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Abstract 

For heavy ion inertial fusion application, a combination of a laser ion source and 

direct plasma injection scheme into an RFQ is proposed. The combination might provide 

more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned 

feasibility test with moderate current is also discussed. 

Introduction 

An inertial fusion scenario driven by ion beams requires intense beam within 

short pulse duration. The required ion beam parameters are beyond what we have 

achieved in the high energy physics accelerator field. Among the various demanded 

developments for heavy ion inertial fusion (HIF), an ion source study is one of the key 

issues. We started to explore the feasibility of high current low emittance low charge 

state heavy ion beam production from a laser ion source (LIS). 

In 2000 we started study LIS to provide high current highly charged ion beams for 

nuclear physics and high energy physics machines. The LIS has two major advantages 

over other types of ion sources. The first feature is a high plasma density. The LIS creates 

plasma from dense solid material, while other types of ion sources normally start from 

gas. A single laser shot from a conventional tabletop laser can generate a large number of 

ions. For example, a 2 J Nd-YAG laser shot generates about 2 x 1014 ions from an 

aluminum target[ 11. The second advantage is that the laser-produced plasma has initial 

expanding velocity normal to the target. We can transport the laser-generated ions in a 



neutralized plasma state. To utilize these two advantages, we proposed a new method of 

combined laser ion production and injection called “direct plasma injection scheme 

(DPIS).” Figure 1 shows a typical DPIS setup. 

A solid target is placed in an electrically isolated enclosure which is directly connected to 

a radio frequency quadrupole (RFQ) linear accelerator. The target is irradiated by laser 

shots and the induced plasmas are pushed out from the enclosure into the RFQ cavity. 

Inside the RFQ cavity, the ions from the neutral laser plasma are extracted by the electric 

field and are immediately captured by the RF quadrupole focusing force. As a result, the 

high density ion beam is efficiently accelerated through the RFQ. We demonstrated 

production of more than 60 mA of highly charged carbon and aluminum beams using the 

DPIS[2]. We believe that the DPIS is an effective approach also for the HIF, since a 

space charge problem of the low charge ion beam is more serious. Here we investigate 

the possibility to use LIS with DPIS for the HIF. 

Low charge state heavy ion beam production. 

Generally, a highly charged state ion beam is required to obtain efficient 

acceleration, because the entire accelerator complex becomes small and the construction 

cost is less. On the.other hand, the HIF scenario requires a low charge state of heavy ions 

that is indispensable to make a deposition of high ion beam power on a target pellet to 

minimize the space charge repulsion force at a final irradiation stage. This is a unique 

requirement of the HIF accelerator and it makes beam handling more difficult especially 



in low energy region. While LIS has been developed to yield highly charged ions, we are 

investigating low charge low temperature beam production. 

A laser system used for the LIS has typically generates ion pulses with duration 

from 5 to 100 ns. At the very beginning of the laser pulse, a solid target starts to be 

heated and its vapor to be ionized. The successive laser pulse heats the electrons in the 

plasma and then a step-wise ionization process occurs within the laser pulse period. To 

obtain highly charged ions, the laser power needs to be concentrated in a small volume 

and a high electron temperature is required. However, to produce low charge state ions, 

the electron temperature should be controlled carefully to avoid excessive ionizations. 

Figure 2 shows a typical ion current density detected by a Faraday cup on a 

distance of 1 m from a Ta target. The output laser power was set to 500 mJ with a second 

harmonics crystal (532 nm) and the laser pulse duration was 6.2 ns (FWHM). The laser 

beam had initial diameter of 17 mm and was focused by a convex lens onto the Ta target 

surface. The focused laser image was 3.7 mm in diameter and the estimated laser power 

density was 7.6~10' W/cm2. Due to a slow expanding velocity of the plasma and wide 

velocity spread, the observed ion pulse duration was 42 ps which is much longer than a 

typical width of the highly charge ion beam pulse. We varied the position of the focusing 

lens to control the laser power density. The result is shown in Fig. 3. In this measurement, 

the laser power was fixed at 500 mJ. In this experiment, the lower power density was 

achieved by enlarging the spot size. Below the lo8 W/cm2 of the power density, the ion 

current was not observed. By increasing the power density, the ion yield increases up to 

value of power density of lo9 W/cm2. Above this value and for the same total laser power 

the ion yield decreases since the irradiated area on the target decreases. At power density 



around lo9 W/cm2 the singly charged ions occupy more than 95 % of the total ion charge 

of the beam and the rest was mostly contributed by ions with charge state 2+. To obtain 

maximum yield efficiency, the laser power density was set tolo’ W/cm2. We found that 

the optimum range of laser power density for this application is 10’ - 1 O9 W/cm2. Other 

metal species showed almost the same behavior [3]. 

We also measured the target material consumption. The same area on the Ta 

target was exposed to 9000 laser shots. Since the laser spot was large the only the surface 

layers of the target were consumed. We estimate that 9000 shots reduced the weight of 

the target by 0.01 11 g . The power density and the spot diameter were 7 . 6 ~ 1 0 ~  W/cm2 and 

4.3 mm respectively. 

