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THE PERFORMANCE OF A FAST CLOSED ORBIT FEEDBACK SYSTEM
WITH COMBINED FAST AND SLOW CORRECTORS*

L.H.Yu, S. Krinsky, O.Singh, F.Willeke, NSLSII, Brookhaven National Laboratory
Upton, NY11973, US.A..

Abstract

For NSLSII closed orbit feedback system, in order to
limit the noise caused by digital step changes of the
power supplies in the feedback system, the angular kick
corresponding to the last bit of the power supplies for the
fast correctors must be smaller than 3 nrad [1]. On the
other hand, to carry out closed orbit alignment or orbit
correction after a long term drift, we need strong
comrectors with 0.8 mrad kick strength [1]. In order to
avoid the requirement of correctors with both large
strength and very small minimum step size, we consider
separate sets of slow correctors with large strength and
fast correctors with smaller maximum strength. In order
to avoid fast and slow feedback systems working in
paraliel, and aveid the possible interaction between two
feedback systems, we consider the possibility of using
only one fast feedback system with slow correctors
periodically removing the DC components of the fast
correctors so that the DC components in fast feedback
system do not accumulate to reach saturation even after a
large long term drift of the closed orbit motion. We report
on simulation of the performance of such a combined
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Figure 1: Layout of the orbit feedback system.
systermn for NSLSII in this paper.

SYSTEM TRANSFER FUNCTION AND bDC
PERFORMANCE

In fig.1 we give the lattice positions of fast correctors
and BPMs in the closed orbit feedback system and the
slow correctors. In Fig. 2 we give schematics of the fast
feedback system with slow correctors. R is the response
matrix of the ring to fast correctors, Ry is the BPM part of
R, R, is the ring’s response 1o slow correctors.

By singular value decomposition [2], Re=UWV
The frequency transfer function of BPMs, fast correctors,
the PID feedback circuit, and slow correctors are denoted
by Fg, Fv, -Fp, and F,, respectively, while the slow
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corrector strength (angular kick) is t.. When the feedback
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Figure 2: The fast feedback system with slow correctors.
loop is open, the BPM signals are given by:
B0 = RBQdeﬂ + ‘R aen yerrB + anoise !

Where y., is the quads center motion, Yep is the BPM
motion, Y 18 the BPM electronic noise, & . represent
angular kicks from stray field errors, while Rpg and
R, are the response matrices. between BPM and quads
and stray field errors sources, and Q is the quads KL

value. From fig. 2 we see that when the feedback loop is
closed, we have the BPMs signal:

157
B = R (-F,VF.W UFyp)+ RpsFts + Vi
where Rgg is the response matrix between BPMs and
slow correctors. Now we assume Fg, Fv, -Fp are the same

for all channels, so they are just numbers, not matrices,
and can be factored out and written as F= Fg Fy Fp.

Using [2], with Vv =0U = 1, and
RYW T =UWVYW U =UT, we g
(1+ FUDYy, = Ry Fylg + ygo. SinceUU #1 is a

non-diagonal matrix not diagonal, instead of solving for

yg we solve for the feedback signal f= wUF 2 Vg

with the result (1+F)f=f{,+W71[7FBRBSFSfS,

where f; is the feedback signal when the feedback loop is
open. Thus when the feedback loop is closed and the slow
correctors are off, we have f=f/(1+F), while the fast
corrector strength is =-VFp f/(14+F). After averaging
over long time the DC components of t are used as the set
points of slow correctors: t—V f{,G/(1+G), where G
=F{0} is the DC value of F. With a simple derivation we
have the fast corrector strength when the slow correctors
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For DC, Fp, Fy =1, and Fe=G>>1, and (1-G/(1+G))
approaches 0 for large G, so the first term in the
parenthesis is small. For the second term in the
parenthesis, when the slow correctors are close to the
corresponding fast correctors, Ry is nearly equal to Ra,
hence it is also very small. As result the fast correctors
strength are largely reduced when the slow correctors are
on. With these set points, after simple derivation, we
get
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Figure 4: There are three
poles on the complex
plane of s, when T =0.

Figure 5: There are
infinite number of poles
on the complex plane of
s, when 7=0.12ms

This is the residual orbit. The second terms in the two
parentheses are the time dependent response of the fast
feedback system to the noise and random motion of
magnets and the response to the turning on of the slow
correctors when their set points are sent in respectively.
When we replace F by G in this expression we obtain the
DC components of the residual orbit:

y= {yu —(]TGG-)-RVWW]UJ}B“J"F[RSIS —%RVW_!URB‘;!S] *
In the lower part of Fig.3 we plot the DC horizontal
residual orbit. Here we assume the floor of the storage
ring has a random long term drift with RMS value of
2 g4 m, and there is a random floor vibration of 0.2 #m

around the storage and BPM noise of 0.2 £ m and the plot

is the RMS values obtained with 400 random samples.
The red line is the residual orbit when fast feedback is on
but with fast correctors only, while the green line is with
both fast and slow correctors on. The Blue dots are the
strengths of the slow correctors while the green ones are
for the fast correctors when both fast and slow correctors
are on. If the slow correctors are turned off, then the fast
corrector strengths would be represented by the blue dots.
It is clear that the fast corrector strength is largely reduced
when the slow correctors take on the set points of the fast
correctors and the residual orbit is also slightly improved.
If there is no further long term drift in the floor, and the
set points of the fast correctors, after averaging over long
time, are shifted to the slow correctors again, the residual
strengths of the fast correctors would be further reduced.
The residual strength of the fast feedback is not zero
because of the 0.2 £ m floor vibration and BPM noise.

