
 

 

 

 

 
 

BNL-81770-2008-IR 
 

 

 

 

 

 

NSLS-II: Control of Dynamic Aperture 
 

 

 

Authored by: 
Johan Bengtsson 

 

 

 

October 31, 2008 

 

 

Brookhaven National Laboratory 
P.O. Box 5000 

Upton, NY 11973-5000 
www.bnl.gov 

 

   

 

 

 

 

 

 
 

 

 

 
Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under 

Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the 

manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, 

irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others 

to do so, for United States Government purposes. 

 

December 8, 2008 11.5/3913e021.doc                                                 1                                                              (09/2005) 



 

 

DISCLAIMER 

 
This report was prepared as an account of work sponsored by an agency of the 

United States Government.  Neither the United States Government nor any 

agency thereof, nor any of their employees, nor any of their contractors, 

subcontractors, or their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, completeness, or any 

third party’s use or the results of such use of any information, apparatus, product, 

or process disclosed, or represents that its use would not infringe privately owned 

rights. Reference herein to any specific commercial product, process, or service 

by trade name, trademark, manufacturer, or otherwise, does not necessarily 

constitute or imply its endorsement, recommendation, or favoring by the United 

States Government or any agency thereof or its contractors or subcontractors.  

The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

December 8, 2008 2



Table of Contents

1.0 Summary..................................................................................................................4

2.0 Background..............................................................................................................8

3.0 Theoretical Framework............................................................................................9

4.0 Control of the Nonlinear Dynamics.......................................................................12
4.1 Control of the Resonance Terms by Symmetry .................................................................12
4.2 The Origin of 2nd Order Chromaticity ..............................................................................15
4.3 Control of 2nd Order Chromaticity by Sextupole Placement............................................21
4.4 Control of Resonance- and Tune Shift Terms....................................................................24
4.5 Properties of the “Solution Space” ....................................................................................25

5.0 Proof-of-Concept ...................................................................................................33
5.1 First Working Point: ..........................................................................................................34
5.2 Control of Impact from Damping Wigglers.......................................................................37
5.3 Impact of IVUs ..................................................................................................................41
5.4 Impact of EPUs..................................................................................................................41
5.5 Second Working Point: .....................................................................................................43
5.6 Third Working Point: ........................................................................................................44
5.7 Validation of the Damping Wiggler Pole Width ................................................................45
5.8 Impact of Non-Zero (linear) Chromaticity ........................................................................46
5.9 Fourth Working Point: ......................................................................................................49

6.0 Impact of Higher Order Systematic Multipoles.....................................................50

7.0 Conclusions............................................................................................................52

Appendix A:Summary of Engineering Tolerances............................................................53
References......................................................................................................................... 56
December 8, 2008 3



1.0  Summary
1. Analytical framework and a control theory approach:

We elaborate on the underlying physics for the analytic framework and principles, 
originally developed to control the SLS dynamics1 [3], which we have adopted and 
improved for the NSLS-II. In particular, how come brute force numerical minimiza-
tions with these formula, corresponding to a highly overdetermined nonlinear sys-
tem of algebraic equations (up to 2nd order) for the sextupole strengths converge to 
similar “solutions” (in a least square sense) for the resonance- and tune shift terms. 
And, even though the choice of governing equations is based on intuition, rather 
than a theory2, it does provide a systematic approach3 to control the medium term 

stability (  turns) for a strongly nonlinear periodic Hamiltonian system. Actually, 
the former is to be expected, given the: complete treatment of the sextupole effects 
to 2nd order in the sextupole strength, symmetry of the NSLS-II lattice, using a cap 
for the sextupole strength, and number of sextupole families. Basically, since the 
governing algebraic system is highly over constrained and the 1st order terms 
largely controlled by the lattice symmetry, the only significant difference of the 
obtained “solutions” for the sextupole strengths is the magnitude of the residual 2nd 
order terms, i.e., the size of the tune footprint for the bare4 lattice; ultimately the 
limiting factor for the on- and off momentum dynamic aperture.

2. Analysis of the sextupole response matrix and guideline for number of chro-
matic knobs: 

We evaluate the controllability of the resonance- and tune shift terms by the sextu-
pole families by analyzing the Jacobian (“sextupole response matrix”) of the nonlin-
ear algebraic system. We also explain the origin of the considerable 2nd order 
dispersion and how it drives the 2nd order horizontal chromaticity. We then elabo-
rate on why it should5 be controlled directly; by a third chromatic sextupole family6. 
Roughly, to avoid interference with the (highly over constrained7) geometric fami-
lies which would compromise the residual tune footprint. Intuitively (considering 
the limiting factors for modern synchrotron light sources) it may appear as a “no-
brainer”, by observing the momentum dependence of the linear optics (i.e., a “wob-
bly foundation” for an elaborate sextupole scheme) see Figs. 6-8 and the resulting 

1. Eventually prompting a redesign from a 7-Bend-Achromat [1] to a Triple-Bend-Achromat [2].
2. Reflecting the fact that there is no general theory for stability for nonlinear dynamics.
3. The approach has only one free parameter, i.e., the relative weight for resonance vs. tune shift terms. 

Also, since predictions of the nonlinear performance depends critically on the optics for a real ring, we 
are taking a heuristic approach to the size of the tune footprint for stable beam.

4. Without engineering tolerances and insertion devices but with damping wiggler; since these are an inte-
gral part of the design.

5. If adhering to a design philosophy.
6. Which were compromised when accommodating the Three-Pole-Wigglers. 
7. 16 constraints for 7 parameters.
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residual horizontal chromaticity, see Fig. 24. For a quantitative, analytic approach 
see Eqs. (15)-(18).

3. Selection of geometric families:

We analyze the “solution space” of the governing algebraic system. In particular, 
while the resonances up to 2nd order in sextupole strength (13 terms) can be can-
celled over a wide range of working points with 6 geometric sextupole families, ade-
quate control of the amplitude dependent tune shift (7 terms), nonlinear chromaticity 
(4 terms), and cross terms (6 terms), requires 3 chromatic families.

4. Illustrate sensitivity to sextupole placement:

By an explicit example, we show how the sextupole placement (by ~10 cm changes) 
can be used to control the nonlinear chromatic effects (originating from the linear 
optics); for a given working point. The sensitivity to such small changes is explained 
by Figs. 3-4, and Eq. (15); something to be considered. Regardless, when the work-
ing point or optics is changed, during the life cycle of the facility, the configuration 
is no longer optimal, unless an adequate number of knobs can be accommodated. 
Note, retrofits as compared to upgrades, by not being an integral part of the original 
design and philosophy, are in general neither cost effective nor of high performance.

5. Sextupole optimization to achieve a realistic tune footprint for robust operation 
for 4 different working points:

As a somewhat conservative guideline, we are using ~0.1 as the tune footprint for 
stable beam in a modern, medium energy, third generation synchrotron light source 
with high chromaticity per cell (e.g. SLS and SOLEIL), and no crossing of reso-
nances up to 2nd order in the sextupole strength (very conservative). For a robust 
design, we are therefore striving for a significantly smaller footprint for the bare lat-
tice (~0.05), i.e., to provide leeway for the contribution from Damping Wigglers 
(DWs), insertion devices, systematic higher multipole errors, and perturbations of 
the linear optics. We demonstrate how this can be done by a sextupole scheme with 
3 chromatic and 6 geometric (reduced from 7) sextupole families; for 4 different 
working points. Conservative or not, the balance (risk) is: ease of commissioning 
(“turn it on and then push the limits” or “struggle from the start”) the robustness of 
the top-up injection process (e.g. radiation losses) and the Touscheck life time (top-
up rate) for the main ring at full capacity.

