yield up to hundreds of milligrams, but the nanotubes’ diameter 

increase dramatically, up to one micron. Above 1250 ºC, only bulk BN flakes are 

obtained. A high Mg vapor pressure at high temperature (760 mmHg at 1100 ºC) ensures 

that the Mg vapor easily reaches the tube’s growth region and aggregates in this low-

temperature zone. Moreover, for growing BNNTs the catalytic activity of Mg is ideal. 

However, although the mixture of MgO and boron powder has proven an effective source 

for B2O2, it is extremely difficult to increase the yield by simply rising the temperature 

[50].  

Transition metals are common catalysts for nanotube growth. A mixture of MgO, 

FeO, and boron powder is a good substitute for the precursor because the mixture 

combines the advantages of MgO and FeO, which are, respectively, an effective B2O2-

producer and catalyst. The detailed experimental procedures are as fellows: An induction 

furnace is used to heat the mixture of FeO, MgO, and boron powder in a BN crucible to 

produce B2O2, Fe and Mg vapors. An ammonia gas introduced from the top of a BN boat 

with an inner diameter of 2 cm reacts with B2O2 in the presence of a Fe catalyst. After 1h 

of the reaction, a large amount of BNNTs fills the BN boat. Employing the mixture of 

FeO, MgO and boron powder as a precursor, allows the synthesis of BNNTs within a 

wide temperature range of 1100-1700 ºC. Temperature does not affect the purity and 

diameters of the BNNT. The yield increases as the growth temperature is raised. Most 

BNNTs have diameters ranging from 50 nm to 150 nm; the length can be up to a couple 

of hundred micrometers (Figure 13). They lack notable impurity phases. Metal catalysts 

occur at the tips of the BNNTs, suggesting that the growth of BNNTs is via the VLS 

mechanism [51]. Isotopic 10BN [49] and 11BN [52] nanotubes were made by replacing 

natural B with 10B and 11B, respectively.  
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Figure 13 (a) Low-magnification TEM image of BNNTs (b) High-magnification TEM 
image of the tip of a BNNT. 

 
BNNTs also were synthesized via a CVD method using B-N-O precursors, 

specifically, self-forming B4N3O2H intermediate compounds (oxygen content ~ 27%) or 

commercial BN powders enriched with oxygen (Denka Co. oxygen content ~ 10%) [10, 

53, 54]. After heating the precursor in a graphite susceptor with an induction furnace to ~ 

1700 ºC under flowing mixed N2/H2O or mixed N2/NH3 (15:1 in flow rates), vapors of 

boron oxides (B2O3 or B2O2), decomposed from their precursors, were reduced to BNNTs 

and deposited on the susceptor’s at an estimated temperature of ~ 1200 ºC.  

The microwave plasma enhanced CVD method was used to prepare BNNTs with 

diborane and ammonia as the reactants [55]. The chemical reaction for the formation of 

BN is:  

B2H6 + 2NH3 → 2BN + 6H2                                                (10) 

 
Figure 14. Active species detected using quadruple mass spectroscopy (QMS) in B2H6–NH3–H2 
plasma during deposition of the BNNTs. The partial pressure of every species is normalized by 
the total pressure in the reaction chamber. (Reproduced with permission from Ref. 55. 
Copyright 2008 Institute of Physics) 
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For the overall reaction in equation (10), the free energy changes are, respectively, -

165 kcal mol-1 and -177 kacl mol-1 at the reaction temperatures of 900 K and 1100 K. 

Thus, BN can be processed at relatively low-temperatures by reacting diborane and 

ammonia due to favorable free-energy exchanges of the reaction. Furthermore, in a 

plasma environment the dissociation and ionization of gas molecules is enhanced by 

activated electron and ion collisions. The electron temperature affords a measure of the 

degree of the dissociation and ionization of the plasma. The average electron temperature 

is estimated as ~ 10000 K for the plasma containing B2H6-NH3-H2 at 800 ºC and 800 W. 

The ratio of diborane to ammonia dominates the formation of different intermediate 

compounds. In this work, the [B2H6]/[NH3] ratio was 1.55:1 and Ni thin films were used 

as catalysts. The results of in-situ quadruple mass spectroscopy (QMS) in B2H6-NH3-H2 

during the deposition of BNNTs (Figure 14), allowed the reaction between diborane and 

ammonia to be described by the following equations involving four steps: (1) the 

decomposition of diborane to form BxHy, (2) the dissociation of ammonia to form NHz, 

(3) the reaction of BxHy and NHz to form BNHγ and, (4) the dissociation of BNHγ for the 

formation of BN.  

B2H6  → BxHy + H2 (x=1-2, y=1-2)                            (11) 

NH3 → NHz +H2 (z=0-2)                                            (12) 

BxHy + NHz  → BNHγ (γ = 2)                                     (13) 

BNHγ → BN +H2                                                                                   (14) 

BN can deposit on the substrate area with or without Ni catalysts.  However, BNNTs 

only appear in areas with them. The Ni film’s thickness is one key factor affecting the 

growth of BNNTs. No 1D nanostructures are observable on either a bare Si substrate 

without any catalyst, or on a thick catalyst-film-coated substrate. When the film thickness 

is less than 10 nm, the long nanostructures with high aspect ratios start to grow, and such 

growth becomes significant when the film thickness is below 2 nm. No Ni particles were 

observed attached at the tip of the nanotubes, even though the catalyst is essential for the 

nanotube growth.  

Hexagonal BNNTs and orthorhombic-BN (o-BN) nanotubes were prepared in a 

thermal CVD furnace using trimethyl borate (TMB) and nitrogen as reactants with 

reaction temperatures ranging from 1000 ºC and 1200 ºC. A 434 stainless-steel wire, 0.5 
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mm in diameter, coiled into a disk-like shape, was placed in the center area of the 

chamber. At temperatures above 1000 ºC, Fe, Cr and Mo vaporize and combine with the 

reactant gases to reach eutectic composition forimg a partial liquid on the surface and 

form BNNTs based on the VLS growth mechanism. Their diameter is about 100 nm. At 

reaction temperatures below 1000 ºC or above 1200 ºC, BN plates, beads, particles and 

other morphologies are formed [56].  

 

2.6. Solid-gas reaction 

 

BNNTs can be generated in a reaction between solids (containing boron sources) and 

gases (ammonia or nitrogen). One such type is pre-treated elemental boron powders via 

ball-milling methods in an ammonia gas for 150 h at 1000 ºC, and then thermal annealing 

them under a nitrogen atmosphere at 1000 ºC [19, 57-59]. This method also yielded 

isotopic 10BN nanotubes [60]. BNNTs also were fabricated by nitriding boron nanowires 

under a nitrogen atmosphere at 1500 ºC for 4 h [61], and boron thin film under an 

ammonia atmosphere at 1175 ºC for 1 h [62].   

Fe4N/B powders were annealed to prepare BNNTs exposing them at 1000 ºC for 1 

hour in a nitrogen-gas atmosphere. The nanotubes, with diameters, usually larger than 

100 nm, form a cup-stacked structure [63]. XRD measurements revealed Fe4N was 

reduced to Fe by boron at 700 °C. The Fe nanoparticles were dispersed and adhered to 

the surface of boron, until they formed a supersaturated solid solution of boron in Fe 

nanoparticles that reacted with N2 gas. BNNTs grow from these sites; the diameter of the 

nanotubes depends on particles’ sizes [64]. 

 

2.7. Low-temperature autoclave  

 

BNNTs can be prepared by a low-temperature autoclaving. In a typical procedure, 

Mg(BO2)2.H2O, Mg powder, NH4Cl and NaN3 are mixed and put into autoclave that is 

then closed and heated at 600 ºC for 60 H. The nanotubes made via this way usually have 

quite a large diameter (several hundreds of nm) and a large hollow. These nanotubes are 

mixed with large amounts of BN nanocages with large hollows [65]. Using the same 
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strategy, BNNTs were produced with a yield of about 50% by co-pyrolyzing with 

NH4BF4, KBH4 and NaN3 at temperatures ranging from 450 ºC to 600 ºC. The diameters 

of the resulting BNNTs range from 60-350 nm, with a length range of 0.5-5 µm [66]. 