The result for vertical orbit is similar. The temporal
response of the fast feedback system is determined by the
factor F/(14F)= Fg Fy e /(1+ Fg Fy Fp ), while the
response to the impulse of the slow correctors is

determined by FsF/(1+F). We have Fg =0 /(s T & ).Fs
=@, /(s +@,), Fv=e " a, (s +a, jrespectively, with
poles at o= 27-2kHz,
a,=27-1.5kHz & =2m-3Hz, the delay in the
power supplies including the effect of vacuum chamber
next to the fast correctors is ¥=0.2ms, and a trial
feedback PID transfer function with pole position of at
ap=27rx2Hz and gain G=100: Fr =G, /s +a,),

where s is the Laplace transform variable of time t.

STEP FUNCTION RESPONSE

To obtain the response of the fast feedback system to a
step function change of error field, we need to calculate
the Laplace transform of

F FEF Gazapone ™ .

(1+F) 1+F,FF, (s+a,fs+a,)s+a, )+ Gazopae™
When delay is =0, the denominator is a third order
polynomial, hence the three poles of the transfer function
are easily obtained from the cubic equation
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Figure 6: Equivalent circuit for response function.

(s +ay s+, Ns +a, )+ Gayapo, =0, With the

three poles knowr, the inverse Laplace transform is easily
caleulated using Mellin’s inverse integral by loop integral
around the three poles, which is simply the residue of the
poles. However, we realized that when 7 #0, there are



infinite number of poles. To show this we plot the zeros
of the real part and the imaginary part of the denominator
on the complex plane of variable s in Fig. 4. The crossing
points of the zero line of the real part and imaginary part
of the denominator D are the poles. There are 3 poles
when T =0. However there infinite number of poles when
7=0.12ms, as shown in Fig5. In addition to this
difficulty, our attempis to sum over the residue of these
poles failed because the sum is found to be divergent.
Hence we need a different method than Mellin’s inverse
integral. For this we write the response function as:

¥y, = 1+FE —ue g, (l+e™g,) ,

where # is the Laplace transform of step function
representing the sudden turn on of a DC noise source,

while g, the transfer function F when? =0, which is
easily obtained by residue of the Mellin’s integral with
three poles &g, ,&p .

The equivalent circuit diagram for y; is given in Fig. 6.

It s clear from this we havey, =4g.¥,
— —57 o o o o
y,=e’ y2 ,and y, = u—y, .S0we have
0.2 0.2m% P 0.2ms
o PIDpote 313 HZ M pIn pole at 2.8 Hz PiD pole at 1.7 Hz
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Flgure 7: Step function response of fast feedback
system.

yy=u-y,=u-y,e" =u—-g,ye"
This leads to y, = # /(1+ g,e™°") . And hence indeed
=g ul(l+ge”

To obtain the Laplace transform of ys, we write the
Laplace transform of the 3 equations based Fig.6:

7O = gtt-r @),

y3(£) =y, (¢ =7)and y, (£) = u(f) — p3(£) . These
leads to integral equation

v =u@®)- [ golt—7 =) ()dr" . This

equation can easily be solved numerically by iteratiorn:
from time 0 to T, y:=0, so y1(t}=u(t)=1, thus the integral
in right can be calculated with t from 7 totime 27 .

In turm, the result can be used the same way fo
calculated till =3 7 . Continue this way, clearly we can
calculate y;(t) to any time t. Then, y, is obtained by yi(t)
= 1- y(t). The step function response f(t)=ys(t) for
7 =0.2ms, with a, =3Hz, 2.5Hz, and 1.7Hz is plotted in

we have J, ) , as we expected.

Fig. 7 showing when & ,=1.7lz, the system reaches its

DC level in shortest time (2ms). When &, =3Hz there is

an overshoot of nearly 20% and it takes 3ms to reach final
value.

STEP FUNCTION RESPONSE OF FAST
FEEDBACK SYSTEM COMBINED WITH
SLOW CORRECTORS

With the Laplace transform of F/(1+F) obtained, we
can combine this result with the performance of the
system derived in page 2 for the residual orbit expressed
by y to obtain its temporal behavior when the slow
correctors are turned on for any specific random error of
orbit drift. In Fig. 8 we plot the temporal response to the
turn on of the slow correctors after thereisa2 m long
term drift, random vibration and BPM noise are not
included in this plot. At the center of the long straight
section we can see the orbit position overshoots then
return {o its final value after about 10ms.

At the lnngstraight center

1. At the short straight center

Figure 8: Temporal response to tum on of slow
correctors at first long and short straight sections in one
specific random example.

Naotice that in this example we turn on the slow correctors
to the set points of those fast correctors mext to them
without sending signals to the fast correctors at the same
time. Clearly if we also send opposite signals to the fast
correctors synchronously to remove the DC set points of
the fast correctors, the temporal change of the orbit will
be reduced nearly half to about 2 £ m from about 4 £ m.

To eliminate this sudden change of orbit clearly we need
to shift the set points of fast comrectors to slow ones
before the floor drift to far less than 0.2 ¢/ m, the

tolerance on the floor motion. Since our estimate based on
the ATL law is that the floor motion around the ring
within a day is about 4 ¢ m, we infer from ATL law that

if the change of settings in the slow correctors is much
more frequent than 3 minutes, the transient caused by this
change will be much less than 0.2 #/m, and hence is

negligible, We remark that the simulation in figure 3 is
carried out assuming random floor motion, if we simulate
the floor motion according to ATL law, the feedback
system would be much more efficient in suppression of
the orbit motion because the floor motion within short
distance is correlated. In addition, the relevant length in
applying ATL law is more close to beam line length than
the whole ring. Hence our estimate is a conservative one.
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