6. Illustrate how the dynamic aperture is bounded by the 1st and 2nd order sextu-
polar resonances for 4 different working points:

We show that the on- and off-momentum dynamic aperture is determined by the 
tune footprint surrounded by the 1st and 2nd order sextupolar resonances. There-
fore, it is ultimately limited by the symmetry of the lattice and smoothness of the 
linear optics, i.e., the peak values of the optics functions and momentum depen-
dence. We obtain about ±15 mm and ±2.5%, respectively for a realistic lattice; for 4 
somewhat arbitrarily chosen working points.
December 8, 2008 5



7. Control impact of linear effects from DWs by a hybrid local/global approach:

We present a hybrid approach to control the impact on the optics from DWs, i.e., 
local matching of the optics and global correction of the tune shift. Due to the cor-
rection algorithm based on the inverted1 “quadrupole response matrix” (Jacobian of 
the governing algebraic system) implemented from the start [4], this is simply a mat-
ter of parameter choice. It also straightforward to implement on-line.

8. Control nonlinear impact of DWs by re-optimizing sextupoles: 

As a refinement, we also show how the nonlinear dynamics can be restored; by 
including the leading order nonlinear effects from the DWs and optics correction to 
the sextupole optimization. As a result, the DWs are now transparent.

9. Impact of relaxing constraints on linear chromaticity:

While a small tune footprint is an assurance for robust top-up injection and adequate 
Touschek life time, there is a strong desire to operate at large positive chromaticities 
(+4) to control the head-tail instability driven by wake fields. While it is known 
from existing medium energy third generation light sources that this strongly affects 
the Touschek life time. However, due to overly simplified models the absolute 
impact has not been well predicted. Regardless, assuming that adequate control of 
the NSLS-II dynamics have been established (from first principles), we then back 
off from zero chromaticity. Since this increases the off-momentum tune footprint 
considerable, we also evaluate how this could be reduced by introducing higher 
order chromatic multipoles (a future upgrade).

10.Trade-offs from introduction of TPW on the tune footprint:

The introduction of Three-Pole-Wigglers (TPWs) to the lattice has, as a side-effect, 
increased the peak values of the beta functions and dispersion. To avoid increasing 
them even further, the number of chromatic sextupole families have been compro-
mised from 3 to 2, i.e., only the linear chromaticity can now be controlled. Since the 

second order effects of sextupoles scales with , this has increased the tune foot-
print for the bare lattice. It has also increased the sensitivity to systematic higher 
order multipole components (e.g. , , and ) from the quadrupoles in the dis-

persive regions (due to terms scaling with  and ).

11.Nota bene on notation:

A note on order. Throughout this text we are using order to refer to analytic expres-
sions for the effects of multipoles (Lie generators), rather than the order of the 
phase-space terms in the expanded equation of motions from which they originate. 
In particular, the 1st order effects (~ ) from sextupoles originates from third order 

terms in the equations of motion, the 2nd order effects (~ ) from fourth order 
terms, and so on. Contrariwise, while the effects from the systematic higher order 

1. By singular value decomposition.

βx y,
2

b6 b10 b14

βx
2ηx

2 βx
4ηx

2, βx
6ηx

2

b3

b3
2
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multipoles mentioned above are linear in the multipole strengths, they originate 
from sixth and tenth order terms in the equations of motion, see Section 6.0; some-
thing worth contemplating.

12.Studies of a realistic lattice:

The results presented for a realistic lattice includes: DWs, random and systematic 
higher order multipoles, and mechanical mis-alignments with and girder correla-
tions, see Appendix A; since it is an integral part of the design philosophy [2,5]. 
Still, as experience shows, the calibration of a nonlinear model against a real lattice 
is nontrivial. In particular, a prerequisite is that the (linear) optics of the real lattice is 
known.
December 8, 2008 7



2.0  Background

The Hamiltonian

(1)

where  describes the linear optics and  the effects from the sextupoles. The 
introduction of (chromatic) sextupoles to control the leading order (linear) chromaticity 
for a high performance lattice leads to a whole slew of undesirable effects: nonlinear reso-
nances, amplitude dependent tune shift, nonlinear chromaticity, and cross terms. In fact, if 
care is not taken to control the latter, a high performance (linear) “optics design” collapses 
when engineering tolerances, etc. are included to the model [1]. For a robust design, the 
undesirable nonlinear effects must be considered from the start. In particular, it is not suf-
ficient to first design the (linear) optics  and then attempt to determine a suitable 

distribution of sextupoles/multipole around the lattice ; aka a perturbative approach. 
Rather, the linear optics needs to be tailored to the latter. Simply put, the system must be 
designed as a whole . And, since  can be chosen quite freely (and generalized to 
include higher order multipoles), ultimately, the nonlinear performance of the lattice is a 
reflection of the smoothness- and momentum dependence of the linear optics; described 
by . To avoid the traditional (perturbative) approach and pathological linear optics 
“designs”, guidelines on e.g. the max (linear) chromaticity per cell and (linear) dispersion 
have been provided [6].

Note, in the following the order  of a resonance  refers to the reso-

nances driven by a certain order of sextupole strength , rather than the traditional 

, see Tab. 1.

For the bare lattice, we will avoid crossing 1st and 2nd order resonances; for a conserva-
tive approach towards Touschek lifetime and injection efficiency. Furthermore, when 
DWs and engineering tolerances are introduced, we have found that some of the 3rd order 
resonances must to be avoided as well; due to the reduction from 15- to 3-fold periodicity.

n Sextupolar Resonances

1

2

3

TABLE 1. Resonances to 3rd Order in the Sextupole Strength.

H s( )
px

2 py
2+

2 1 δ+( )
--------------------

b2 s( )
2

------------- x2 y2–( )
b3 s( )

3
------------- x3 3xy2–( )+ + H2 s( ) V s( )+≡=

H2 s( ) V s( )

H2 s( )

V s( )

H s( ) V s( )

H2 s( )

n nxνx nyνy+ k=

b3L( )n

n nx ny+≡

νx 3νx νx 2νy+ νx 2νy–

2νx 2νy 4νx 4νy 2νx 2νy+ 2νx 2νy–

νx 3νx νx 2νy+ νx 2νy– 5νx νx 4νy+ νx 4νy– 3νx 2νy+ 3νx 2νy–
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3.0  Theoretical Framework

In the linear case the one-turn matrix can be diagonalized into block diagonal1 form

(2)

where  and  are symplectic matrices. For 1 D.O.F. ( ) one obtains

(3)

with the action-angle variables 

(4)

This can be generalized to 2.5 2 and 3 D.O.F. : 
For the latter one obtains

(5)

in the case of mid-plane symmetry. The longitudinal tune  is the synchrotron tune.

In the nonlinear case, the (symplectic3) one-turn (functional) map can be (formally) repre-
sented by a Lie series [7]

(6)

where ,  and  are (functional) operators4, and the Lie derivative  of a func-
tion  of the phase-space variables is defined by the Poisson bracket

1. Diagonal with complex (conjugate pairs) of eigen values.
2. With  treated as a (slowly) varying parameter, i.e., the adiabatic approximation.

3. => volume preserving. Note, since the dimension of the linear symplectic group is  but 

 for the unimodular matrix group: symplectic <=> volume preserving for 1 D.O.F. only.
4. Transforming functions into functions.

M ARA 1–=

M A, R x x px,[ ]≡

Ax

βx 0
αx

βx

---------– 1
βx

---------
,= Rx

2πνx( )cos 2πνx( )sin
2πνx( )sin– 2πνx( )cos

,= x̂ Ax
1– x≡

Jx φx,[ ]

2Jx x̂Tx̂,= φx
px
x
-----⎝ ⎠

⎛ ⎞atan=

x x px y py δ;, , ,[ ]≡ x x px y py δ c0t, , , , ,[ ]≡

δ

A
Ax 0 0
0 Ay 0
0 0 Az

,= R
Rx 0 0
0 Ry 0
0 0 Rz

=

νz

2n 1+( )n

2n( )2 1–

M A 1– e:h x( ):RA≡

A R :h: :h x( ):
f x( )
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(7)

The generator  is a power series in the phase-space variables

(8)

and, to 1st order in the sextupole strength, the driving terms  are [3]

(9)

Higher order terms are generated by cross terms, i.e., commutators, of these. The driving 
terms to 2nd order in sextupole strength (and leading order in momentum dependence) are 
summarized in Tab. 2. Note, the resonance terms have additional momentum dependant 
terms that have not been listed1.