BNNTs also resulted from using boron trifluoride etherate and sodium azide as the 

reactants in the presence of Fe-Ni powder at 600 ºC for 12 h [67].  

 

2.8. Pore-template 

 

Currently, template-aided synthesis is considered as one of most efficient routes to 

produce 1D nanomaterials. Selecting the templates and precursors is important in 

controlling the size and shape of the nanomaterials. Various types of templates were 

utilized to produce various forms of nanostructured BN [68, 69]. Alumina anodic 

membrane (AAM) was used to synthesize 1D nanostructures due to its tunable pore 

dimensions, narrow pore-size distribution, and good mechanical and thermal-stability 

[70]. Borazine (B3N3H6) is proved to be an almost ideal precursor because of its high 

ceramic yield to BN, no carbon content, and easy change to BN upon thermal treatment 

without NH3 [71]. Other well-known good precursors are polyvinylpentaborane, 

polyvinylborazine, and dibromoboranedimethyl sulphide for forming BN upon ammonia 

thermolysis.   

One example is using borazine oligomer as the prescursor. A borazine oligomer was 

formed from a borazine monomer solution, prepared from a mixture of sodium 

borohydride (NaBH4) and ammonium sulfate ((NH4)2SO4) in tetraglyme at 135 ºC in a 

dynamic vacuum [72]. The borazine solution, with 97 wt.% B3N3H6 and 3 wt.% BH3NH3 

thus obtained, was heated and stirred for 40 h in a glass flask sealed with a teflon cap at 

40 ºC, after which time a borazine liquid oligomer (B3N3H4)x with a low viscosity formed.  

A commercially available alumina anodic membrane 60 mm thick with a nominal 

pore diameter of 100 nm, functioned as the template (Whatman Ltd., Anodisc 13). The 

alumina templates successively were cleaned ultrasonically in acetone, ethanol, and 

distilled water, and dried at 50 ºC. The template was immersed in the borazine oligomer 

for periods of 20 h, 40 h and 2 weeks in a glove box filled with N2 at room temperature. 

The template containing the borazine oligomer then was heated at 10 ºC min-1 from room 
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temperature to 600 ºC, held there for 24 h, and subsequently heated to 1200 ºC at 10 ºC 

min-1, at which temperature it was maintained for 30 min. The N2 gas continued to flow 

into the glove box during the heating and cooling to room-temperature. The template 

containing BN then was dissolved in a 40% NaOH solution at 60 ºC to separate the BN 

materials from those of the template. The BN nanomaterials were washed carefully 

several times with water and ethanol. Figure 15 is a flow chart showing the making of 

BN nanomaterials.  

 
 
Figure 15. A schematic diagram of the formation process of BNNTs, BN nano-bamboos and BN 
nano-fibers (Reproduced with permission from 72. Copyright 2008 ELSEVIER) 
 

With a wetting time of 20 h, BNNTs, several tens micrometers long, are formed with 

diameters of 200-300 nm. Extending the wetting time to 40 h, generates BN nano-

bamboos, of 40 µm long and 300 nm thick. The bamboo walls are about 20 nm thick and 

the knot 30-100 nm thick. Very fine nanoparticles (<100 nm) were deposited on the 

bamboo’s walls. Two weeks of wetting time yields BN nanofibers 20 µm long and 300 

nm thick, with deposits of small fine nanoparticles less than several nanometers on the 

external surfaces.  

Shelimove et al. grew BNNTs by pyrolyzing 2,4,6-trichloroborazine within the pores 

of an anodic aluminum oxide (AAO) template at 750 ºC [73]. Bechelany et al. used liquid 

polymeric borazine within the pores of AAO to grow BNNTs [74]. Wang et al. derived 

BNNTs by microwave plasma-enhanced CVD method below 520 ºC under the 
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confinement of AAO template using borane/argon and ammonia/nitrogen as the 

precursors [75].  

 

2.9 Arc-jet plasma 

 
Fig. 16 Schematic of an arc-jet plasma reactor used for BNNTs synthesis along with a non-
transferred plasma torch. (Reproduced with permission from Ref. 22. Copyright 2006 
ELSEVIER) 
 

BNNTs were prepared by an arc-jet plasma process employing a non-transferred 

plasma torch (Fig. 16). The experimental system mainly consists of a dc non-transferred 

plasma torch, an injector of reactant materials and catalysts, and carbon reaction cylinders. 

The arc-jet thermal plasma is generated by arc discharge between a conical tungsten 

cathode and a copper anode with a cylindrical nozzle in the dc plasma torch; the resultant 

plasma is ejected from the exit of the anode’s nozzle into the inside of the reaction 

cylinders that join together in front of this exit. A mixture of argon and nitrogen gas 

constitutes the plasma forming gas. The flow rates of argon and nitrogen are, respectively, 

45 slpm (Standard Liters per Minute) and 2 slpm,. The reactant material is a mixture of h-

BN as the boron-source material and Ni/Y powder (atomic ratio 9:1) as the catalytic 

materials. The reactant powder is introduced by an argon carrier gas into the arc-jet 

plasma flame through injection holes in a reaction cylinder near the nozzle exit, and then 

undergoes synthetic reactions in the high-temperature plasma flowing throughout the 

reaction cylinders. The carbon reaction cylinders are installed in such a way to build up a 

long high-temperature reaction zone, and thus enhance the reactants’ synthesis reactions. 
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The arc-jet plasma torch is operated with a dc current of 300 A, and an applied voltage of 

46 V, and the ambient pressure is maintained at atmospheric condition. The samples are 

collected from the inner wall of the reaction chamber. The nanotubes occur only on the 

wall of reaction cylinder II, mixed with nanoparticles. The nanotubes have outer diameter 

of 3-10 nm, and are up to several micrometers long; most have encapsulated catalysts 

particles at the tip [22].  

 
3. BNNT- based nano-objects 

 

In this section, I focus on the BN nanotube-based nano-objects: i.e. filled and 

functionalized BNNTs 

 

3.1 Filled BNNTs 

Similar to CNTs, the nano-cavity of BNNTs is an ideal tool for preparing and studying 

the properties of confined nanostructures of different materials in different forms. Since 

the size of nano-cavities are very small, the filled materials might be expected to have 

different physical and/or chemical properties to the unfilled materials, Hence, the filled 

BNNT itself might behave differently to pure BNNT. Filled BNNTs mainly are prepared 

by two methods: In-situ filling (filling nanotubes while they grow), and two-steps (first, 

the formation of BNNTs that then are filled with a molten- or a sublimated-material). In 

principle, filling might happen during for all methods of synthesis, though not all 

materials can be filled by one method or even by all known methods.  

The first report of filling pure BNNTs was that of SiC-filled BNNTs using CNTs as 

templates [76]. The CVD-prepared CNTs initially were treated with nitric acid and then 

heated in air to remove surface acidic groups. The reaction experiment took place in a 

conventional horizontal furnace with a sintered alumina tube. A mixture of silica ~68.2 

wt %, and silicon ~21.8 wt % powder, was placed in the central hot zone. B2O3 powder 

covered with CNTs was put just outside the central zone (Figure 17 (a)). The tube was 

held in a flowing nitrogen atmosphere at 1753 K for 1 h. After the reaction, the product 

was collected from the original nanotube bed. Figure 22(c) shows a high-resolution TEM 

image of a SiC-filled BNNT, revealing a dissimilar number of tubular layers on one side 

of the nanotube compared to the other one. The interlayer distances in the outer sheath 
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are about 0.33 nm, i. e. close to the value of the ~002 spacing of h-BN or graphitic carbon. 

This method combines both the CNT-substitution reaction and the confined reaction. 

Through the CNT-substitution reaction, CNTs react with boron oxide vapor in the 

presence of nitrogen gas to form BNNTs, whose diameters and lengths are similar to 

those of the starting CNTs. The formation of the SiC filling proceeded by the penetration 

of SiO vapor into the cavity of the nanotubes, and the subsequent reaction of the SiO 

vapor with the inner carbon layers or volatile carbon mono-oxide in the interior to form 

SiC nanowires. The length filled can extend up to the entire length of the nanotubes. 

