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Abstract

Coupled bunch longitudinal stability in the presence of high frequency impedances is considered.

A frequency domain technique is developed and compared with simulations. The frequency domain

techniqe allows for absolute stability tests and is applied to the problem of longitudinal stability

in RHIC with the new 56 MHz RF system.
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I. THEORY

The problem of bunched beam longitudinal stability has been discussed many times [1­

9]. In the present treatment it is shown that one can extend dispersion integral techniques

to longitudinal modes with complicated internal bunch structure. Vve assume M identical

equally spaced bunches. Let () denote the azimuth, which increases by 27r each turn, To

be the synchronous revolution period and Wo = 27rITo be the angular revolution frequency.

Take tP = O-wot as the longitudinal coordinate and consider a driving voltage Vexp(i(koM+

s)tP-int) where s is the coupled bunch mode number and n is the fractional drive frequency.

In amplitude angle coordinates tP = r sin 'Ij; and the Vlasov equation reads

(1)

where Fo(r) +F1(r, 'Ij;) exp(-int) is the normalized distribution function for the first bunch,

I Fo(r)27rrdr = 1. The perturbation hamiltonian is due to the applied voltage and the beam

induced voltage

{

A i(koM + s)rsin'lj; .. }
H

1
= fjqwo Ve -2: PkZk e~(kM+s)rsm'lj;

27rrwso i(koM + s) k=l0 i(kM + s)
(2)

where fj = woryl (132Eo), q is the charge per particle, WsO is the small amplitude synchrotron

frequency, Zk = Z[wo(kM + s) + n], and

_ qWONM! d dnl'F ( nl.) - i(kM + s)rsin'lj;Pk - r r 0/ 1 r, 0/ e ,
27r

where there are N particles per bunch.

To solve the system take

(3)

il'lj;
F1(r,'Ij;) = 2:Re(r)e (4)

e=lo

where f is the synchrotron mode number. Insert eq (4) into eq (1), multiply by

exp( -im'lj;)d'lj;/27r and integrate over 'Ij;,

[
'f") +. ( )] D() f d'lj; -im'l/J 8H1dFo

-~u ~mws r .Lim r = -e ----
27r 8'1j; dr

f d'lj; ..1.

- imF~ 27r e-~m'l' H1(r, 'Ij;)
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= F~ ijqmwo {VJm[(koM + s)r] _ L: PkZk Jm[(kM+ S)r]} (5)
21lTWso koM + s k#O kM+ s

Now define
¢

c.; = j rdrRm(r)Jm[(pM + s)r],
o .

so that

Pk = qwoNML:Ci,k'
l#O

Inserting this is eq (5) gives

C ijq2w5MN" z, j¢ drJm[(pM + s)r]Jm[(kM + s)rJF./( )"C d'
m,p = L m 0 r L t» + rwe.

21rwso k kM + s 0 - iO + imws(r) i#O
(6)

Summing over m gives

ijq2w5MN" Zk "j¢ drJm[(pM + s)r]Jm[(kM + s)r]F./() dri (7)
Pp - L Pk L m 0 r = rice.

21rwso k kM + s m 0 - iO + imws(r)

The integral in equation (7) can be singular if Im(O) = O. For this case I consider

o = Re(O) + iO+, a small positive imaginary component corresponds to an adiabatic turn

on of the driving force. Equation (7) is also valid for finite growth rates with Im(O) > O.

For Im(O) < 0, equation (7) is not trustworthy. In particular, a large negative imaginary

part for the drive will decay faster that the most rapidly damping coherent mode. Clearly,

the beam response will decay like the coherent mode, not the drive. Other subtleties, like

the infinite drive size in the far past, also need to be carefully considered.

Even with the restriction Im(O) = 0+ it is possible that eq (7) will not have a solution.

This will be the case when the system is unstable and this is the key to using it for predicting

beam stability. In particular notice that (7) is of the form

[1 - NZ(O))P = D, (8)

where N is the number of particles per bunch, P = PP' Z is the rest of the dispersion matrix,

and D is the drive. For small N, P ::::::: D and the system is stable. As N grows the matrix

1- NZ(O) changes until, for some 0 = Oc, det(1- NtZ(Oc)) = 0, where Nt is the threshold

intensity for coherent frequency 0c' Therefore, to use (7) in a stability analysis one plots
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det(l - NZ(O)]) on the complex plane as a function of O. Strictly speaking these plots

should also be made for all values of N less than the value of interest. If none of the plots

encircle the origin the matrix will have an inverse for the intensity of interest and the system

will be stable. If the curve goes through the origin then the frequency 0 is an eigenfrequency,

To connect this formalism to the usual results note that retaining a single value of m in

the summation of (7) and making the approximation Jm(x) = (x/2)m /m! leads to a matrix

of rank one. The resulting coherent frequencies are similar to the handbook formulas [6].

II. APPLICATIONS

The theory in the previous section has been implemented in the fortran code NYQUIST.