The map can be (recursively2) transformed into normal form3 (perturbation theory) [8]

(10)

where  is a canonical transformation and  a phase-independent 
generator4 of the form

(11)

1st Order

Effect

2nd Order

Effect

TABLE 2. Driving Terms to 2nd Order in the Sextupole Strength.

1. Which drive synchro-betatron resonances.
2. And hence automated to arbitrary order.
3. The equivalent of solving the Hamilton-Jacobi equation.
4. => an amplitude dependent rotation in Floquet space.

:h:f x( ) ∂h
∂xi
------- ∂f

∂pxi
---------- ∂f

∂xi
------- ∂h

∂pxi
----------–

i 1=

n

∑≡ ,

h

h hjklmnJx
j k+( ) 2⁄ Jy

l m+( ) 2⁄ δne
i j k–( )φx l m–( )φy+[ ]

c.c.,+
j k l m n, , , ,

∑=

hjklmn

hjklmn b3L( )aβx a,
j k+( ) 2⁄ βy a,

l m+( ) 2⁄ ηx a,
n e

i j k–( )μx j, k→ l m–( )μy l, m→+[ ]
c.c.+

a 1=

N

∑∼

h10001 h20001 h00201 h10110 h21000 h30000 h10200 h10020

dηx dδ⁄ dβx dδ⁄ dβy dδ⁄ νx νx 3νx νx 2νy+ νx 2νy–

h31000 h00310 h20110 h11200 h40000 h00400 h20200 h20020

2νx 2νy 2νx 2νy 4νx 4νy 2νx 2νy+ 2νx 2νy–

M A 1– e:h:RA e: g J φ,( )– :e:k J( ):Re:g J φ,( ):→=

: g J φ,( )– :( )exp :k J( ):

k J( ) kjklmnJx
j k+( ) 2⁄ Jy

l m+( ) 2⁄ δn

j k l m n, , , ,
∑=
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from which we obtain the tune shift

(12)

In particular, the tune shift terms to 4th order in the sextupole strengths are

(13)

i.e., chromatic-, amplitude dependent tune shift-, and cross terms. Analytic expressions for 
 are shown in Eq. (19), Section 4.4. The corresponding generator 

is given by Eqs. (99) and (100) in ref. [3]. Having gained insight into the generic structure 
of these terms, there is little to be learnt from grinding out analytical expressions1 for the 
general case, so these are computed by numerical techniques [9].

1. Typically, valid only for the bare lattice and real magnets approximated with one thin kick; for simplicity.

ν J( ) 1
2π
------∂k J( )

∂J
-------------–=

νx J δ,( ) ν0 x,
1

2π
------ 2k11001δ 4k22000 2Jx( ) 2k11110 2Jy( )+ 2k11002δ2+ +[–=

4k22001 2Jx( )δ 2k11111 2Jy( )δ++ 4k22002 2Jx( )δ2 2k11112 2Jy( )δ2+ +

6k33000 2Jx( )2 4k22110 2Jx( ) 2Jy( ) 2k11220 2Jy( )2 2k11003δ3+ + ++ ]

νy J δ,( ) ν0 y,
1

2π
------ 2k00111δ 4k00220 2Jy( ) 2k11110 2Jx( ) 2k00112δ2+ + +[–=

4k00221 2Jy( )δ 2k11111 2Jx( )δ++ 4k00222 2Jy( )δ2 2k11112 2Jx( )δ2+ +

6k00330 2Jy( )2 4k11220 2Jx( ) 2Jy( ) 2k22110 2Jx( )2 2k00113δ3+ + ++ ]

k22000 k11110 and k00220, , ,
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4.0  Control of the Nonlinear Dynamics

4.1  Control of the Resonance Terms by Symmetry

The resonance terms up to 2nd order in the sextupole strength can be cancelled by symme-
try1. In particular, by:

1. implement a unit cell with two chromatic sextupole families,

2. repeat it  times (15 for NSLS-II),

3. and choose the cell tune to e.g. 

see Tab. 3, which shows the accumulative normalized phase advance for each cell and the 
1st and 2nd order sextupolar resonances. Mathematically, this corresponds to a set of pha-
sors that adds up to null; for each resonance. Clearly, there are other choices with partial-, 
full-, or even multiple cancellations, see Tab. 4.

1. There is also a cancellation of the contribution to the amplitude dependent tune shift from the phase 
dependent driving terms.

Cell

1 2.2 1.0 4.5 6.7 2.1 0.2 4.3 8.9 4.1 2.4 6.5

2 4.5 2.1 8.9 13.4 4.1 0.3 8.6 17.9 8.3 4.8 13.1

3 6.7 3.1 13.4 20.1 6.2 0.5 12.9 26.8 12.4 7.2 19.6

4 8.9 4.1 17.9 26.8 8.3 0.7 17.2 35.7 16.5 9.6 26.1

5 11.2 5.2 22.3 33.5 10.3 0.8 21.5 44.7 20.7 12.0 32.7

6 13.4 6.2 26.8 40.2 12.4 1.0 25.8 53.6 24.8 14.4 39.2

7 15.6 7.2 31.3 46.9 14.5 1.2 30.1 62.5 28.9 16.8 45.7

8 17.9 8.3 35.7 53.6 16.5 1.3 34.4 71.5 33.1 19.2 52.3

9 20.1 9.3 40.2 60.3 18.6 1.5 38.7 80.4 37.2 21.6 58.8

10 22.3 10.3 44.7 67.0 20.7 1.7 43.0 89.3 41.3 24.0 65.3

11 24.6 11.4 49.1 73.7 22.7 1.8 47.3 98.3 45.5 26.4 71.9

12 26.8 12.4 53.6 80.4 24.8 2.0 51.6 107.2 49.6 28.8 78.4

13 29.0 13.4 58.1 87.1 26.9 2.2 55.9 116.1 53.7 31.2 84.9

14 31.3 14.5 62.5 93.8 28.9 2.3 60.2 125.1 57.9 33.6 91.5

15 33.5 15.5 67.0 100.5 31.0 2.5 64.5 134.0 62.0 36.0 98.0

TABLE 3. Control of up to 2nd Order Sextupolar Resonances by Symmetry.

Ncell

ν 33.5 Ncell⁄ 15.5 Ncell⁄,( )=

νx νy 2νx 3νx 2νy νx 2νy– νx 2νy+ 4νx 4νy 2νx 2νy+ 2νx 2νy–
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For an complete determination of suitable cell tunes, we introduce the norm

(14)

and compute it for a  grid of cell tunes with acceptable optics, see Fig. 1. We con-
clude that there are several regions for which the cell tune is such that resonances up to 
2nd order in sextupole strength are cancelled by symmetry. Because there are phase inde-
pendent terms, e.g.  and , driving the amplitude dependent tune shift, 
there is no such cancellation for these terms, see Fig. 2. Note that the divergence in the 
upper left corner of both figures due to the resonance , i.e., is systematically 
driven.

Cell

1 2.2 1.1 4.5 6.7 2.1 0.1 4.4 8.9 4.3 2.3 6.6

2 4.5 2.1 8.9 13.4 4.3 0.2 8.7 17.9 8.5 4.7 13.2

3 6.7 3.2 13.4 20.1 6.4 0.3 13.1 26.8 12.8 7.0 19.8

4 8.9 4.3 17.9 26.8 8.5 0.4 17.5 35.7 17.1 9.3 26.4

5 11.2 5.3 22.3 33.5 10.7 0.5 21.8 44.7 21.3 11.7 33.0

6 13.4 6.4 26.8 40.2 12.8 0.6 26.2 53.6 25.6 14.0 39.6

7 15.6 7.5 31.3 46.9 14.9 0.7 30.6 62.5 29.9 16.3 46.2

8 17.9 8.5 35.7 53.6 17.1 0.8 34.9 71.5 34.1 18.7 52.8

9 20.1 9.6 40.2 60.3 19.2 0.9 39.3 80.4 38.4 21.0 59.4

10 22.3 10.7 44.7 67.0 21.3 1.0 43.7 89.3 42.7 23.3 66.0

11 24.6 11.7 49.1 73.7 23.5 1.1 48.0 98.3 46.9 25.7 72.6

12 26.8 12.8 53.6 80.4 25.6 1.2 52.4 107.2 51.2 28.0 79.2

13 29.0 13.9 58.1 87.1 27.7 1.3 56.8 116.1 55.5 30.3 85.8

14 31.3 14.9 62.5 93.8 29.9 1.4 61.1 125.1 59.7 32.7 92.4

15 33.5 16.0 67.0 100.5 32.0 1.5 65.5 134.0 64.0 35.0 99.0

TABLE 4. Control of up to 2nd Order Sextupolar Resonances by Symmetry.