Using the same route, this method has been successfully applied to boron carbide 

nanowires [77], FeNi nanowires [46], Co nanowires [78], MoOx cluster and nanowires 

[79].  

 
Figure 17 (a) Schematic image of experimental setup (b) Schematic image of SiC-filled BNNT 
and, (c) high-resolution TEM image of a SiC-filled BNNT.  
 

In-situ filling via a CVD processes have been used to prepare Fe nanoparticles [80], 

AlN nanotubes [81], GaN nanowires [82- 84], Si3N4 nanowires [85], MgO nanowires 

[86], SiOx/Si [87], ZnS [88], Al18B4O33 nanowires [89], and SiC nanowires [85, 90, 91]. 

BNNTs filled with ZrO2 nanorods were obtained via a solid-gas multiphase reaction [92].  

One good example is the synthesis of GaN-filled BNNTs [82]. To create the BN 

coated nanowires, Ga2O3 and Ga (mol ratio 1:4), amorphous boron powder, and an iron-

oxide catalyst supported on an alumina-nanoparticle template were well mixed and 
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placed in a quartz boat that was inserted into the hot-zone of a conventional temperature-

programmable furnace. Ammonia was used during the reaction at 1100 °C for 1 h. The 

synthesis product was collected from the quartz boat. The core of GaN nanowire is 

crystalline with either a cubic zincblende or hexagonal wurtzite structure, and ranges 

from 10 to 85 nanometers diameter with lengths up to 60 micrometers. The outer coating 

is typically several BN-layers thick and more or less uniformly covers the entire GaN 

nanowire. 

     The two-steps filling method requires opening the nanotube tips before filling the 

BNNTs. The tips open naturally during nanotubes formation, or can be opened by 

treating the nanotubes with acid and/or oxidation.  

 
Figure 18 (a) High-magnification TEM image of a KI filled BNNT. The direction of the incident 
electron beam direction is along the <001>, and the long axis of the crystal is parallel to the 
crystalline a direction. (b) BNNTs filled with C60.  

 

For molten state materials in a typical filling experiment, the BNNTs are mixed with 

the desire amount of filler and then the mixture is vacuum–sealed in a silicon ampoule. 

The ampoule is slowly heated to a temperature above the melting point of the filler, after 

which it is slowly cooled.  BNNTs were filled with halides KI, KCl, and KBr [93, 94]. 

The nanotubes were synthesized through a CNT substitution reaction followed by 

oxidation treatment [39]. These BNNTs then were sealed in several evacuated (10-6 Torr) 

quartz ampoules, together with different halides (KI, KCl, and KBr) in about a 4:1 

halide/BN NT mass ratio. Figure 18 (a) is a high-magnification TEM image of a BNNT 

filled with KI crystals. The direction of the incident electron beam is along <001>, and 

the long axis of the crystal is parallel to the crystalline a direction. The crystal structure is 

indexed to rock salt KI.  

The sublimation filling method is more restrictive than the previous one because it is 

only applicable to very limited number of materials due to the need for the filler to 
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sublimate within the nanotubes’ range of thermal stability, and also that of the silica 

ampoule or other sealed container. One example is filling BNNTs with C60 fullerene 

molecules [95]. Thus, pure BNNTs were synthesized with either a plasma-arc discharge 

method (23) or a CNT substitution reaction (17, 39). The as-synthesized arc-nanotube-

rich soot was heat-treated in air at 800°C for 20 min to remove excess boron 

nanoparticles and to open the tips of the BNNTs. The gray, heat-treated tubes then were 

sealed in an evacuated (10–6 torr) quartz ampoule together with commercially C60 powder 

in about a 5:1 C60:BNNT mass ratio and uniformly heated to between 550° and 630°C for 

24 to 48 hours. With the individual spheres just fitting inside the cylinder, the linear-

chain or classic peapod configuration is reproduced (Fig. 18(b)). With the increasing 

inner diameter of the BNNT, unusual C60 stacking configurations are obtained (including 

helical, hollow core, and incommensurate) that are unknown in bulk or thin-film forms of 

C60.  

 

3.2 Functionalized BNNTs 

 

The functionalization of CNTs is a vital tool in tailoring their properties and engineering 

devices, and significant efforts were undertaken to achieve to this functionalization, with 

especially intense research on soluble CNTs, CNT composites, and CNT compatibility 

with biological systems [96–99]. Compared to CNTs, much less research has centered on 

the chemical functionalization of BNNTs. One reason is that still it is not easy to obtain 

large amounts of high-quality pure BNNTs. Another reason is the inherently low 

chemical reactivity of the surface of well-crystallized BNNTs that inhibits many 

traditional solution-based reactions. Untill now, BNNTs have been functionalized by 

inorganic, polymer and bio-materials. 
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Figure 19. High-resolution TEM image of a BNNT bundle fully coated with SnO2.  

 

Han et al. reported BNNT functionalization by their fully coverage with 

semiconducting SnO2 nanoparticles [100]. Bare BNNTs (i.e., unfunctionalized) were 

synthesized in a CNT substitution reaction followed by an oxidation treatment. The 

outside diameter of the BNNTs usually is less than 8 nm. The nanotubes are formed 

either as isolated units or as tubes arranged in aligned bundles; no attempt was made to 

separate these different configurations. Then, 1.2 g of tin (II) chloride was placed in 50 

mL of distilled H2O, followed by adding 0.8 mL of HCl (38%). After incorporating 15 

mg of BNNTs, this solution was sonicated for 5 min and then stirred for 1 h at room 

temperature. The formation of SnO2 is represented as 2SnCl2 + 2H2O + O2 → 2SnO2 + 

4HCl. Figure 19 shows a TEM image of the coated BN nanotube bundles. The uniform 

coating with an average thickness of about 3 nm, is composed of nanocrystalline particles 

of less than 5 nm. BN FNPs also were fully coated. Thus, the SnO2 coating layer follows 

the shape of the supporting nanoparticle template. XRD, electron-diffraction patterns, and 

EDS confirmed the composition of the nanoparticles is tetragonal SnO2 [100].  

Soluble multi-walled BNNTs were developed by amine-terminated oligomeric 

poly(ethylene glycol) surface groups [101]. Stearoyl chloride-functionalized BNNTs 

were formed via the interactions of COCl groups and amino groups on BNNT walls [102]. 

In contrast to the starting material (multi-walled BNNTs), which is insoluble in organic 

solvents, the functionalized BNNTs (f-BNNTs) are soluble in solvents such as 

chloroform, N,N-dimethylacetamide, tetrahydrofuran, N,N-dimethylformamide, acetone, 

toluene, and ethanol. The solubility of f-BNNTs in N,N-dimethylacetamide is > 0.5 gL-1. 

Very dilute BNNT solutions are almost totally transparent, and white concentrated BNNT 

solutions are visually non-scattering. No precipitation was observed when the sample was 



 30

kept over a long time under ambient conditions. The CL and UV/Vis absorption 

experiments suggest that long alkyl chains may induce drastic changes in the band 

structure of BNNTs. The effects of functionalization of BNNT with NH3 and four other 

aminofunctional groups, NH2CH3, NH2 CH2OCH3, NH2CH2COOH, and NH2COOH, 

were investigated theoretically using density functional calculations [103]. The authors 

found little changes in the electronic structure of BNNTs. However, the chemical 

reactivity of the tubes reportedly was enhanced owing to the –COOH amino groups. 

BNNTs were functionalized and solubilized by interaction with Lewis bases. [104], 

similarly, they were functionalized with amine groups via ammonia plasma irradiation 

[105].  