NYQUIST does not address the 8 = 0 mode since the phase, radial and RF feedback

loops have not been included. I assume the frequency shifts will be small so that only

one synchrotron mode at a time needs to be considered. That is to say, the sum over

m in (7) is replaced by a single value. The variation of synchrotron frequency with r is

taken as ws(r) = wso(hr/4)2 where h is the harmonic number. The infinite sum over k in

(7) is truncated according to Ifo(kM + 8)1 < fmax. The impedance is modeled as a sum of

resonators plus a constant, broad band Z/n. The dispersion integrals are treated numerically

using a uniform grid in the action-like variable I = (hr)2. For Im(O) = 0 one takes

____1 = iPV { 1 } + 7T6 (0 - mwsoI/16) .
0+ - iO + imwsoI/16 0 - mwsoI/16

(9)

By using an action grid In = n6.I and a frequency grid Ok = k6.Imwso/16, the delta

function always corresponds to a lattice point and the principle value is just a sum with the

single point corresponding to the resonant denominator removed. For Im(O) > 0 we take

Ok = iE+k6.Imwso/16 to keep as much symmetry as possible. Also we take 6.Imwso/16-;;E/5

which corresponds to a 1.3% fractional error between summation and integration. The

fractional error was estimated using (for positive a)

The accuracy and convergence of NYQUIST has been benchmarked using simulations.

Figure 1 shows the result of simulations of four bunches with 20,000 macroparticles each.
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FIG. 1: Comparison of multlparticle simulations and the threshold of NYQUIST.

The impedance consists of a broad band Z In and a narrow band resonator. The third

revolution hamonic of the beam current is plotted as a function of time. For the red curve

labeled multi2 the intital phase space distribution of macroparticles was regular and the

charge per macropartic1e was adjusted to obtain the desired line density. For the blue curve

labeled multi3 all macroparticles had the same charge and the initial phase space distribution

was chosen to give the correct line density. The two curves agree rather well. The magenta

curve shows an exponential with a 2.4s-1 growth rate.

Figure 2 shows results from NYQUIST with a 2.4s-1 growth rate for different values of

fmax. All come close to the black dot at the origin but the zoomed in version of Figure 3

shows that the agreement is not perfect. The equivalent length of the smoothing function

was T» = 5 ns. The corresponding upper frequency is fmax = 1/27s = 100 MHz so the the

black curve is closest to the simulation. Figure 4 shows NYQUIST results near the origin

for fmax = 100 MHz and a growth rate of 1.2s-1 if found. This is a factor of 2 smaller

than the simulation and it is possible that the smooth spectral cutoff used in the simulation

behaves differently than truncating the matrix. Also note that the linear rf growth rate for

this system is 4.8s-1 so the effects of Landau damping are large.

The code has been checked for internal consistency and there appear to be no mistakes.

In particlular, the long wavelength limit has been checked and agrees quite well with the

usual formulas[3, 4]. Therefore, I will make the assumption that the calculations are reliable.

First I ignore the broad band impedance. Also I ignore coupling between the rings.

Figure 5 shows nyquist curves for a bright beam and compares the 308MHz higher order
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FIG. 2: NYQUIST threshold curves versus upper frequency cutoff. Im(O) = 2.4s-1
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FIG. 3: Zoomed in version of Figure 2.
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FIG. 4: Curves for fmax = 108 8 - 1 and different growth rates.
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FIG. 5: Plot of the determinant for Im(O) = 1 s-1 and 2 x lOll protons with 2.4 MV on 56 MHz

cavity. The m = 1 dipole mode is plotted. There were 720 bunches in the calculation but the

narrow band Z was reduced by a factor of 6. Broad band Z unchanged.

mode (HOM) on the 197s with the 168 MHz HOM on the 56 MHz cavity. Measurements

of frequency differences between the various 197s suggest that each cavity will contribute to

a different coupled bunch mode so the blue and red curves should be compared. For this

bunch length and no broad band ZIn the 197s and 56 are pretty close and neither cause a

1s-1 grow rate.

Figure 6 includes the broad band impedance with a growth rate of 0.1 S-1. Calculations

wer done for root mean square (rms) bunch lengths of 1.6 ns and 2.2 ns. Figure 7 shows

what happens in the limit Im(O) -+ O. Stability for the 1.6 ns rms length is marginal but

things are very stable for 2.2 ns.

The calculations in Figures 5,6, and 7 only included the lowest frequency HOMs in

Table Il. To get an idea of a worst case scenario all the 56 MHz modes with a resonant

frequency less than 600 MHz where shifted in frequency to drive the same CBM.

III. CONCLUSIONS

Longitudinal coupled bunch instabilities due to HOMs in the 56 MHz cavity have been

considered. The addition of the 56 MHz impedance does not have a signficant impact on

7



/
\
\
"-

0.7

0.6

0.5

0.4

~
0 0.3
I

0.2

0.1

0

-0.1
-0.2 o 0.2 0.4 0.6

Re(Del)

0.8 1.2

FIG. 6: Plot of the determinant for Im(O) = 0.1 S-l and 1 x 1011 protons with 2.4 MV on the

56 MHz cavity, mode 344 is for the 197 MHz HOM mode 708 is for the 56 MHz cavity. There

were 720 bunches in the calculation so the narrow band Z was reduced by a factor of 6. The broad

band Z was unchanged.
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FIG. 7: Plot of the determinant for Im(O) = 0 and 1 x 1011 protons with 2.4 MV on the 56 MHz

cavity. Bunch lengths with at = 1.6 ns and 2.2 ns are shown. Other details are like in Figs 5 and 6

the threshold of longitudinal instabilities.
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FIG. 8: Plot of the determinant for Im(f!) = 0 and 1 x 1011 protons with 2.4 MV on the 56 MHz
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parameter value

h=360 voltage 300 kV

h=720 voltage 2.4 MV

FWHM bunch length 10 ns to 3 ns

particles/bunch 1011

Lorentz factor 107

circumference 3834 m

transition gamma 22.89

TABLE I: Machine and Beam Parameters
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