νx νy 2νx 3νx 2νy νx 2νy– νx 2νy+ 4νx 4νy 2νx 2νy+ 2νx 2νy–

h hjklmn
2

j k l m n 4≤+ + + +
∑≡

11 11×

h22000 h11110, h00220

νx 2νy– 0=
December 8, 2008 13



 

FIGURE 1. Norm of the Resonance Terms ( ) for a Cell with two 
Chromatic Sextupole Families [sm1, sm2].

FIGURE 2. Norm of the Tune Shift Terms ( ) for a Cell with two 
Chromatic Sextupole Families [sm1, sm2].
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The next step is to control the amplitude dependent tune shift, but first we must address 
the fact that the resulting working point is close to integer or half-integer resonances.

Clearly, while the resonance terms are cancelled by symmetry for these working points, 
the dynamics is not robust to imperfections, e.g. from engineering tolerances. So, the lat-
tice must be detuned, which reduces the cancellations. However, this can be avoided by 
introducing additional sextupole families [3]. Ideally, full control of the:

• linear chromaticity (2 terms),

• momentum dependence of the linear optics (3 terms),

• 1st order resonances (5 terms),

• and leading (2nd) order amplitude dependent tune shift (3 terms)

would require 5 chromatic and 8 geometric families1. However, the former is not realistic 
for an achromatic lattice2.

4.2  The Origin of 2nd Order Chromaticity

The main effect of  and  is the generation of 2nd order chromaticity. 
In particular, by

(15)

The driving terms around the lattice are shown in Figs. 3-4. Note that all the (geometric 
and chromatic) sextupoles contributes to the first driving term.

1. That are not degenerate (nontrivial).
2. Required by the use of DWs.

h10002 h20001, h00201

ξx
2( ) ∂ξx

∂δ
--------

δ 0=
≡

1
2
---ξx

1( )– 1
8π
------ 2 b3L( )j

∂ηx j,
dδ

------------βx j, b2L( )j 2 b3L( )jηx j,–[ ]
∂βx j,
∂δ

------------–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,
j 1=

N

∑+=

ξy
2( ) ∂ξy

∂δ
--------

δ 0=
≡

1
2
---ξy

1( )– 1
8π
------ 2 b3L( )j

∂ηx j,
dδ

------------βy j, b2L( )j 2 b3L( )jηx j,–[ ]
∂βy j,

∂δ
------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

j 1=

N

∑–=
December 8, 2008 15



FIGURE 3. First Driving Term for 2nd Order Chromaticity: no Sextupoles.

FIGURE 4. Second Driving Term for 2nd Order Chromaticity: no Sextupoles.
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The second order dispersion (generated by ) is given by

(16)

where

(17)

and the momentum dependence of the beta functions (generated by  and ) are

(18)

Note that dispersive quadrupoles will systematically drive 2nd order dispersion if sepa-
rated by , or momentum dependence of the beta functions if separated by . The 
former is a limiting factor for DBA lattices1 (due to the phase advance between the DBA 
cells). This is the source of the considerable amount of residual 2nd (and higher) order 
horizontal chromaticity, see Fig. 24. Also, the chromatic sextupoles contribute as well. 
The residual values, after (linear) chromatic correction with 2 chromatic families, are 
shown in Figs. 5-8 and the corresponding driving terms in Figs. 9-10. Clearly, with only 
two chromatic families, these 3 driving terms can not be controlled.

1. And the latter for TBA lattices (due to the phase advance between adjacent quadrupoles within the TBA 
cell [3]).
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FIGURE 5. Second Order Dispersion with Two Chromatic Families.

FIGURE 6. Momentum Dependence of the Orbit with Two Chromatic Families.
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FIGURE 7. Momentum Dependence of the Horizontal Beta Function with Two 
Chromatic Families.

FIGURE 8. Momentum Dependence of the Vertical Beta Function with Two 
Chromatic Families.
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FIGURE 9. First Driving Term for 2nd Order Chromaticity with Two Chromatic 
Families.

FIGURE 10. Second Driving Term for 2nd Order Chromaticity with Two 
Chromatic Families.
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4.3  Control of 2nd Order Chromaticity by Sextupole Placement

From Figs. 3-4 and Eq. (15) it is clear that the second order chromaticity is quite sensitive 
to the sextupole placement, i.e., the driving terms depend on derivatives of the linear 
optics functions with the momentum . Therefore, it is not surprising that changes as 
small as ~10 cm are significant; as observed during numerical optimizations for other 
medium energy synchrotron light sources [10]. As an example, we show how the sextu-
pole scheme for the baseline lattice can be improved by optimizing the sextupole place-
ment1 for e.g. the working point , see Tab. 5 and Fig. 11.

Note that, while all the sextupoles contribute (chromatic as well as geometric), the 2nd 
order chromaticity originates from the momentum dependence of the linear optics, which 
is determined by the: dispersive quadrupoles and sextupoles, and cell tune, see Eqs. (15)- 
(18). In other words, unless an adequate number of (linear) chromatic sextupole families 
are provided, the control of nonlinear chromaticity (2+2 terms) will interfere2 with the 
geometric sextupoles; introduced to control the nonlinear resonances (8+8 terms) and 
amplitude dependent tune shift (3+4 terms), see Fig. 12. In particular, compromise on the 
tune footprint for the bare lattice which will reduce the tolerance of tune shift from: DWs, 
insertion devices, systematic higher multipole errors, and perturbations of the linear optics 
(due to symmetry reduction). Simply put, make the design less robust.

Interestingly, the tune footprint for the baseline lattice can also be improved, apart from a 
considerable residual 2nd order horizontal chromaticity, by eliminating one of the 4 geo-
metric families in the long matching sections, see Fig. 13. In other words, these families 
are degenerate. Contrariwise, given the sensitivity of the tune footprint on the sextupole 
placement, clearly, an adequate number of effective knobs are required for robust control 
of the nonlinear dynamics for a real lattice.

Sextupole Family sl1 sl2 sl3 sh1 sh2 sh3 sh4 sm1

 [m] 0.13 0.03 0.15 -0.14 0.14 0.03 -0.07 0.01

TABLE 5. Optimized Sextupole Placement for .

1. Sm2 is not moved since it is at the center of the double-bend-achromat.
2. Must be (indirectly) “controlled” by the 7 geometric sextupoles.

δ

ν 33.47 15.68,( )=

Δs

ν 33.47 15.68,( )=
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FIGURE 11. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances for Baseline Sextupole Scheme and Optimized Sextupole Placement 

for .
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FIGURE 12. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances for the Baseline Lattice for .
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FIGURE 13. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances with 2 Chromatic [sm1, sm2] and 6 Geometric [sl1, sl2, sl3, sh1, sh3, 

sh4] Families for .