In addition to covalent functionalization, so-called noncovalent functionalization 

through wrapping BNNTs with a conjugated polymer, poly[m-phenylenevinylene-co-

(2,5-dioctoxyp-phenylenevinylene)] (PmPV) was accomplished [106]. The functionalized 

BNNTs were fully soluble in many solvents. The experimental process is sufficient facile 

to be scaled up. In a typical experimental run, 5 mg of PmPV was dissolved in 20 mL of 

chloroform, and then 5 mg of BNNTs was added into the solution. The mixture was 

sonicated over 2 h at room temperature, followed by centrifugation (2000 rpm) to remove 

insoluble materials. A homogeneous solution was obtained wherein no precipitation was 

observed during a long time keeping at ambient conditions. Dilute BNNT solution is 

highly transparent. The PmPV-wrapped BNNTs were fully soluble in chloroform, N, N-

dimethylacetamide, tetrahydrofuran, etc., whereas they were insoluble in water, ethanol, 

and similar solvents. TEM and CL characterization indicated the existence of strong π-π 

interactions between BNNTs and PmPV. Functionalization also may purify BNNTs [107] 

and, most importantly, tune their band structure [108].  
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Figure 20. (a) TEM image of ferritin molecules on a BNNT. (b) EDS spectrum of a ferritin-
covered BNNT. Note the characteristic Fe peak peculiar to ferritin; the Cu signal originates from 
a TEM grid. (c) Ferritin filled in a BNNT. (Reproduced with permission from Ref. 109. 
Copyright 2005 American Chemical Society) 

 

BNNTs do not absorb visible and infrared light; this property advantageously would 

protect biological molecules from overheating and damage as is the case in using CNTs. 

The natural affinity of a protein for BNNTs was demonstrated, i.e. proteins can be 

immobilized directly on BNNTs without using a coupling reagent. To immobilize the 

proteins, the dispersed BNNTs simply were stirred with dilute protein solutions for 

several hours. Figure 20a demonstrates ferritin molecules (dark contrast particles) 

immobilized on a BNNT and clearly illustrates the ~ 6 nm iron core of each ferritin 

molecule. The amorphous apoproteins appear around the cores. All BNNTs are coated by 

the ferritin molecules. EDS analyses verified the immobilization of ferritin on BNNTs; 

the Fe peaks appeared after immobilization (Figure 20b). In addition, some ferritin 

molecules were found inside BNNTs (Figure 20c), probably due to numerous open tip-

ends. To raise the efficiency of the immobilization process, 1-pyrenebutyric acid N-

hydroxysuccinimide ester (PAHE) functionalized BNNTs were utilized to anchor the 

ferritin protein. The BNNTs and PAHE were mixed and stirred for 2 h in an organic 

solvent, dimethylformamide (DMF); then the solution was filtered and repeatedly washed 

with DMF to remove excess reagent. A highly aromatic pyrenyl group in PAHE, with 
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known strong π-π interactions with the basal plane of graphite and sidewalls of CNTs, 

also was found to strongly interact with the sidewalls of BNNTs. Typically, BNNTs may 

have profound interactions with some chemicals via π-π stacking due to the electrical 

polarization phenomena induced by a BNNT’s broken symmetry. Thus, efficient 

immobilization may be based upon the formation of an amide bond via the nucleophilic 

substitution of N-hydroxysuccinimide by an amine group on the ferritin [109]. 

 

4. Porous BN and BN mesh 

Porous solids have applications ranging from adsorbents to purification chromatographic packing 

to support structures for catalytic processes. A wide variety of porous solids exist, including 

zeolites, pillared clays, porous polymeric solids, and porous carbon [110]. Among them, porous 

carbon, often called activated carbon, displays exceptional porosity, extended surface area, 

universal and adsorption capability, and a high degree of surface reactivity. In the broadest sense, 

activated carbon can be defined as an amorphous carbon-based material with a high degree of 

porosity and an extended inter-particulate surface area; often the microscopic structure can be 

visualized as stacks of flat aromatic sheets cross-linked randomly. Currently, it is the most 

popular and economic porous solid in use [111]. 

 h-BN, a material structurally closely related to graphite, has an attractive combination of 

chemical, thermal, and electrical properties. The utility of activated carbon suggests that an 

analogous “activated” BN exhibiting a high degree of porosity and an extended interparticulate 

surface area might be of scientific and economic importance. The nature of the individual B-N 

bonds introduces local polar character lacking in the carbon structure. Since polar sites are 

considered to improve adsorption, porous BN could be a good one. Conventionally produced film 

and particle forms of BN have low surface areas, rendering them relatively useless for adsorption 

applications [112]. So far, several routes have been suggested for synthesizing of porous BN.  

 

4.1 Direct pyrolyzing borazinic precursors  

Narula et al. prepared porous BN from poly(2, 4, 6-borazinylamine) with surface areas 

ranging from 30-50 m2/g for powders produced at 900 ºC [113]. BN aerogels formed by critical 

point drying of poly(2,4,6-borazinylamine) gels and heated to 1000 ºC exhibit low density, are 

highly porous, and have surface areas of ~400 m2/g [69]. Porous BN materials with surface areas 

of 437-712 m2/g also were generated using similar polymeric precursors [114-116]. One example 

of the methodology is as follows: A sample of (Me2NB)B2C2N3H3 (3.28 g, 17.0mmol)s was 
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dissolved in 120 mL of chlorobenzene at 23 ºC, to which (Me3-Si)2NH (2.74 g, 17.0 mmol) was 

added via syringe while stirring the solution. The mixture formed a gel that containing some of 

the solvent. The solvent was vacuum evaporated, and the remaining solid was vacuum-dried for 

24 h. The residue (3.12 g) was treated twice with 150 mL of NH3 (1) held at ~30 ºC and left for 4-

5 h with a slow stream of N2 passing through the flask. The NH3 (l) slowly evaporated under 

these conditions, during which the polymer dissolved in the NH3 (l). The resulting foamy residue 

(2.7 g) was vacuum-dried for 30 min. The formed polymer was pyrolyzed in vacuo at 800 ºC or 

1000 ºC in a horizontal tube furnace, with the polymer contained in a quartz or platinum crucibles 

inside a quartz tube. The porous BN materials thus produced can adsorb H2, O2, CO2, CO and 

CH4. Surface area and pore volume were maximized at pyrolysis temperatures of 800 ºC and 

essentially eliminated at 1200 ºC. These results indicate that the pore structure of polymer-

derived boron nitride is a function of both the precursor’s polymer structure and pyrolysis 

conditions [117, 118]. This demonstration of the ability to tailor BN’s pore structure and 

adsorption properties by controlling these parameters is an important advance in nonoxide pre-

ceramic polymer processing.  

 

4.2 Use of mesoporous molds  

Dibandjo et al. prepared porous BN by nanocasting a hexagonally ordered mesoporous 

carbon (CMK-3) or a cubic mesoporous carbon (CMK-8) with a molecular BN precursor [68, 117, 

118]. CMK-3 was prepared using SBA-15 silica as a template, and sucrose as a carbon source 

[117]. CMK-8 is synthesized by nanocasting Ia3d cubic silica (KIT-6) [68]. 

Tri(methylamino)borazine (MAB) was used as the BN precursor and prepared from 2,4,6-

trichloroborazine (HNBCl)3 (TCB), and methylamine. The material was infiltrated using 2 g of 

MAB per g of carbon. Then, a ceramization step is carried out under nitrogen at 1000 ºC, yielding 

a composite BN-C. The template is eliminated next via a hydrogenation reaction , leaving BN; 

this step entails thermal treatment under ammonia at 1000 ºC. The resulting XRD spectrum 

shows two peaks at 2θ = 26 º and 43 º, demonstrating the formation of a turbostatic phase of BN. 

A small-angle diffraction peak of BN appears at 2θ = 1.22 º that is attributed the (211) reflexion 

of a cubic I13d phase and the corresponding cell parameter, a = 17.7 nm. Mesoporous BN has a 

specific area of 820 m2/g, a mesoporous volume of 0.32 cm3/g and a pore size distribution 

centered on 4.7 nm in diameter. Similar experimental conditions were employed in preparing, 

hexagonal ordered mesoporous BN with a specific surface area of 540 m2/g, a mesoporous 

volume of 0.27 cm3/g, and a narrow pore-size distribution (center on 4.4 nm in diameter) starting 

with tri(methyl-amino)borazine as the BN source and CMK-3 mesoporous carbon as the template. 
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(Figure 21). This work demonstrates that cubic and hexagonal ordered mesostructure of CMK-8 

or CMK-3 is almost fully transferred to the BN replica [68].  