RFQ for low charge ion beams 

RFQ linear accelerator was introduced in early 80’ and is commonly used as a 

first stage accelerator in the world. Many electrostatic injector systems have been 

replaced by RFQs. One of great advantages of an RFQ is its strong transverse focusing 

force. Once a beam is captured by a transverse force, modulation pattern on the RFQ 

electrodes produces accelerating force in axial direction and the beam is bunched 

gradually to form an acceleration bucket. In this report, we focus on method to capture 

intense beams only in transverse direction, so the effect of the electrode modulation is 

neglected. For bunching and acceleration of the beam, further discussion will be given in 

future articles. 



We can derive a preliminary space charge limit in an RFQ channel for a 

continuous cylindrical uniform ion beam. A potential distribution for an ideal static 

electric quadrupole field can be expressed as, 

x 2  -y2) U=-( V 
270 

U, V and ro are potential at point with coordinates x,y, voltage on the electrode surface 

and bore radius of the channel. In the RFQ the field is oscillating and the electric RF field 

in x direction is expressed as E,. The motion of an ion can be described as follows. 

d2x qVx 
dt2 mv, 

O=- + y c o s c L ) t  

m and q are mass and charge of the ion. 

Adopting the uniform cylindrical beam with radius a, a space charge force is written as 

Here, I, so, p and yare total current of the beam, permittivity of the vacuum, velocity ratio 

and relativistic factor. 

Now the motion equation includes the space charge force; 

This differential equation is known as Mathieu’s equation. Condition of beam 

equilibrium in the channel is balance of the space charge term and the RF focusing term. 

The field and ion motion in y plane is described similarly. ~ 



Here we assume our DPIS-RFQ which was built for Carbon beam acceleration. 

The parameters of the RFQ are summarized in Table 1. 

Assuming Tal' beam with radius of 5 mm, the maximum current in the RFQ was 

computed as 2.2 mA. Even for zero current ion beam in the RFQ, the betatron oscillation 

can not reach one full cycle (tune = 0.8) within the length of the RFQ. The charge to mass 

ratio of the Tal' beam is 1/181 and for the 100 MHz RFQ it is too small. Figure 4 shows 

calculated trajectories in a 10 MHz RFQ which has the same parameters as a 100 MHz 

RFQ except the frequency. The dotted line shows a zero current case and the solid line 

shows a 220 mA case which is close to the space charge limit in this condition. The 

derived current limit is only for the transverse confinement. To accelerate the intense 

beam, the ion beam has to be bunched and then the bunched ions should be concentrated 

around the accelerating RF phase. To accommodate high current beam, a low frequency 

RFQ is needed. 

Planned experiment using a current setup in BNL. 

To confirm the space charge limit of the RFQ and beam injection efficiency, we 

are planning to use our existing RFQ and LIS. First we will test Ta beam and then will try 

other species. The planned laser parameters are shown in Table 2. The laser power is 2.0 

J and the aperture, which is placed between the LIS and RFQ, has inner diameter 6 mm. 

The extracted beam shapes were calculated by IGUN [4] and the results are summarized 

in Table 3. The assumed extraction voltage was 100 kV and all the values in the table are 

in RMS. Below 200 mA of the current, conversing beams are extracted and the emittaces 



are larger. In case of 200 mA current, yis very large. This means that the diverging angle 

of the beam is steep. The optimum current will be between 100 mA and 200 mA. The 

detailed preparation for the experiment is in progress. 

Summary 

A combination of DPIS and low charge LIS can be applied to the HIF scenario. A laser 

ion source can provide intense low charge state heavy ion beams by carefully selecting a 

laser power density on a target material. The preferable power density is between 10' 

W/cm2 and lo9 W/cm2. A space charge limit of our RFQ was estimated with a simplified 

model and the capability of capturing intense beam by a low frequency RFQ was shown. 

We are planning to test real beam in the near future. 
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Fig 1 A laser ion source with direct plasma injection scheme. 
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Fig. 2 Ion current at 1 m away from a Ta target. 



Fig. 3 Total charge yield and laser power density. 
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Fig. 4 A general solution of the Mathieu equation which represents 10 MHz RFQ. 



Table 1: Parameters of the DPIS RFQ 
Frequency 
Total length 

100 MHz 
2.0 m 

I Anerture I 6.55 mm I 
Inter vane voltage 
qlm 

120 kV 
4/12 

Current (mA at peak) 

Pulse width (pm, FWHM) 
Laser power density (Wlcm2) 

Number of particles (within FWHM) 

10 100 200 
2 . 7 ~ 1 0 ~  4.7~10' 6.4~10' 
72 51 43 
1 . 2 ~ 1 0 ' ~  9 . 8 ~ 1 0 ' ~  1 . 7 ~ 1 0 ' ~  

Current (mA) 
10 
100 
200 

a p (mdmrad) y (mdadlmm) E (mm mrad) 
-0.0772 0.0077 130 25.8 
-8.82 0.13 610 26.7 
-107 1.4 8600 3.4 