4.4  Control of Resonance- and Tune Shift Terms

As a compromise, we use 3 chromatic [sm1, sm2, sm+] and 6 geometric1 [sl1, sl2, sl3, 
sh1, sh3, sh4] families to control the:

• 1st and 2nd order chromaticity (4 terms),

• momentum dependence of the linear optics (3 terms),

• 1st order resonances (5 terms),

• and leading order amplitude dependent tune shift (3 terms),

governed by a  nonlinear system of (up to 2nd order) algebraic equations for the 
sextupole strengths. The controllability of the dynamics can be evaluated by computing 

1. Since we have shown that the 4 families in the long matching section are degenerate, see Section 4.3.
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the sextupole response matrix, i.e., the Jacobian of the system. The result is summarized in 
Tab. 6: where (sl1, sl2, sl3, sh1, sh2, sh3, sh4) are the geometric and (sm1, sm2, sm+) the 
2+1 chromatic families. Shaded cells shows the primary terms. However, minimizing 
these terms will drive the higher order terms in Tab. 2 and Eqs. (13), so they must be 
included as well1. In particular the:

• 2nd order resonances (8 terms),

• 3rd order chromaticity (2 terms),

• next (4th) order of amplitude dependent tune shift (4 terms),

• and chromatic cross terms (6 terms),

leading to a  nonlinear system (up to 4th order). The result is shown in Section 4.5, 
Figs. 16-17 for a range of working points. The control of the tune shift is diverging 
towards the lower part of the graph due to .

TABLE 6. The Sextupole Response Matrix (Jacobian of the System).

4.5  Properties of the “Solution Space”

The only reason that this highly over constrained, nonlinear algebraic system has a satis-
factory “solution” (in a least-square sense), i.e., that an adequate minimum can be 
obtained by a brute force numerical minimization, is due to the:

1. 15-fold symmetry of the lattice,

2. and because the higher order terms originate from cross terms of the lower order.

1. More typically, this is avoided by a brute-force approach, i.e., by introducing an ad hoc cap on the sextu-
pole strengths.

35 9×

νy 15=

sl1 sl2 sl3 sh1 sh2 sh3 sh4 sm1 sm2 sm+

k 11001 1.0E-06 3.1E-06 1.2E-06 6.3E-06 8.1E-06 4.1E-06 9.8E-07 -9.0E-03 -1.6E-02 -9.6E-03

k 00111 -1.1E-06 -1.3E-06 -1.9E-06 -3.3E-06 -3.9E-06 -5.4E-06 -4.6E-06 1.0E-02 5.3E-03 2.4E-02

h 10002 -6.7E-15 -1.3E-14 -3.4E-15 -1.5E-13 -2.0E-13 -1.0E-13 -2.4E-14 2.7E-07 5.0E-07 3.3E-07

h 20001 -1.8E-11 -6.2E-11 -2.6E-11 8.2E-11 1.2E-10 6.8E-11 1.9E-11 3.5E-08 6.4E-08 -2.2E-08

h 00201 5.4E-11 8.9E-11 1.6E-10 -5.9E-11 8.7E-12 8.8E-11 1.0E-10 -7.9E-07 -4.3E-07 -2.2E-06

h 10110 7.1E-08 8.7E-08 1.2E-07 2.9E-07 3.6E-07 5.2E-07 4.7E-07 -4.1E-07 -2.1E-07 -1.1E-06

h 21000 -3.3E-08 -1.0E-07 -3.9E-08 -2.8E-07 -3.8E-07 -2.0E-07 -5.0E-08 1.8E-07 3.2E-07 2.1E-07

h 30000 2.1E-08 7.1E-08 2.9E-08 -2.5E-09 -1.9E-08 -1.6E-08 -7.2E-09 -6.1E-08 -1.1E-07 -4.7E-08

h 10200 -7.1E-08 -9.5E-08 -1.2E-07 8.6E-08 6.8E-08 5.6E-08 2.0E-08 4.8E-08 2.7E-08 4.0E-07

h 10020 7.8E-08 8.7E-08 6.1E-08 -8.0E-08 -1.5E-07 -2.5E-07 -2.1E-07 4.3E-07 2.3E-07 8.8E-07

k 22000 -1.9E-07 -5.1E-07 -1.8E-07 -2.2E-06 -2.9E-06 -1.5E-06 -4.0E-07 1.9E-06 2.9E-06 2.5E-06

k 11110 1.3E-06 1.0E-06 1.9E-06 5.4E-07 1.9E-07 2.1E-06 2.6E-06 -3.8E-07 1.9E-06 -5.2E-06

k 00220 2.8E-07 3.7E-07 6.2E-07 9.0E-07 1.2E-06 1.8E-06 1.5E-06 -2.9E-06 -1.5E-06 -7.3E-06

k 11002 -1.6E-07 -4.8E-07 -1.8E-07 -9.7E-07 -1.3E-06 -6.4E-07 -1.5E-07 5.6E-06 8.8E-06 6.8E-06

k 00112 1.7E-07 2.0E-07 2.9E-07 5.0E-07 6.0E-07 8.4E-07 7.2E-07 -1.1E-06 1.0E-06 -5.0E-06
December 8, 2008 25



In general the leading (2nd) order amplitude dependent tune shift

(19)

scales with the square of the number of sextupoles . However, due to the symmetry, it 
scales linearly with the number of cells 

(20)

where

(21)

To summarize, symmetry is the only way to fully control the tune footprint. Still, due to 
the relatively large number of cells, to obtain a satisfactory tune footprint for the bare lat-
tice, <0.1, is somewhat of a challenge. In particular due to the relatively large peak values 
of the beta functions1, see Figs. 14-15, which also makes the lattice somewhat more sensi-
tive to systematic higher multipole errors (see Section 6.0); as compared to other medium 
energy synchrotron light sources.

Since both the resonance- and tune shift terms depend strongly on the cell tune, the numer-
ical optimization is done over e.g. a  grid of working points with satisfactory 
optics2, see Figs. 16-17. For comparisons, corresponding results for the baseline lattice are 
shown in Figs. 18-19. We note that, while the control of the resonance terms is comparable 

1. A side-effect of relocating the TPWs from the center of the double bend achromat to adjacent of the 
dipoles (to reduce the horizontal beam size).

2. Obtained from the optics optimizations [11].
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(due to the symmetry of the lattice), the control of the tune footprint is compromised. 
Moreover, Figs. 20-22 shows the performance of the other three permutations when one 
family out of the 4 (degenerate) is removed from the long matching sections. We have 
chosen to remove sh2, but sh3 or sh4 could be considered as well. But, note the influence 
of ; from the 4th order tune shifts. Apart from that, this is confirmed by the sin-

gular values1 for the sextupole response matrix for the different configurations, see Tab. 7. 

1. For the first working point.

[sm1, sm2, sm+]
[sl1, sl2, sl3]

[sh1, sh2, sh3, sh4]
no sh1 no sh2 no sh3 no sh4 no sm+

(baseline)

TABLE 7. Singular Values for the Sextupole Response Matrix for Various 
Sextupole Configurations.

2 νx νy–( )

3.1 2–×10 3.1 2–×10 3.1 2–×10 3.1 2–×10 3.1 2–×10 2.1 2–×10

1.2 2–×10 1.2 2–×10 1.2 2–×10 1.2 2–×10 1.2 2–×10 5.7 3–×10

4.1 6–×10 3.2 6–×10 2.8 6–×10 3.6 6–×10 3.7 6–×10 4.6 6–×10

1.4 6–×10 1.2 6–×10 1.3 6–×10 1.3 6–×10 1.2 6–×10 1.9 6–×10

1.1 6–×10 8.1 7–×10 1.2 6–×10 1.2 6–×10 7.2 7–×10 8.8 7–×10

6.6 7–×10 6.8 7–×10 7.1 7–×10 6.8 7–×10 5.3 7–×10 3.3 7–×10

4.5 7–×10 4.9 7–×10 2.6 7–×10 4.5 7–×10 4.7 7–×10 2.2 7–×10

2.0 7–×10 1.3 7–×10 1.3 7–×10 2.1 7–×10 1.4 7–×10 1.7 7–×10

1.4 7–×10 8.7 8–×10 1.0 7–×10 1.4 7–×10 1.2 7–×10 6.6 8–×10

5.3 8–×10
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FIGURE 14. Linear Optics.

