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Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale
covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin
of this oscillating structure. Specifically, we analyze the case of neutron reactions on 56Fe, for which total
cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70
MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth Vv by
its expected uncertainty ±∆Vv . Inspecting the effect of this perturbation on the partial wave cross sections we
found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other
hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and
d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves.
Similar considerations can be extended for the third minimum, although it can be also explained in terms of
the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of
these minima for practical applications as well as the implications of this work for the uncertainties in total and
absorption cross sections.

I. INTRODUCTION

Excitation curves of neutron total cross sections often show
broad and well-defined maxima and minima in the energy re-
gion above 0.1 MeV. This effect is experimentally observed up
to 100 MeV and has been explained theoretically by various
optical-model calculations with varying degrees of success.
This nuclear phenomenon is seen as the result of the interfer-
ence between the part of the neutron wave which has traversed
the nucleus with the part which has gone around. The posi-
tions of the broad maxima depend on the size of nucleus and
their shifting is related to the parameters of the real potential
well rather than to the depth of the imaginary potential well.

In our large scale covariance calculations [1, 2] neutron to-
tal cross section uncertainties were derived from the perturba-
tion of optical model parameters using a spherical potential.
The most striking features found in the relative uncertainties
of the total cross section were the presence of distinct minima
related to the oscillations in the cross sections. The presence
of these minima at certain energies reflects our perfect knowl-
edge of the cross sections calculated with a specific nuclear
model. Therefore, experimental data can be used to estimate
the nuclear model uncertainty via the relation

(δσmod)2 = [σmod(Ê)− σexp(Ê)]2 , (1)

where σmod(Ê) and σexp(Ê) are respectively the model and
the experimental cross sections calculated at the energies Ê
where the minima occur.

The purpose of this paper is to investigate the physical basis
of the oscillating structure in the total cross section uncertain-
ties. We start the analysis in the framework of a global spher-
ical optical potential. Some general properties of the potential
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are shown by perturbing the real volume depth Vv and the nu-
clear radius rv . We then inspect the effect of this perturbation
on the partial wave cross sections.

The paper is organized as follows. In Section II, we de-
scribe the methodology used to calculate the cross section un-
certainties, while Sections III and IV discuss, respectively, the
sensitivity analysis and the results. Our findings are summa-
rized in Section V.

II. METHODOLOGY

Our calculations are based on the coupled-channels code
ECIS95 [3], using bash scripts written to extract efficiently the
calculated cross sections and the related S-matrix elements.
For this work, we used optical-model calculations based on
the recent global potential of Koning and Delaroche [4], which
was based on an extensive set of experimental data for spher-
ical nuclei (or nearly spherical ones). The energy as well as
other dependences, such as a mass-dependence, of potential
parameters that were employed by those authors are more
flexible than those used in previous similar analyzes. This
feature engenders a reasonable description of total and elas-
tic cross sections, as well as elastic angular distributions for
spherical nuclei across the periodic table. The energy range
extends well above non-relativistic energies and we adopt 200
MeV as the upper energy since this is the limit of Koning-
Delaroche optical potential.

To better describe the two basic model parameters the real
volume depth, Vv , and the nuclear radius, rv , considered in
our calculations and the sensitivity analysis on the scattering
matrix, we briefly outline the nuclear optical potential, the S-
matrix formalism, and the definition of cross section uncer-
tainties.



III CROSS SECTION SENSITIVITY B S-matrix formalism

A. Spherical optical potential

The optical model for nucleon-nucleus interaction is the
starting ingredient in calculating cross sections. This model
allows us to determine neutron elastic scattering as well as ab-
sorption cross sections. The spherical optical model potential
is usually defined as

U(r, E) = −Vv(r, E) − iWv(r,E)− iWs(r, E) +

Vso(r, E)` · s + iWso(r,E)` · s .