 
Figure 21. Representative transmission electron micrograph of the boron nitride replication taken 
with the incident beam parallel to the [010], and the corresponding Fourier diffractogram 
(Reproduced with permission from Ref. 68. Copyright 2006 ELSEVIER) 
 
4.3 Carbon-template substitution-reaction 
 

The synthesis routes described above for generating BN with enhanced porosity typically 

employ expensive and highly toxic borane-based molecular precursors, which limit their 

employment for high-volume production.  

An alternate method, carbon template substitution-reaction, is suitable for obtaining porous 

BN [119]. It was used to prepare BN and BxCyNz nanotubes [17, 39]. CNTs and activated carbon 

have high specific surface areas that reactant gases (such as boron oxide and nitrogen) readily can 

reach. Hence, based on such similarities, porous BN might well be formed using porous carbon as 

a template. Used porous carbon was obtained commercially from the Calgon company. The 

specific surface area, total pore volume, and average pore radius of the starting material was, 

respectively, 779.0 m2/g, 0.5465 cm3/g, and 14.03 Å. The substitution reaction was performed in 

a horizontal, high-temperature furnace. B2O3 powder in an open graphite crucible was covered 

with activated carbon and held in a flowing nitrogen atmosphere at 1580 °C for 45 min. Then, 

BxCyNz, the intermediate product, was collected from the bed of porous carbon and heated in air 

at 600 ºC for 30 min to remove remaining carbon and/or convert BxCyNz to pure BN [119]. 

Figure 22 shows TEM images for the starting material and its product. Figures 22a-c are 

images of activated carbon at successively higher magnification, while Figures 22d-f have 

corresponding results for the product, the BN material. At the 80 and 20 nm size scales, the BN-

based product is strikingly similar in morphology to the activated carbon template. The matrix of 
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both samples is a uniform, isotropic micro-texture. Subtle differences between the carbon starting 

material and the BN-based product are apparent at high magnification, as seen in comparing 

Figures 22c and 22f. Here the BN-based material shows slightly more “graphitization”, i.e., the 

degree of activation of the BN system appears less than that of the activated carbon template. 

Figure 22c reveals that the pores of the activated carbon to be mostly slit-shaped spaces between 

twisted aromatic sheets. Small amounts of graphitic ribbons are seen in Figure 24c. A fast Fourier 

transform (FFT) of the image in Figure 22c, shown as an inset, reveals broad fuzzy rings 

corresponding to the largely amorphous structure of the activated carbon. From the corresponding 

TEM image of Figure 22f, it is clear that the BN based product has more and larger crystalline 

ribbons than the starting activated carbon. The inset of Figure 22f is the FFT of the associated 

image that again evidences the fuzzy rings corresponding to significant amorphous structures of 

the activated BN product, although angular structures in the FFT suggest that amorphization is 

not as complete as in activated carbon. XRD measurements supported the conclusion that the BN 

product has more crystalline structure than the starting activated carbon. EELS spectra also were 

recorded during TEM characterization to confirm the stoichiometry of starting materials and 

products. Most of the porous structures in the products are pure BN. On the other hand, a 

minority of EELS spectra taken from some areas in them indicate the presence of B, N, and small 

amount of C. The specific surface area, total pore volume, and average pore radius of template-

derived activated BN are, respectively, 168 m2/g, 0.27 cm3/g, and 32.2 Å. 
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Figure 22. TEM images of starting activated carbon (a-c) and product activated BN (d-f). The 

insets in (c) and (f) show the FFT diffraction patterns of the corresponding high-resolution images 

(Reproduced with permission from Ref. 119. Copyright 2004 American Chemical Society) 

 

Terrones et al. used the same route to transfer spherical mesoporous MCM-48 carbon to 

spherical mesoporous BN (100-400 nm o.d.) with 290 m2/g. The porous BN spheres exhibit 

stable field emission properties at low-turn-on voltage (e.g., 1-1.3 V/µm) [120]. 

 

4.4 BN mesh 

A highly regular mesh of h-BN with a 3 nm periodicity and a 2 nm hole size was formed by 

self-assembly on a Rh(111) single crystalline surface. Two layers of mesh covered the surface 

uniformly after exposing the clean Rh surface to to borazine (HBNH)3. The two layers were 

offset. The formation of holes likely was driven by the lattice mismatch of the film and the Rh 

substrate. This regular nanostructure exhibited excellent thermal stability and serve as a good 

template to organize molecules, as was exemplified by the decoration of the mesh by C60 

molecules [121]. 

 
Figure 23. Constant-current STM images of the BN nanomesh formed by high-temperature 
decomposition of borazine on a Rh(111) surface. (A) Large-area survey image taken with a bias 
voltage of Vb =-1.0 V and a tunneling current of It = 2.5 nA. Two steps on the Rh (111) surface 
cross the image. The black features are defects in the mesh, one of which is shown with different 
contrast in the inset. Brighter spots might be related to Ar bubbles in the near-surface region of 
the substrate. (B) High-resolution image (–2.0 V and 1.0 nA) clearly showing the presence of two 
layers of mesh that are offset such as to cover most of the Rh(111)’s surface. (C) Cross-sectional 
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profile along the diagonal white line in (B), indicating the presence of four different height levels 
within the individual unit cells. (D) High-resolution image taken with tunneling conditions (–2.0 
V and 3.5 nA) that bring the tip closer to the surface. (E) Same as in (D) but with –2.0 V and 4.5 
nA, showing the contrast in the bottom mesh layer. (F) High-resolution image of a region of h-
BN nanomesh decorated by C60 molecules (–2.0 V and 1.5 nA). (G) Cross-sectional profile along 
the diagonal white line in (F), illustrating the occupancy (short arrow) or non-occupancy (long 
arrow) of the center hole sites by C60 molecules. (Reproduced with permission from Ref. 121. 
Copyright 2004 Advancing Science, Serving Society) 

 

An atomically clean Rh(111) surface was held at 1070 K and exposed to a borazine vapor 

pressure of 3×10-7 mbar inside an ultrahigh vacuum chamber. After exposure to 40 L (1 Langmuir 

= 10 -6 torrs) and consecutive cooling down to room temperature, scanning tunneling microscope 

(STM) images revealed a regular mesh structure (Fig. 23A). The B and N coverages on the 

Rh(111) surface were quantified in situ by x-ray photoelectron spectroscopy (XPS). At does of 

borazine between 40 and 360 L, a complete nanomesh film was produced and led to absolute 

coverages of between 1.5 and 1.75 MLs (i.e., the nanomesh contains about 1.5 BN units per 

surface Rh atom).  

According to low-energy electron diffraction (LEED) data, a hexagonal atomic lattice is 

deduced for the BN layer, with a lattice constant of 2.48 ± 0.05 Ǻ. The in-plane lattice constant of 

the hexagonal Rh (111) is 2.69 Å. The lattice mismatch on Rh(111) is large, and the weakly 

physisorbed h-BN layer appears to form with its native lattice constant of 2.50 Å. The superlattice 

spots around the principal spots indicate a periodicity of 32 ± 1 Å, corresponding to a supercell of 

12-by-12 Rh unit cells, or 13-by-13 h-BN unit cells. The LEED data thus would be consistent 

with the formation of a coincidence lattice or a Moire´ pattern, but the STM image (Fig. 23A) 

suggests that BN cells occupy only a portion of the superlattice unit cell. The STM image of Fig. 