FIGURE 15. Linear Dispersion.
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FIGURE 16. Norm of the Resonance Terms for the Sextupole Scheme with 3 
Chromatic [sm1, sm2, sm+] and 6 Geometric [sl1, sl2, sl3, sh1, sh3, sh4] Families.

FIGURE 17. Norm of the Tune Shift Terms for the Sextupole Scheme with 3 
Chromatic [sm1, sm2, sm+] and 6 Geometric [sl1, sl2, sl3, sh1, sh3, sh4] Families.
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FIGURE 18. Norm of the Resonance Terms for the Sextupole Scheme with 2 
Chromatic [sm1, sm2] and 7 Geometric [sl1, sl2, sl3, sh1, sh2, sh3, sh4] Families.

FIGURE 19. Norm of the Tune Shift Terms for the Sextupole Scheme with 2 
Chromatic [sm1, sm2] and 7 Geometric [sl1, sl2, sl3, sh1, sh2, sh3, sh4] Families.

Norm of the Resonance Terms

-10.4
-10.6
-10.8
-11.0
-11.2
-11.4
-11.6
-11.8
-12.0
-12.2
-12.4
-12.6
-12.8
-13.0
-13.2
-13.4
-13.6
-13.8

 32.4  32.6  32.8  33  33.2  33.4  33.6

νx

 15.2

 15.4

 15.6

 15.8

 16

 16.2

 16.4

νy

Norm of the Tune Shift Terms

-11.9
-12.0
-12.1
-12.2
-12.3
-12.4
-12.5
-12.6
-12.7
-12.8
-12.9
-13.0
-13.1

 32.4  32.6  32.8  33  33.2  33.4  33.6

νx

 15.2

 15.4

 15.6

 15.8

 16

 16.2

 16.4

νy
December 8, 2008 30



FIGURE 20. Norm of the Tune Shift Terms for the Sextupole Scheme with 3 
Chromatic [sm1, sm2, sm+] and 6 Geometric [sl1, sl2, sl3, sh1, sh2, sh3] Families.

FIGURE 21. Norm of the Tune Shift Terms for the Sextupole Scheme with 3 
Chromatic [sm1, sm2, sm+] and 6 Geometric [sl1, sl2, sl3, sh2, sh3, sh4] Families.
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FIGURE 22. Norm of the Tune Shift Terms for the Sextupole Scheme with 3 
Chromatic [sm1, sm2, sm+] and 6 Geometric [sl1, sl2, sl3, sh1, sh2, sh4] Families.
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5.0  Proof-of-Concept

For a control theory approach to the medium term (  turns) stability of the nonlinear 
dynamics, we graph the 1st and 2nd order resonances from Tab. 1 and, for a given working 
point, compute the tune footprint for  on-momentum and 

 off-momentum; at the center of the long straight. Note 
that the tune footprints have been shoehorned into areas surrounded by these resonances, 
i.e., these are our estimates for the on- and off-momentum aperture. The main result from 
this section is summarized by Figs. 23, 32, 40, 42, and 51, i.e., essentially the same on- 
and off-momentum dynamic aperture for a realistic lattice, see Appendix A.

FIGURE 23. 1st and 2nd Order Sextupolar Resonances and Tune Footprint (on/
off momentum red/blue) for the 4 Somewhat Arbitrarily Chosen Working Points.
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5.1  First Working Point: 

The tune footprint for the bare lattice is shown in Fig. 24; the green lines are 3rd order res-
onances. From Fig. 26 we note that the rather excessive momentum dependence of the 
vertical beta function in Fig. 8 has been reduced to an adequate level. Frequency maps for 
the bare1 lattice without DWs are shown in Fig. 27. For comparison, we also show the 
results for 2 chromatic and 6 geometric families in Fig. 28. In particular, the broadening of 
the off-momentum tune footprint due to residual 2nd order chromaticity. Since the 
improved tune footprint barely fits within the 1st and 2nd order resonances, this reduces 
the leeway from other contributions.

FIGURE 24. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances.

1. Without engineering tolerances.
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FIGURE 25. Momentum Dependence of the Horizontal Beta Function.

FIGURE 26. Momentum Dependence of the Vertical Beta Function.
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FIGURE 27. Frequency Maps for the Bare Lattice without DWs.

FIGURE 28. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances with 2 Chromatic- and 6 Geometric Families.
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5.2  Control of Impact from Damping Wigglers

We now introduce 3 DWs and correct the impact of the linear vertical focusing by a hybrid 
approach, i.e., local matching of the optics and global correction of the resulting tune shift. 
Due to the correction algorithm based on the “quadrupole response matrix” (Jacobian of 
the governing algebraic system) inverted by singular value decomposition implemented 
from the start [4], this is simply a matter of parameter choice. Moreover, since it is using 
the beam response matrix as observable, it is straightforward to implement on-line. The 
result is shown in Figs. 29-30. We note that the tune footprint is not restored. This is due to 
the gradient/optics changes in the matching sections, which affects the sextupole contribu-
tions, and the nonlinear contributions from the DWs.

FIGURE 29. Beta- and Normalized Phase Advance Beat after Optics Correction.

We therefore include these effects into our optimization and re-optimize the sextupole 
strengths for a lattice with DWs and linear corrections. The result is shown in Tab. 8 and 
Fig. 31. We note that the tune footprint now has been restored. Frequency maps for a real-
istic lattice, see Appendix A, are shown in Fig. 32. The extended yellow regions shows 
some minor tune modulation due to weakly excited resonances by the engineering toler-
ances. To summarize the introduction of damping wigglers is now transparent.

To illustrate the impact of 3rd order resonances we make a minor adjustment to the work-
ing point, i.e., from  to . The result is shown in Figs. 
33-34. This can be understood by noting the crossing of , a systematic 

effect due to the 3-fold symmetry1 with DWs. 

1. The impact on the optics could be reduced by using a 5-fold symmetry.
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FIGURE 30. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances after Optics Correction.

Sextupole Family

sl1 sl2 sl3 sh1 sh3 sh4 sm1 sm2 sm+
w.o. DWs 0.83 2.17 -2.65 2.63 -1.44 -0.81 -2.72 3.47 0.71

w. DWs 0.65 2.36 -3.00 3.00 -2.03 -0.40 -2.54 3.40 0.40
TABLE 8. Sextupole Strengths with and without DWs.
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FIGURE 31. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances After Re-optimization with DWs.

FIGURE 32. Frequency Maps for a Realistic Lattice.
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FIGURE 33. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances for .

FIGURE 34. Frequency Maps for .
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5.3  Impact of IVUs

We now also include 5 non-symmetrically distributed IVUs. While these mainly contrib-
ute to the on-momentum tune footprint, they do not have a major impact, see Fig. 35, 
because adequate leeway has been established; by design. The reduction in the vertical 
plane is due to the vertical aperture, i.e.,  mm. In other words, the vertical gap for the 
DWs is not the limiting factor; again by design.

FIGURE 35. Frequency Maps for a Realistic Lattice with 3 DWs and 5 IVUs.

5.4  Impact of EPUs

It is well known that EPUs are quite nonlinear devices that might require special shim-
ming [12] to not have a major impact on e.g. the Touschek life time in medium energy 
rings. For a preliminary evaluation, we have inserted one into a short straight and com-
puted the frequency map for a bare lattice without DWs for three different polarizations 
modes, see Figs. 36-38. Comparing with the baseline, i.e., Fig. 27 in Section 5.1, apart 
from a reduction in the vertical due to the reduced vertical aperture, there is not much 
impact. However, a more detailed study should be done for a realistic lattice.

FIGURE 36. Frequency Maps for a Bare Lattice with no DWs and 1 EPU in 
Helical Mode.
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FIGURE 37. Frequency Maps for 1 EPU in Vertical Linear Mode.

FIGURE 38. Frequency Maps 1 EPU 45° Inclined Mode. 
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5.5  Second Working Point: 

The results are summarized by Figs. 39-40. Note,  needs to be avoided due 
to the 3-fold symmetry from DWs.