(2)

Here, all components are separated into energy-dependent
well depths and energy-independent radial parts according to

Vv = Vv(E)f(r,Rv, av) ,

Wv = Wv(E)f(r,Rv, av) ,

Ws = −4asWs(E)
d
dr

f(r,Rs, as) , (3)

Vso = Vso(E)
(
~

mπc

)2 1
r

d
dr

f(r,Rso, aso) ,

Wso = Wso(E)
(
~

mπc

)2 1
r

d
dr

f(r,Rso, aso) ,

where the indices v, s, and so refer, respectively, to volume-
central, surface-central, and spin-orbit potential. The form-
factor is given by the frequently used Woods-Saxon shape

f(r,Ri, ai) = {1 + exp[(r −Ri)/ai]}−1, (4)

where the geometric parameters are the radius Ri = riA
1/3

and the diffuseness, ai, with A being the atomic mass number.

B. S-matrix formalism

The optical potential allows us to compute the energy-
averaged S-matrix, or equivalently the complex phase shifts
η±` . These are related by

S±` (E) = e2iη±` (E) = α±` (E) eiβ±` (E) , (5)

where α±` , β±` are real. The superscript ± refers to those ele-
ments where the possible values of ` for a given j are j±1/2.
In term of these and with E ∝ 1/λ2, the total and absorption
cross sections are given by

σtot(E) = 2πλ2
+∞∑

`=0

(` + 1)(1− Re[S+
` ]) + `(1− Re[S−` ]) ,

σabs(E) = πλ2
+∞∑

`=0

(` + 1)(1− |S+
` |2) + `(1− |S−` |2) ,

respectively. The elastic cross section can be obtained by sub-
tracting σabs from the total cross section.

C. Cross section uncertainties

The uncertainty of any cross section σ due to uncertainties
in a set of parameters, p = {p1, . . . , pµ, . . . , pν , . . . }, is given
in linear approximation by the square root of

〈(δσ)2〉 =
∑

µ

∑
ν

∂σ

∂pµ
〈δpµ δpν〉 ∂σ

∂pν
, (6)

where 〈δpµ δpν〉 is an element of the covariance matrix of the
parameters, and where the sensitivity coefficients, ∂σ/∂pµ,
are to be calculated with the best estimates of pµ. In our
work the sensitivity coefficients were numerically computed
as first-order partial derivatives assuming a linear dependence
of the parameters on the cross sections for small perturbations
±∆pµ.

III. CROSS SECTION SENSITIVITY

We carried out sensitivity calculations by varying several
of the optical model parameters. In this paper, we concentrate
on the results obtained for the uncertainties in the depth and
radius of the real volume potential. Both Vv and rv contribute
significantly to the results for total and absorption (or absorp-
tion) cross sections, and we will show their correlation, which
is significant.

We quantify the effect of the perturbation of the model pa-
rameter p on the cross section via the dimensionless ratio

S(E, p) =
σ(E, p+)− σ(E, p−)

σ(E, p)
, (7)

where σ(E, p) is the cross section calculated for the central
value of p, while

σ(E, p±) = σ(E; p±∆p) (8)

are the cross sections calculated with the value of the parame-
ter p perturbed by the quantity ±∆p. A very similar analysis
for dimensionless sensitivity parameters was recently carried
out by Fessler et al. [5].

As an example, in Fig. 1, we discuss neutron reactions on
56Fe and the response of the (n,tot) and (n,abs) cross sections
to the variation of the volume nuclear radius (rv) and the real
volume depth (Vv) of the Koning-Delaroche optical poten-
tial [4]. There are remarkably different levels of sensitivity
between two reactions, and strong energy dependences. All
sensitivities change sign several times between 1 keV and 200
MeV. The immediate consequence of this behavior is that at
these zero-crossing points the parameter uncertainties (even if
arbitrarily large) will not contribute to uncertainty in the cross
section.

The sensitivities plotted in Fig. 1 for (n,tot) depict the
strong correlation between rv and Vv (continuous black and
red lines) as well as the principal dependence of the structure
of the total cross sections, i.e., Vvr2

v above ∼ 10 MeV. Fig. 1
also shows the cross section sensitivities of (n,abs). We note
that the parameter correlation is still seen although it is limited
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IV CALCULATIONS AND RESULTS
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FIG. 1: Relative sensitivity of the 56Fe+n total (continuous lines)
and absorption (dashed lines) cross section to ±5% perturbation of
volume nuclear radius, rv , and the real volume depth, Vv .

to a few energy intervals. Finally, as shown in Fig. 2, it ap-
pears clear that the zero-crossing points in (n,tot) and (n,abs)
are uncoupled.
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FIG. 2: Relative sensitive of the 56Fe+n total and absorption cross
section to ±5% perturbation of the real volume depth, Vv . It is also
shown that zero-crossing points (or nodes) in (n,tot) and (n,abs) are
clearly uncoupled.