23B shows a small area of perfect nanomesh. Inside each supercell, there are four distinct gray-

scale levels (see also the line scan in Fig. 23C). The hexagonal nanomesh consists of two atomic 

mesh layers with open apertures of 2.4 ± 0.2 nm in diameter in the outer layer, probably with 

slightly smaller ones in the inner layer. Mesh wires, 0.9 ± 0.2 nm wide, are formed by the atomic 

h-BN lattice. The periodicity of the mesh is 3.2 ± 0.2 nm, and the meshes of the two individual 

layers are offset such as to cover most of the underlying metal surface. The first h-BN layer lies 

essentially flat on the Rh(111), whereas the second one appears like a corrugated sheet that 

follows the topography of the first. Fig 1F shows a region of nanomesh after the deposition of 

roughly 1 ML of C60 molecules. The centers of the holes are either empty or occupied by one C60 

molecule, which is more clearly visible in the line profile of Fig 1G.   
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5. BN mono- or few-layer sheets  

 

Materials that have same dimensionality, but different numbers of layers also exhibit 

significantly diverse physical properties. The properties of single- or double-walled 

carbon nanotubes differ from those of from multi-walled ones. Graphene sheets, 

comprising one atom-thick 2D layers of sp2 -bonded carbon (mono-layer), and few-

graphite-layer sheets are emerging materials with unusual properties that are promising 

for nanoelectricals, including spintronics, because of the high mobility of their electrons 

at room-temperature. Charge transport in graphene substantially differs from that of 

conventional 2D electronic systems because of its linear-energy-dispersion relation near 

the charge- neutrality point (Dirac point) in the electronic-band structure [122-125]. 

Hitherto, only a few routes and some experiments were reported for synthesizing and 

characterizing BN mono- or few-layer sheets. These experiments are usually focusing on 

depositing mono-layer (ML) or few-layer sheets on atomic flat metal surfaces. Well-

ordered h-BN layers can be grown by the thermal decomposition of borazine (B3N3H6) 

on the surface of a transition metal, in most cases one with a hexagonal symmetry [121, 

126-129] or on a square lattice (Ni (100)) [130]. The layers weakly interact with the 

metal but are stable at high temperatures (up to 1000 K) and to air exposure. These 

important features reflect the strong lateral inter-atomic bonds that play a key role in the 

process of forming h-BN layers on different metal surfaces, but the geometry and the 

lattice constant of the substrate make every system unique. Ultra-thin insulating films 

weakly bonded to flat metal surfaces may offer interesting applications in constructing 

further microelectronic devices due to the abrupt change of the electronic structure at the 

interface. 

Lattice-matched Ni (111) often is chosen as a substrate for depositing of ML h-BN 

because the small compressive lattice mismatch of +0.4% between the two systems 

favors the formation of commensurate layers. Ordered and flat terraces, one ML thick, 

occur over a larger area [131-133]. These syntheses usually are performed in an ultra-

high vacuum (UHV) chambers. Auwärter et al. demonstrated one methodology: Ni(111) 

single crystals were cleaned by exposing them to repeated cycles of Ar+ bombardment 

(0.8 kV) to 30 L O2 and subsequent annealing to 1000 K [133]. The sample’s cleanliness 



 39

was verified by XPS and/or by STM. Subsequently, the Ni(111) surface was held at 1070 

K and exposed to borazine that reacts under hydrogen to form a ML of stoichiometric h-

BN. Once the first ML is complete, the reaction rate drops by more than two orders-of-

magnitude. Accordingly, perfect ML of h-BN on Ni(111) can be prepared.  

Fig. 24(a) shows STM pictures of the surface after the formation of a h-BN layer on 

Ni(111). It displays a large area topography scan (1 nA, +100 mV) of atomically flat 

terraces separated by steps of about 2 Ǻ high; the h-BN layers grow flat and perfect. The 

Ni(111) and the h-BN on Ni(111) surfaces can be distinguished further by their different 

behavior towards residual gases or metal vapor. In Fig. 24b is a picture with atomic 

resolution from a h-BN layer on Ni(111); it was recorded at constant height with a W tip 

at +4.8 mV bias voltage. Two hexagonal Bravais lattices are apparent that form a 

honeycomb pattern. The observed lattice constant of 2.5±0.1 Ǻ corresponds to that of the 

Ni(111) substrate (2.49 Ǻ ). These results represent a well-ordered surface with two 

distinct atomic species [133].  

 
Figure 24. STM pictures of a h-BN layer on Ni(111). (a) Large area topography scan showing 
atomically flat terraces separated by atomic steps. (b) The atomically resolved picture clearly 
reveals two hexagonal lattices with a lattice constant of 2.5±0.1 A° forming a honeycomb pattern. 
(Reproduced with permission from Ref. 133. Copyright 2008 ELSEVIER 1999).  

 

For h-BN films on Rh (111), the large tensile lattice-mismatch of ~ 6.7% between the 

over-layer and the substrate leads to the formation of a bilayer nanomesh with a 

periodicity of 32 ± 2 Ǻ [122].  

Recently, 2D h-BN sheets with few atomic-layers (more than 5 layers) were obtained 

using a micromechanical cleavage method [134].  Layers of h-BN can be peeled off with 
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adhesive tape, attached to a 300 nm thick SiO2 substrate. h-BN powders of grade AC6004 

(Momentive Performance Materials, Inc.), with an average crystal size of about 10 µm, 

were used as starting h-BN crystals. AFM shows the thinnest region of the BN flakes is 

3.5 nm thick, and since any water adsorbed between the sample and substrate contributes 

to the measured thickness, the number of layers is ten, at the most. TEM images show 

seven parallel dark lines, giving a clear signature of the number of BN layers in the 

thinnest region. Because the height of this region is 3.5 nm, measured by AFM, 

apparently there is a roughly 1 nm thick layer of adsorbate between the sheet and 

substrate. The thickest region measures roughly 80 nm [135].  

2D-BN sheets with mono and few layers are obtained via a chemical-solution-derived 

method starting from single-crystalline h-BN. In the process, small amount of BN 

crystals were sonicated in an organic solution that breaks them up, separating the loose 

single crystals of BN into mono- or few-layers sheets [136].  

 
Figure 25 (a) High-resolution TEM image of a BN sheet with 2 layers; (b) high-resolution TEM image of a 
BN sheet with 6 layers with a Morie´ pattern.   

 

Figure 25(a) shows a 2-layered BN sheet. The fringe contrast at the edge indicates the 

number of layers. Figure 25(b) is another BN sheet with six layers; here, the sheet’s 

folding axis is off the [110] direction, causing the folded sheet to rotate with respect to 

the basal sheet. The HRTEM exhibits a Morie´ (interference) pattern with a spacing of 

about 1.05 nm (Fig 25 (b)).   

BN sheets can be generated with different numbers of layers, e.g., single, double, and 

triple. The bandgap of single layer BN sheet was theoretically calculated as ~ 4.5 eV and 

6.0 eV by local density approximation (LDA) and GW approximation (GWA) methods, 
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respectively [137]. This finding signifies that a single-layer BN sheet retains the 

insulating feature of BN bulk.  

 

6 Physical properties of h-BN  

 
Though h-BN and h-C have the same crystal structure with very close cell parameters, 

their electronic properties are very distinct. The electric properties of h-C can be metallic, 

semiconducting, or semi-metallic, depending on dimensionality and size, whereas h-BN 

typically is an insulator whose bandgap reportedly is 5.3-5.9 eV, except for  the band-gap 

narrowing seen in ultra-thin nanotubes (diameter < 0.8 nm)  resulting from  sp3 (π) 

hybridization induced by high curvature [8, 138, 139]. Multi-walled BN exhibits strong 

photoluminescence at room temperature. A temporal analysis of the PL signals reveals an 

underlying charge recombination process dominated by fast recombination occurring 

within individual BN sheets. The slower decay process is attributed to the charge transfer 

and recombination across different BN sheets and shows behavior that is consistent with 

the predicted spatially indirect band gap of multi-walled BNNTs [140]. The direct 

bandgap of both natural and isotopic BNNTs, which were prepared by a metal-assisted 

CVD methods (50, 51) and CNT substitution reaction (14, 37), was determined by 

cathodoluminescences (CL) spectra to be 5.38 eV, independent of the nanotube’s size and 

isotope substitution (Figure 26) [49, 141]. At lower energies, several radiative transitions 

were observed and an isotope effect was revealed. In particular, we confirmed that the 

rich CL spectra between 3.0 eV – 4.2 eV reflect a phonon-electron coupling mechanism, 

which is characterized by a radiative transition at 4.09 eV. FTIR spectra and density 

functional theory (DFT) calculations suggest that those radiative transitions in BNNTs 

might be generated by the replacement of some nitrogen atoms with oxygen [49].  
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Figure 26 Cathodoluminescences spectra taken from thick natural BN and 10BNNTs 

 

BN materials display for better thermal, chemical and irradiation stability than its C 

counterparts. Thus, BN usage is preferable for device applications wherein a high-

temperature environment or a chemical active and/or hazardous environment is expected 

[37, 143].  