FIGURE 39. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances.

FIGURE 40. Frequency Maps for a Realistic Lattice.

ν 33.15 15.68,( )=

νx 4νy+ 96=

 33  33.05  33.1  33.15  33.2  33.25

 15.5

 15.55

 15.6

 15.65

 15.7

 15.75

Tune Footprint

νx

νy

 33.12

 33.13

 33.14

 33.15

 33.16

 33.17

 33.18

-20 -15 -10 -5  0  5  10  15  20

ν x

Ax,y [mm]

νx vs. Ax,y

Ax
Ay

 15.63

 15.64

 15.65

 15.66

 15.67

 15.68

 15.69

 15.7

 15.71

 15.72

 15.73

 15.74

-20 -15 -10 -5  0  5  10  15  20

ν y

Ax,y [mm]

νy vs. Ax,y

Ax
Ay

 33.06

 33.08

 33.1

 33.12

 33.14

 33.16

 33.18

-3 -2 -1  0  1  2  3
 15.677

 15.678

 15.679

 15.68

 15.681

 15.682

 15.683

ν x ν y

δ [%]

Chromaticity

νx
νy

33.125 33.13 33.135 33.14 33.145

15.67

15.68

15.69

 

ν
x

 

ν y

−10

−8

−6

−4

−2

−15 −10 −5 0 5 10 15 20

2

4

6

x(mm)

z(
m

m
)

33.04 33.06 33.08 33.1 33.12 33.14 33.16 33.18 33.2 33.22

15.6

15.65

15.7

15.75

 

ν
x

 

ν y

−10

−8

−6

−4

−2

−3 −2 −1 0 1 2 3

5

10

15

20

dp (%)

x(
m

m
)

December 8, 2008 43



5.6  Third Working Point: 

The results are summarized by Figs. 41-42. Note,  needs to be avoided 
due to the 3-fold symmetry from DWs.

FIGURE 41. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances.

FIGURE 42. Frequency Maps for a Realistic Lattice (DWs w. 80 mm pole width).
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5.7  Validation of the Damping Wiggler Pole Width

The baseline pole with for the DW is 80 mm, which was used for the results shown in e.g. 
Fig. 42 in Section 5.6. The effect of changing the pole width to 90, 65, and 48 mm are 
shown in Figs. 43-45. Clearly, within the limits of the model, e.g. no manufacturing errors, 
the choice is good.

FIGURE 43. Frequency Maps for 3 DWs with 90 mm Pole Width.

FIGURE 44. Frequency Maps for 3 DWs with 65 mm Pole Width.

FIGURE 45. Frequency Maps for 3 DWs with 48 mm Pole Width.

33.095 33.1 33.105 33.11 33.115 33.12 33.125 33.13 33.135

16.24

16.26

16.28

 

ν
x

 

ν y

−10

−8

−6

−4

−2

−15 −10 −5 0 5 10 15 20

2

4

6

x(mm)

z(
m

m
)

33.04 33.06 33.08 33.1 33.12 33.14 33.16 33.18

16.2

16.25

16.3

16.35
 

ν
x

 

ν y

−10

−8

−6

−4

−2

−3 −2 −1 0 1 2 3

5

10

15

20

dp (%)

x(
m

m
)

33.095 33.1 33.105 33.11 33.115 33.12 33.125 33.13 33.135
16.22

16.24

16.26

16.28
 

ν
x

 

ν y

−10

−8

−6

−4

−2

−15 −10 −5 0 5 10 15 20

2

4

6

x(mm)

z(
m

m
)

33.04 33.06 33.08 33.1 33.12 33.14 33.16 33.18

16.25

16.3

16.35  

ν
x

 

ν y

−10

−8

−6

−4

−2

−3 −2 −1 0 1 2 3

5

10

15

20

dp (%)

x(
m

m
)

33.08 33.09 33.1 33.11 33.12 33.13 33.14

16.26

16.28

16.3
 

ν
x

 

ν y

−10

−8

−6

−4

−2

−15 −10 −5 0 5 10 15 20

2

4

6

x(mm)

z(
m

m
)

33.06 33.08 33.1 33.12 33.14 33.16
16.24

16.26

16.28

16.3

16.32
 

ν
x

 

ν y

−10

−8

−6

−4

−2

−3 −2 −1 0 1 2 3

5

10

15

20

dp (%)

x(
m

m
)

December 8, 2008 45



5.8  Impact of Non-Zero (linear) Chromaticity

At high bunch current, there is a desire to stabilize the head-tail instability by operating at 
positive chromaticities. In particular, in the vertical plane [13]: . We 
anticipate that the increased tune footprint from our model, see Fig. 46, will have a signif-
icant impact on the Touschek lifetime for a real ring. In fact, a stop band is starting to 
appear at  due to , see Fig. 47. We also expect another stop 

band at  due to ; when IVUs are added. However, the tune footprint 
could be reduced by deliberately driving the vertical third order chromaticity e.g. by intro-
ducing a pair of chromatic decapoles per supercell, see Fig. 48. In particular, while the off-
momentum tune footprint has been reduced it is still not quite within  and 

, and the on-momentum has been increased. We are also driving , 

and  resonances. While the frequency maps Fig. 49 confirms that, to improve 
the on- and off-momentum dynamic aperture, the tune footprint needs to be squeezed 
somewhat further, i.e., until it is within the leading order resonances, the fact that they did 
not collapse is already encouraging. Note that, conceptually, we are now attempting to 
improve the stability by introducing nonlinear effects; after an elaborate effort to cancel 
them1.

1. Of course, this is the norm rather than exception in biology, i.e., nonlinear systems far away from thermal 
equilibrium.

ξx y, 1.0 4.0,( )=

δ 2.6%+ = 2νy 2νy+ 99=

δ 0.5%–= 4νy 65=

2νy 2νy+ 99=

4νy 65= 5νx νx 4νy±,

3νx 2νy±
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FIGURE 46. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances for .

FIGURE 47. Frequency Maps for .
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FIGURE 48. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances for  and 1 Family of Chromatic Decapoles.

FIGURE 49. Frequency Maps for  and 1 Family of Chromatic 
Decapoles.
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5.9  Fourth Working Point: 

The results are shown in Figs. 50-51.

FIGURE 50. Tune Footprint (on/off momentum red/blue) and Distance from 
Resonances.

FIGURE 51. Frequency Maps for a Realistic Lattice.
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6.0  Impact of Higher Order Systematic Multipoles

Pure multipoles e.g. quadrupoles and sextupoles do not exist1. In particular, intrinsic terms 
compatible with the geometry of an nth order multipole are

 (22)

And, since the magnitude of the components for a given magnet type are essentially the 
same, they contribute systematically. Hence, the main impact on the dynamics is their con-
tribution to the tune footprint. An inventory of the main contribution for an off-momentum 
(~2.5%) particle with large horizontal amplitude (~15 mm), i.e., a Touschek event in a dis-
persive region, is shown in Tab. 9.

The horizontal tune shift terms for the bare lattice without damping wigglers are (for one 
super period)

(23)

whereas if  units of  are added to the quadrupoles in the 
dispersive sections (see Appendix A) we obtain

1. On a fundamental level, they are inconsistent with Maxwell’s equations. Therefore, at some point the 
impact of e.g. fringe fields needs to be checked.

Type Quadrupole Sextupole
Multipole

Component

Tune Shift
Terms

... ...