IV. CALCULATIONS AND RESULTS

A. Nuclei from 27Al to 210Bi

We calculated the neutron total and absorption cross section
uncertainties for 648 isotopes, defined by the list of the Euro-
pean Activation Files (EAF), at 54 incident energies between

1 keV and 200 MeV, by perturbing the real volume depth, Vv .
In the calculations we used the Koning-Delaroche global opti-
cal potential and we confirm our previous results [1, 2] about
the oscillating structure of the cross section uncertainties.

To present the overall picture of our results, we plotted con-
tours in a single figure of the full set of nuclei over the en-
tire range of incident energies studied. These plots show rel-
ative cross section uncertainties represented by different col-
ors, from 0% shown in black to 100% shown in yellow. Using
these plots, we depict in Figs. 3-4 the relative cross section
uncertainties for the considered reaction types. The horizontal
axis refers to the mass numbers of the complete list of materi-
als, while the vertical axis to all incident neutron energies.

For both total and absorption cross sections, exceptionally
high uncertainties are found at incident energies below 100
keV for nuclei between Cs and Sm and for materials in the
region of Tantalum. This effect was recently observed in
our large scale covariance calculations [1, 2] and might be
traced to the structure observed in the s- and/or d-wave neu-
tron strength functions. We note that we have used the spher-
ical optical potential model for all nuclei considered, includ-
ing the deformed ones. For the two reaction channels, we also
note very similar patterns characterized by regions where the
uncertainties are particularly small. This effect triggered our
analysis and it will be discussed in detail for 56Fe in the next
subsection.
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FIG. 3: Relative uncertainties for neutron total cross sections on 648
materials obtained with the Koning-Delaroche spherical optical po-
tential.

B. Analysis of 56Fe+n

We focus on 56Fe+n where the relative cross section uncer-
tainties are obtained by perturbing the real volume depth of the
Koning-Delaroche global optical potential. We start our dis-
cussion by showing the effect of this perturbation on the cross
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V DISCUSSION AND CONCLUSIONS B Analysis of 56Fe+n
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FIG. 4: Relative uncertainties for neutron absorption cross sections
on 648 materials obtained with the Koning-Delaroche spherical op-
tical potential.

sections, then we investigate the origin of the zero-crossing
points in the relative cross section uncertainties.

Fig. 5 shows the response of the total cross sections for 56Fe
to the variation of the optical parameter Vv by the quantity
∆Vv = ±5%. In particular, we point to the presence of dis-
tinct crossing points at about 0.1, 1.1, 5, and 25 MeV. Fig. 5
also displays the total cross sections calculated with the cen-
tral value of Vv (dashed line) along with selected experimen-
tal data [6, 7]. The oscillating structure in σ(E, Vv) as well
as in σ(E, V ±

v ) results from the interference of the incident
neutron wave traversing the nucleus with the wave which was
scattered. This quantum-mechanical feature is naturally in-
corporated in the optical model. The widths and the positions
of the cross section humps are directly related to the volume
depth of the real potential well, Vv , and the nuclear radius, rv .

The relative sensitivity defined by Eq. (7) can be written in
terms of the partial wave sensitivities,

S(E, Vv) =
1
σ

+∞∑

`=0

S̃`(E, Vv) , (9)

where, for total cross section,

S̃` ∝ (` + 1) {Re[S+
` (V −

v )− S+
` (V +

v )]} +

` {Re[S−` (V −
v )− S−` (V +

v )]} (10)

is related to S-matrix elements via the Eqs. (5-6). Fig. 6 ex-
hibits the effect of S` on 56Fe(n,tot) for different partial waves.
As expected, in the low-energy range where we found the first
minimum (at 0.1 MeV), the relative sensitivity results exclu-
sively from the contribution of the s-wave. Differently, at in-
termediate energies above 1 MeV, other contributions are ob-
served. Fig. 6 shows that the minimum at 1.1 MeV is the
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FIG. 5: Cross sections of 56Fe+n obtained by perturbing the real
volume depth, Vv , by ±5% (continuous red and black lines, respec-
tively). Also show are cross sections calculated for the best esti-
mate of Vv (dashed black line) compared with selected experimental
data [6, 7].