CNTs have shown excellent thermal conductivity. Theoretical calculations and 

experimental results show that thermal conductivity of BNNTs is comparable to that of 

CNTs [144-147].   

The stress of BNNT was measured as ~ 1.1-1.3 TPa. Thus, BNNTs might be the 

stiffest insulating fibers ever known [148, 149]. Theoretical calculations demonstrated 

that despite a slightly lower elastic modulus of a single-walled BNNT compared to a 

single-walled CNT, the resistance of the former to thermal degradation can surpass that 

of latter 150].  

 
7. Applications 

 

h-BN has many novel advantageous physical properties, such as electrical insulation, 

high thermal and chemical stability, high thermal conductivity, and excellent mechanical 

properties, all of which entail applications in many fields.  

 

7.1. Pharmaceutical table lubricant 
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There is a wide range of lubricants available for pharmaceutical applications. Some of the 

commonly used tablet lubricants are magnesium stearate (MGST), stearic acid (STAC), 

glycerol esters of fatty acids, dl leucine and sodium benzoate [151]. A solid oral dosage 

product must be processed with other excipients, such as “lubricants”, which decrease 

friction at the interface between a tablet’s surface and the die wall during ejection to 

reduce wear on punches and dies, prevent sticking to punch’s faces, improve the fluidity 

and filling properties and the manufacturing efficiency of solid preparations [152]. An 

ideal lubricant should reduce shear strength at the interface between the tablet and die 

wall, and the coefficient of friction, and hence, the frictional force at a given load. It 

should be non-toxic, chemically inert, unaffected by process variables, have no adverse 

effects on the finished dosage form, and be consistent from batch to batch [153].  

h-BN is an interesting compound with the potential of being incorporated as a 

lubricant into tablet formulations since it is soft, lubricious, highly heat stable and an inert 

material that will not react with other pharmaceutical excipients during manufacturing. It 

is considered safe as a 99.9% high purity material. The first application of h-BN as a 

table lubricant was carried out by Turkoglu et al. in 2005 [154]. They calculated the 

lowest punch ejection force by comparing the ejection force of control batches with those 

of lubricant-containing ones and evaluated h-BN as a new tablet lubricant by comparing 

its properties with MGST, STAC, and glyceryl behenate (COMP). h-BN was as effective 

as MGST in reducing the LPEF at 0.5–1%. Like all conventional lubricants, the higher 

the concentration of h-BN, the lower the mechanical properties of tablets because of its 

hydrophobic character [155]. h-BN had no significant effect on the tablet’s properties. 

Moreover, comparison of other parameters, such as effect on disintegration time, and the 

tablet’s crushing strength and tablet tensile strength, demonstrated that h-BN was better 

than MGST. Their results showed h-BN can be used as a new lubricant in this technology.  

 

7.2. Cosmetic materials 

 

Cosmetic compositions usually contain components, such as metallic oxides, to 

confer opacity to the composition. These components may be excellent for evening-out 

skin tone, but may not be very flattering to certain types of skin. Furthermore, due to their 
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tendency to accumulate in furrows, these components actually may emphasize deeper 

wrinkles and flaws rather than hide them. Previously, "soft focus" types of powders were 

used in cosmetic compositions in an attempt to hide skin flaws. These materials are 

spherical powders that give skin light-scattering properties. Spherical silica, polyethylene, 

or polymethylmethacrylate (PMMA) operate on the principle of diffusing light incident 

on the face in such a way that the overall appearance of the skin is blurred in the viewer's 

eye, thereby minimizing the ability to detect lines and wrinkles [156]. 

Since BN is transparent, it has been used as a raw powder for cosmetics, primarily as 

a particulate material in very small quantities ranging from 0.1-70 wt. % depending on 

the type of cosmetic, i.e., eye-shadows, lipsticks, foundation make-up, powder, blushes, 

shampoos, and conditioners. BN fillers and a host of other fillers were used in cosmetic 

compositions, such as spherical silica, polymethylmethacrylate, titanium dioxide, walnut 

shell powder, and mixtures thereof. These fillers may be surface-treated with lecithin, 

amino acids, mineral oil, silicone oil, or various other agents, either alone or in 

combination, to coat the powder’s surface, so rendering the particles hydrophobic. BN 

also has been employed in diverse cosmetic compositions, from providing sun protection, 

reducing the shine from oily skin, for cooling (due to its high thermal conductivity), and 

affording smoothness. The size of BN filler employed in the composition of the prior art 

ranges from 20 micrometers to sub-micrometers. The collapsibility of the spherical BN 

particles impacts an excellent luster to the cosmetic composition. Sub-micron BN powder, 

in a formulation such as a foundation, surprisingly creates the illusion of substantially 

flawless skin, by blurring the appearance of wrinkles and lines on the wearer's skin while 

also noticeably covering color blemishes, spots, and defects [157].  

 

7.3. 10BNNTs for cancer therapy and diagnostics 

 

Radiation therapy is well-established in treating cancers, and generally involves the 

localized delivery of radiation to the site of a tumor. Such radiation therapy relies on the 

free radical disruption of cellular DNA to destroy cancer cells in a targeted manner. 

Radiation may come from a machine outside the body or from radioactive materials 

implanted in the body near cancer cells. Systemic radiation therapy uses a radioactive 
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substance, such as a radiolabeled monoclonal antibody that circulates throughout the 

body, and entails carefully selecting material comprising radioactive isotopes able to 

deliver the desired type and amount of radiation. Radioisotopes also find use as medical 

diagnostic tools. Boron Neutron Capture Therapy (BNCT) is an experimental approach to 

cancer treatment that is based on a dual-step technique: Accumulation of a boron-

containing compound within a tumor and subsequent exposure to a beam of low-energy 

neutrons directed at the boron-containing tumor. Subjecting boron atoms to low-energy 

neutron radiation causes the boron nuclei to disintegrate into alpha particles and lithium 

isotopes with a kinetic energy of 2.5 MeV; the generated energy in malignant cells 

suffices to destroy them without damaging the neighboring cells. Buzatu et al. proposed 

using isotopic 10BN nanostructures in BNCT. Antibody species are attached to the BN 

nanostructures to enable them to target tumors. Once such BN nanostructure-antibody 

composite species are near a tumor, they can be activated with transdermal neutrons, so 

that the 10B atoms emit alpha particles that can destroy cancerous cells [158].  

 

7.4. BNNT composites  

Because of their exceptional morphological, electrical, thermal, mechanical and optical 

(transparent for visible and infrared light) properties, BNNTs make particular promising 

reinforcement materials in composites with ceramics or polymer matrices. Key issues to 

address include the good dispersion of the nanotubes, the control of the nanotube/matrix 

bonding, and the densification of bulk composites and thin films.  

A barium calcium alumosilicate glass with a 4 wt. % of BNNT fraction was 

reinforced by 90% and 35% for ambient-temperature fracture strength and fracture 

toughness. Microscopic examinations of the fracture surfaces revealed that BNNTs were 

responsible for these improvements [159]. Common engineering ceramics, Al2O3 and 

Si3N4, loaded with 2.5–5.0 wt% BNNT fractions both became much more deformable at 

high temperatures. For example, Al2O3 with 2.5 wt% of BNNT possessed a ca. 4.5 times 

lower yield stress and a higher true strain-to-fracture than the untreated ceramic. Its 

parameters of high-temperature super-plasticity were notably improved. By contrast, 

control experiments on BN micro-powders added to these ceramics at the same fractions 

showed no analogous positive effects [160]. 
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Figure 27. (a) Fully transparent polymeric films containing various fractions of BNNTs in 
polystyrene matrices (b) TEM image of numerous straight BNNTs randomly and evenly 
dispersed in a polymer; and, (c) the histograms demonstrating an increase in the elastic modulus 
(under tensile tests) of polystyrene films after adding variable BNNT fractions dissolved in 
different solvents. (Reproduced with permission from Ref. 160. Copyright 2006 Materials 
Research Society and 2007 Wiley-VCH)   

 

Soluble BNNTs were obtained through noncovalent tube wrapping with a polymer or 

covalent functionalization. The availability of such solutions allowed researchers to 

prepare high-quality, self-organized BNNT-reinforced polymer films based on 

polyaniline [161] and polystyrene [162]. Tensile tests on them indicated that the elastic 

modulus of the films was improved by ca. 21% when just a ca. 1 wt% soluble BNNT 

fraction was employed, as illustrated in Figure 27. These BNNT composite films had 

better stability to oxidation and slightly lowered glass transition temperatures than the 

untreated polymers [160]. 