TABLE 9. Leading Order Chromatic Terms from Higher Order Systematic 
Multipole Components in the Dispersive Sections.

k 1 2⁄+( ) n⋅ k 1 2 3 …, , ,=

b6 b10 b14 b9 b15 b21

k11004 k11008 k1100 12,
k11007 k1100 13, k1100 19,

k22002 k22006 k2200 10,
k22005 k2200 11, k2200 17,

k33004 k33008
k33003 k33009 k3300 15,

k44002 k44006
k44001

k55004
k77001 k10 10 0 0 1, , , ,

νx
cell 2.23 2.4 2×10 2Jx( ) 3.8 1×10 2Jy( ) 5.7 0×10 δ2– 6.6 1×10 δ3–+–=

2.7 5×10+ 2Jx( )δ2 2.3 3×10 δ4+

2.5 14×10 2Jx( )3δ2 3.4 12×10 2Jx( )2δ4 5.5 9×10 2Jx( )δ6–++ 

5.8 23×10 2Jx( )5δ2 1.7 22×10 2Jx( )4δ4 2.0 20×10 2Jx( )3δ6 …+ + ++ 

1.0 4.5 4.0, ,( ) ΔB6 ΔB10 ΔB14, ,( )
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(24)

For a  m we have  and the contribution to the tune shifts for the 

full lattice is a few parts in 10-3 for each term. Care is therefore required for the field toler-
ances for the quadrupoles and sextupoles in the dispersive sections, see ref. [14] and 
Appendix A.

To leading order in the multipole strength, the tune shifts are generated by

(25)

and from Eq. (12) we obtain the corresponding tune shift terms

(26)

Correspondingly, the tune shift terms per unit of multipole error can be computed for a 
given lattice. And, by providing a max tune shift contribution for each component, e.g. 
10% of the acceptable tune footprint (0.05), the tolerance can be estimated. Note that the 
contributions from the quadrupoles/sextupoles are even/odd in . The result is summa-
rized in Tab. 10; which is consistent with Tab. 12 in Appendix A.

Type Quadrupole Sextupole
Multipole

Component

Tolerance 1.5 1.2 0.9 4.2 2.6 1.6

TABLE 10. Estimated Higher Order Systematic Multipole Tolerances in the 
Dispersive Sections for a Max Tune Shift Contribution of 0.005.

νx
cell 2.23 2.4 2×10 2Jx( ) 3.8 1×10 2Jy( ) 5.7 0×10 δ2– 6.6 1×10 δ3–+–=

2.7 4×10 2Jx( )δ2+ 5.1 4×10 δ4+

5.6 14×10 2Jx( )3δ2 3.1 13×10 2Jx( )2δ4 2.3 11×10 2Jx( )δ6+ ++ 

1.5 24×10 2Jx( )5δ2+ 5.3 23×10 2Jx( )4δ4 1.2 22×10 2Jx( )3δ6 …+ + +

βx 20∼ 2Jx 1.1 5–×10=

kii00m
1

n2n m–
---------------- n

m⎝ ⎠
⎛ ⎞ 2i

i⎝ ⎠
⎛ ⎞ bnL( )kβx k,

i ηx k,
m ,

k 1=

N

∑–= n 2i m+=

Δνx
1

2π
------

∂ kii00m 2Jx( )iδm( )
∂Jx

-------------------------------------------– i
πn2n m–
-------------------- n

m⎝ ⎠
⎛ ⎞ 2i

i⎝ ⎠
⎛ ⎞ bnL( )kβx k,

i ηx k,
m 2Jx( )i 1– δm
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N
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δ
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7.0  Conclusions

We have outlined how, by an intuitive approach, the on- and off-momentum dynamic 
aperture for a synchrotron light source can be estimated from a nonlinear system of alge-
braic equations for the sextupole/multipole strengths. The approach has only two free 
parameters: the relative weight for resonance vs. tune shift terms and the tune footprint for 
stable trajectories in a modern third generation synchrotron light source. In other words, 

we have established a control theory approach for the medium term (  turns) stability 
for a dynamic system described by a nonlinear system of ordinary differential equations.

Equipped with a predictive, quantitative model for stability, we have then evaluated how 
to improve the control of the dynamics by analyzing and modifying the properties of the 
corresponding algebraic system. In particular, by changing the number- and characteristics 
of the parameters, i.e., we have not evaluated how the underlying (linear) optics could be 
improved. We have also validated our conjectures by numerical simulations with a realis-
tic model.

Presumably, our conclusions, summarized in Section 1.0, are a direct result of the pre-
sented analysis and observations.
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Appendix A:  Summary of Engineering Tolerances

During the ALS conceptual design, one found that the on- and off-momentum dynamic 
aperture were not robust when magnet alignment errors and the, presumably, nonlinear 
effects from the insertion devices were introduced [15]. However, during the construction 
phase we demonstrated that these effects are due to the symmetry breaking1 of the linear 
optics and hence can be corrected; by tweaking all the quadrupoles independently2 [16]. In 
the mean time, this correction scheme has been successfully implemented3 [17] and per-
fected [18].

For the SLS conceptual design we therefore distributed the BPMs so that the orbit is main-
tained at the center of the sextupoles and, by including the girder correlations in our 
model, also showed that the girder alignment tolerances could be relaxed relative to the 
magnet alignment tolerances on the girder [2]. As a result, when the orbit is corrected, the 
symmetry of the optics is automatically restored [19]. This philosophy has been applied to 
the NSLS-II [20]. It can be further improved by using automated quad centering, e.g. by 
using the algorithm developed for the ALS [21]; which we have ported to and tested at the 
NSLS X-Ray Ring [22]. The magnet alignment tolerances are summarized in Tab. 11.

The initial magnetic field tolerances were based on experience from the SLS [23] and 
parametric studies [24]. Moreover, two spare quadrupoles and sextupoles were borrowed 
and re-measured/studied locally [25]. Also, reference magnet designs were pursued by the 
NSLS-II Magnet Design- [26] and Accelerator Physics [14] groups leading to improved 
field quality specifications and corresponding manufacturing tolerances. The results are 
summarized in Tabs. 12 and 13. Clearly, this work is on-going and further refinements4 
are expected and will eventually be validated by measurements.

All random errors have been generated from a normal distribution with a 1 sigma cut.

1. Due to the residual orbit in the sextupoles and vertical linear focusing from insertion devices.
2. Aka “the 48-knob scheme”.
3. By chance the quadrupoles were independently powered for cost reasons.
4. Random errors for “allowed terms”, see Tab. 12, were lumped with the systematic; for now. Also, dipole-

and gradient errors have been excluded since they would be corrected by control of: orbit, beta- and phase 
advance beat, and vertical beam size.
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 RMS
[μm]

 RMS
[μm]

Roll RMS
[mrad]

Girder 100 100 0.5
Quadrupoles 30 30 0.2
Sextupoles 30 30 0.2

TABLE 11. Magnet Alignment Tolerances.

Magnet Type

Standard quadrupoles 1.0 4.5 4.0
Large aperture quadrupoles 1.0 0.5 0.1

Standard sextupoles 1.0 1.0 4.0
Large aperture sextupoles 0.5 0.5 0.5

TABLE 12. Systematic Higher Order Multipoles [10−4] (  mm).

Δx Δy

ΔB6 ΔB10 ΔB14 ΔB9 ΔB15 ΔB21

R0 25=
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n

Quadrupoles Sextupoles
1 0.0, 1.0 10.0, 1.0
2 0.0, 0.0 0.0, 1.0
3 3.0, 1.0 0.0, 1.0
4 1.0, 0.1 1.0, 1.0
5 0.1, 0.1 0.5, 0.1
6 0.0, 0.1 0.5, 0.1
7 0.1, 0.1 0.5, 0.1
8 0.1, 0.1 0.1, 0.1
9 0.1, 0.1 0.0, 0.1
10 0.0, 0.1 0.2, 0.1
11 0.1, 0.1 0.2, 0.1
12 0.1, 0.1 0.2, 0.1
13 0.1, 0.1 0.2, 0.1
14 0.0, 0.1 0.2, 0.1
15 0.1, 0.1 0.0, 0.1
16 0.1, 0.1 0.1, 0.1
17 0.1, 0.1 0.1, 0.1
18 0.1, 0.1 0.1, 0.1
19 0.1, 0.1 0.1, 0.1
20 0.1, 0.1 0.1, 0.1

TABLE 13. Random Higher Order Multipoles for Standard- and Large 
Aperture Quadrupoles and Sextupoles RMS [10−4] (  mm).

ΔBn ΔAn,( )

R0 25=
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