result of the interplay among s-, p-, and d-waves. Namely,
the change in the s-wave happens to be counterbalanced by
changes in the p- and d-waves. Similar considerations can be
extended to the third minimum at 5 MeV where the d-wave is
replaced by the f-wave (positive) contribution. This minimum
can be also interpreted by another effect. In fact, at this and
higher energies the presence of the minima can be explained
in terms of the single-phase model, or nuclear Ramsauer ef-
fect [8–10]. The nuclear Ramsauer model is a semi-classical
model where all partial waves are assumed to have the same
phase shifts. This phase shift corresponds to an average of the
actual phase shifts from ` = 0 to the maximum given by the
kinematics. The model yields an effective S-matrix,

Seff(E) = e2iη(E) = α(E) eiβ(E) , (11)

where 0 < α < 1 generally reflects both the absorption and
the averaging of various phase shifts, and β represents the rel-
ative phase between the wave that passes through the nucleus
and the waves that go around. Therefore, the total cross sec-
tion is given by,

σtot = 2π(R + λ)2(1− Re[Seff]) , (12)

where R is the nuclear radius and λ is the reduced wavelength
of the neutron.

V. DISCUSSION AND CONCLUSIONS

We produced a very comprehensive set of neutron cross
section uncertainties for total and absorption on 648 materi-
als from 27Al to 210Bi in the energy range between 1 keV
and 200 MeV using the Koning-Delaroche global spherical
optical potential. These results confirm, in a broader view,
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FIG. 6: Relative sensitivity of the 56Fe+n total cross section to ±5%
perturbation of the real volume depth, Vv . Also shown is the effect
of this perturbation on the partial wave sensitivities.

previous notions about the structure of the uncertainties plot-
ted as a function of the incident energy and mass number. In
particular, we note patterns very similar to those observed in
our recent model-based covariance calculations. The uncer-
tainties were derived perturbing the real volume depth and the
analysis of partial wave cross sections has been carried out
in detail for 56Fe. In this example, the presence of minima
showing up in the total cross sections uncertainties at energies
below a few MeV arises from different reasons. Except for
the minimum at 0.1 MeV, which is exclusively due to the con-
tribution of the s-wave, the minima up to 5 MeV appear to be
the result of the interplay between different partial waves. At
higher energies up to 70 MeV, the presence of two remaining
minima can be explained in terms of the single-phase model
(Ramsauer effect).

The calculated uncertainty minima, if confirmed, would
have impact on the theoretical and experimental nuclear
physics and could, in principle, influence precision of the nu-

clear data affecting nuclear applications. One should be able
to identify narrow energy regions in which total and absorp-
tion cross sections can be predicted with particularly high pre-
cision and reliability. Such regions would be perfect for defin-
ing standards and for calibrating experimental setups or nor-
malizing relative measurements. Precise experiments carried
out in the minima could be used to investigate intrinsic model
deficiencies since effect of the uncertainties on the model pa-
rameters would be largely suppressed. On the other hand, the
experimentalist should avoid these energy ranges when deriv-
ing parameters of the optical potential.

Thus, can cross sections be accurately known a priori? Tak-
ing into account the quantum-mechanical origin of the dis-
cussed structure and well proven applicability of the optical
model, we expect that the uncertainty minima are a natural
consequence of quantum-mechanical scattering and that there
are regions in which cross sections can be known precisely,
even if respective measurements are not available. More stud-
ies are needed, however, to affirm such conclusion. First of
all, one has to demonstrate that the observed structure is uni-
versal, i.e., it shows up with any optical potential. If this is
the case, how stable are the positions of the minima? Finally,
will the same arguments hold for deformed nuclei realistically
treated with the coupled-channel approach rather than with the
spherical optical model? We are carrying out a more extended
studies in order to address these questions.
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