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Abstract

We review recent work on understanding the next to leading order corrections to the classical
fields that dominate the initial stages of a heavy ion collision. We have recently shown that the
leading In divergences of these corrections to gluon multiplicities can be factorized into the
.JIMWLK evolution of color charge density distributions.

1. Introduction: Glass and Glasma

At large energies (small x) the hadron or nucleus wavefunction is characterized-by a
saturation scale Qs » AQ C D arising from the strong nonlinear interactions of the color
field. In the Color Glass Condensate (eGC) (for reviews see [1,2]) framework the small x
part of the hadron wavefunction is described in terms of a classical Weizsacker-Williams
(\\1\\1) field radiated by the hard, large x, sources. The color sources p are stochastic
variables fluctuating to a probability Vlly [p(XjJ ], where y is the
rapidity separating and slow [3].

The matter during first fraction of a fermi in collision of two such is
what we refer to as the Glasrna [4]. The glasma configuration after the collision , at times
o ::; T :s 1/Q8 , consists of longitudinal chromornagnetic and -electric field which depend
on the transverse coordinate on a typical scale r'V sto; As the systern expands the fields
are diluted and can be treated as particles, forming the leading order (LO) production
is the contribution that is computed in the numerically solving the classical Yang-Mills
equations [5,6,7].

In the following we are concerned with the next to leading order (NLO) in g, ti or,
equivalently, loop corrections to this classical field. At NLO one can produce pairs of
quarks Refs. or gluons corrections) and one must take into account
one corrections classical We argue that
corrections have which must then be resummed
into the renormalization group evolution of the sources Hl [p(x i.)) [11,12] .
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Factorization -t heorem

It is perhaps useful to look first at the weak field limit of t he CGe, where particle
production can be computed using kT-factorization ([13], see e.g. [14] for an ap plication
to heavy ion collisions) . The lead ing order multiplicity is

+
1

d2p .Ldy P1
For the real part of the Leading Log correc tion to this result one must take the corre­
sponding expression for double _inclusive gluon product ion

dN
+

y

Yl

and integrate it over the phase space of the second gluon (q -1- -' Yq). Note that at leading
log accuracy we have here taken the multi-Regge kinernatical limit, assuming that the
two produced gluons are far apart in rapidity (see e.g. [15]). The integral over Yq diverges
linearly (this is the general behavior of the 99 ~ 99 scattering amplitude in the
energy limit t s - 'U ~ This divergence the UU1L.JlLJ .....J ........ uu,J".J

order in (Xs) by the real part of the BFKL evolution equation for <py (k -1- 1)'
In the fully nonlinear case of AA collisions the kT-factorization

is broken (see e.g. [5,16])i and one 11lUSt solve the equations
of motion to all orders in the strong classical field. The
....., ....... ""....... ,1-00 ....,..... 1 of the unintegrated distributions
is the color charge density distribution l{ly [p]. These are
sirnilar in the sense that they are not (cornplex) wavefunc­
tions but (at least loosely speaking) real probability dis­
tribu tions. Factorization can be understood as a staternent
that one has found a convenient set of degrees of freedom

which one compute observable from only
the diagonal elernents of the density rnatrix of the incoming
nuclei. The difference is that. when in the dilute case these
degrees of freedom are numbers of gluons with a given rno­
mentum, in the nonlinear case the appropriate variable is
the color and the relevant evolution ",.,. .... nto .. " .....

is JIMWLK , not BFKL. The kinernatical situation, how- Fig. 1. Production of two glu­

ever ) remains the same, To produce a gluon at a very large Otis: th e in tegral over /~y is d i­

rap idi ty (or a contribution in the loop integral of the virtual vergent .

contribution with a large k+) one rnust get a large +-rnomentunl from the right-moving
source. Thus one is probing the source at a large k», i.e. small distances in z " , and the
result must involve at a The of
factorization is that fluctuation with a large k+ requires such a long interval in x+ t o
radiated that it must be produced well before and independently of the interaction with
the other (left moving and thus localized in x+) source. The concrete task is then to show
that when one computes the NLO corrections to a given observable in the Clasma, all

lr.n·n1r>·,f- hv"..;, r» ril"'tT£:l1"'(1'DYl,r>DC can be absorbed the evolution the sources
with the same Hamiltonian that was derived considering only the DIS process. This
is the proof [11,12,17] of factorization that we will briefly describe in the following .
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DO'rl!~TlInIT JIMWLK factorization

Consider t he single inclus ive gluon multi p licity which is a SUIn of probabilitie s to
produce n + 1 particles , wit h the phase space of t he addit ional n must be inte grated out

dN

d3p

Because we have a theory with external color sources of order p rv 1/g, all inser tio ns of
source appear at th e same order [18]. A calculation using the Schwinger-Keldysh form al­
ism leads to the following result s: At LO, the multiplicity is obt ained from the retarded
solut ion of classical field (. .. ) includes the normalizat ion

(4)

The NLO contribution includes the one loop correction to the classi cal field and the +-
nAY1nY"\r\T\.Q1nt" of the the field

dN
d
;Lo== l eip.(w-y) ( .. . )[g~~(x,Y)+/3~(t,x) A~(t,y)+A~(t,x) f3~(t,y)] 'I . (5)
P iD,Y t-HX)

Because of the SK index structure (also f3
satisfies an equation of motion with a retarded
boundary condition), one can express the prop­
agation of a small fluctuation a~ (x) above the
past light cone ~ as a. functional derivative
1\£ of the LO classical field AIL (x) with re­
spect to its initial condition on 2:: afL(x) =
JUE~ a(u) . This leads after some
rearrangernents to the expression for the NLO
contribution to the multiplicity as a functional
derivative operator acting on the leading order
result:

Fig. 2. The I-loop one and two point func tions
in the background field.

dd~ 1 [1 r v)'][';::'']['~+ Cd3Uf3JL(U)']['~] dd~VI
P NLO == 72 JE JL P LO

Here the two point function below t he light cone QJ.-LlJ (u ,v ) == J (27f~~~Ek a~k (u) a+k(v )
is bilinear in the small fluctuation field aJ.L (x) satisfying the small fluctuation equat ion of
motion with and initial condition given a wave ............., T.u - -9 _("'l(')

Fig. for a pictorial of this structure.
The leading logarit hmic contribution comes from the longitudinal component of the

integral over k , the momentum of t he initial plane wave perturbation (and the corre­
sponding momentum in the one loop source term for the equation of motion satisfied by
(3). This LLog part of the functional derivative (6) operator turns out to be precisely
P(lllli\n~I6-JI'H. to sum the JIMWLK Hamiltonians RG of
the source distributions lt~y[p] . The fact that no other terms with the same logarithmic
divergences appear is t he crucial result for factorization. The JI MWLK Hamiltonian
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