 
7. 5. Gas adsorption 

Increasing concerns about energy and the environmental concerns call for a hydrogen 

economy that entails its safe and efficient production, transportation, conversion, and 

storage [163, 164]. Hydrogen storage has attracted much attention. Gas adsorption is 

inherently safe and is potentially more energy-efficient than metal hydrides, compressed 

gas and liquid storage. The main challenge in this field is to discover materials with a 



 47

reversible high hydrogen sorption capacity (e.g., the DOE’s benchmark goal of 6 wt %) 

at ambient temperature and pressure. CNTs have been considered as promising materials 

for hydrogen storage. Although this potential is controversial and the adsorption 

mechanism in these carbon-related materials remains vague, it was demonstrated that the 

hydrogen storage capacity highly correlates with the surface accessible to hydrogen [164-

166]. In many respects, BNNTs are an analogue to CNTs. Due to their dissimilar local 

electronic structure, the B-N bond has ionic character that may induce an extra dipole 

moment. Therefore, the stronger (de-) hydriding properties of BN are expected to be 

better than those of graphite [167].  

Wang et al. reported that nanostructured h-BN can absorb a concentration of 

hydrogen up to 2.6 wt% after mechanically milling h-BN powders for 80 h under a 

hydrogen pressure of 1.0 MPa. Furthermore, in addition to hydrogen desorption starting 

at about 570 K, nitrogen desorption also was detected at about 700 K. There was no re-

crystallization, at least below 1173 K. Thus, nanostructured h-BN possesses the ability to 

trap (absorb) hydrogen during milling, and desorb it at elevated temperatures. More 

importantly, its (de)hydriding properties depend not only on the defective nanostructure 

itself, but also on the local electronic structure near the specific defects. This information 

offers a constructive perspective for designing non-carbon materials for hydrogen storage 

[168]. 

BNNTs may absorb hydrogen at a level equal to, or even exceeding, that of CNTs. 

Multi-walled BNNTs [169] and nanofibers (with open-ended edge layers) [170] were 

found to adsorb 1.8 - 2.9 wt% of hydrogen under ca. 10 MPa at room temperature. 

Theoretical studies show that BN can be good hydrogen-storage medium; binding energy 

of hydrogen on BNNTs is increased by as much as 40% compared to that on CNTs, 

which is attributed to heteropolar bonding in BN [171]. This study suggests that the 

binding energy of hydrogen can be systematically increased for sp2-like bonding 

nanostructure materials by modifying the sp2 bonding. Possibly layered materials of ionic 

character, more ionic than BN, with a moderate substitutional doping might have 

substantially large binding energy, enough for storing hydrogen at room temperatures. An 

increase in specific surface area (SSA) for BNNTs may be a solution for increasing the 

operating temperature and capacity for hydrogen storage. The calculated binding energy 
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of hydrogen on activated BNNTs (those having well-developed pore structures) reached 

as much as 22 kJ mol–1 and thus lies in the right range for room-temperature hydrogen 

storage. The most active pores for hydrogen binding were those terminated by oxygen 

atoms. Additional theoretical calculations by Wu et al. [172] demonstrated that the 

adsorption energy and site can be modified by the radial deformation. When the 

deformation is small, H prefers to adsorb on the boron atom, which creates an acceptor 

state in the gap. However, when it is large enough, H preferentially adsorbs on the 

nitrogen atom in the high curvature region of the radially deformed BNNT and creates a 

donor state. 

BNNTs, made by CVD method using LaNi5/B mixture and nickel powders, might 

store hydrogen by an electrochemical method, though capacity is low [173]. The 

hydrogen desorption of non-electrochemical recombination in cyclic voltammograms, 

which is considered as the slow reaction at BNNTs, suggests the possible existence of 

strong chemisorption of hydrogen, and it may lead to the lower discharge capacity of 

BNNTs.  

 

7.6. Electrical nano-insulators 

The electric insulating feature of BNNTs offers a promising way to prepare 

electrically insulated nanocables with embedded metallic or semiconducting nanowires. 

Such cables might be utilized in downsized electrical devices and complex multi-cable 

circuits [76-95]. BNNTs also can enhance the field emission character of filled 

semiconductors.  

 

7.7 Ultraviolet Lasers and LED 

 

GaN and related semiconductors have been used commercially to fabricate high-power 

and blue-light laser devices [174-176]. Demand is increasing for compact ultraviolet 

lasers with even shorter wavelengths as they are essential in applications such as storage, 

photocatalysts, sterilization, ophthalmic surgery and nanosurgery. h-BN is a promising 

material for such devices because it has a direct bandgap in the ultraviolet region. Pure h-

BN single-crystals made by a high-pressure flux method shows a stable dominant 
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luminescence peak and a series of s-like excitation absorption bands around 215 nm, 

proving it to be a direct-bandgap material [177]. The laser-emission spectra for the BN 

single crystal sample with well-cleaved surfaces reveal room-temperature ultraviolet 

lasing at 215 nm. The longitudinal mode is enhanced, even at a flux density of 0.2 

mAcm-2 and an electron-beam accelerating voltage of 20 kV. This signifies that the 

threshold power is lower than 4 Wcm-2, which is of the same order as for optical lasing 

for ZnO [178].  Kubota et al. developed a new synthesis route to prepare high-purity h-

BN crystals at atmospheric pressure using a nickel-molybdenum solvent. The h-BN 

crystals so obtained also emitted intense 215 nm luminescence at room temperature [179].   

 

7. 8. BN as support for catalysts 

The popular materials used as supports of catalytically active phases are oxides, such as 

alumina, silica, and mixture of silica-alumina. To improve stability and catalytically 

activity, other materials having high thermal conductivity and thermal stability tentatively 

might be employed as supports of catalytically active phases. Besides these features, BN 

has other attributes, such as high surface area, hydrophobic (thus preventing moisture 

condensation on its surface) and weak chemical support-active species interaction that 

leads to it being a possible good catalyst. Wu et al. showed that porous BN supported Pt-

Sn catalysts were efficient catalysts for the selective hydrogenation of α, β-unsaturated 

aldehyde into unsaturated alcohol [180]. Although butyraldehyde and butanol in crotonal-

dehyde hydrogenation are favorable based on thermodynamic equilibrium, the product 

selectivity can be shifted to crotyl alcohol by controlling the reaction kinetics on the Pt-

Sn/BN catalysts. The yield of crotyl alcohol was as high as 38% on Pt-Sn(0.75)/BN at 80 

ºC. Moreover, crotyl alcohol selectivity reached 80% at a conversion of 10% near 40 ºC. 

Pd loaded -porous BN was proven to be a catalyst that could be used under hard 

conditions, like methane oxidation or hydrocarbon cracking without exhibiting any 

decrease in activity [181].  

 

8. Concluding remarks 
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h-BN has been the focus of much research for many decades. BNNTs, porous BN, mono 

and few-layers BN have received much more attention during recent years. Although h-

BN is less popular than to its analogous h-C, it exhibits some advanced properties and 

promising applications; thus; further efforts are desired to realize its potential. This field 

faces many challenges, such as the synthesis of pure single-walled BNNTs, well aligned 

BNNTs, porous BN with very high specific surface area, separated mono-layer BN sheets. 

Further explorations of the novel physical properties and new applications of these h-BN 

nanostructures should be encouraged.  
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