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ABSTRACT 

A Markov approach has been selected to represent and quantify the reliability model of a 
digital feedwater control system (DFWCS). The system state, i.e., whether a system fails or not, is 
determined by the status of the components that can be characterized by component failure modes. 
Starting from the system state that has no component failure, possible transitions out of it are all 
failure modes of all components in the system. Each additional component failure mode will 
formulate a different system state that may or may not be a system failure state. The Markov 
transition diagram is developed by strictly following the sequences of component failures (i.e., 
failure sequences) because the different orders of the same set of failures may affect the system in 
completely different ways.  The formulation and quantification of the Markov model, together 
with the proposed FMEA (Failure Modes and Effects Analysis) approach, and the development of 
the supporting automated FMEA tool are considered the three major elements of a generic 
conceptual framework under which the reliability of digital systems can be assessed.   

Key Words: Markov model, failure sequences, Laplace transform 

1 INTRODUCTION 

A system can consist of a number of components, each of which may have multiple failure 
modes.  However, not all failure modes of a component, or subsets of component failures, 
necessarily fail the system. The system state, i.e., whether the system fails or not, is a function of 
the states of its components. Each component is either in the success state or in a failed state 
characterized by one of its failure modes.  The actual order in which the component failures 
occur (i.e., the component failure sequence) can be important, since different orders of the same 
set of failures may affect the system in completely different ways.  Accordingly, we can use a 
Markov model to assess the system’s reliability because sequences containing the same set of 
component failures but in a different order can be represented by different Markov states. 

An FMEA (Failure Modes and Effects Analysis) approach that decomposes a digital system 
into a level of generic components, such as a microprocessor was proposed in [1], which helps in 
creating the Markov model of the digital system. Starting from the system state that has no 
                                                 
1 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United 
States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes 
any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or 
process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views 
expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission.   
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component failures, possible transitions out of it are all failure modes of all components. Each 
additional component failure mode will formulate a different system state that may or may not be 
a system failure state.  

Theoretically, the expansion of the Markov transition diagram should be stopped only when 
all the system states become absorbing states, i.e., the system failure states. The difficulty of 
doing so is apparent for any relatively complex system, due to the likely huge number of 
component failure combinations that would need to be included in the Markov model.  In 
addition, each component failure combination would need to be evaluated to determine if it 
results in system failure.  The two major achievements of our proof-of-concept reliability study 
of a digital feedwater control system (DFWCS) address these difficulties [1-3]. The first 
achievement is a supporting FMEA tool that automatically evaluates whether the impacts of 
failure sequences would lead to a system failure [2, 3]. The second achievement, which is 
presented in this paper, is the derivation of an analytical solution of the Markov model.  The 
Markov model is formulated in a way such that individual failure sequences can be solved 
separately.  This improves the practicality of analytically solving a large Markov model by 
allowing the use of truncation based on the number of failures in a system state (or failure 
sequence), i.e., its order.   Such truncation is a concept similar to that of cutset truncation 
typically done in a PRA (Probabilistic Risk Assessment). Thus, the expansion of the Markov 
transition diagram can be stopped after a certain order of the failure sequences, i.e., double 
failure or triple failure sequences, once the probability of system failure converges.   

In this paper, the Markov model approach is applied to represent and quantify the reliability 
model of the DFWCS system. The top event, i.e., the system failure, of the DFWCS is defined as 
a loss of automatic control of the main feedwater system.  Section 2 describes the Markov model 
for a fully expanded transition diagram and the analytical solutions of individual Markov states. 
Section 3 briefly presents the development and quantification of reliability model for the 
DFWCS system.  For comparison, a simplified Markov model using a rare event approximation 
and a traditional fault tree representation of the DFWCS are also evaluated in Section 3.  
Section 4 summarizes the paper and presents our conclusions and ideas for possible future work. 

2 DEVELOPMENT AND QUANTIFICATION OF A FULLY EXPANDED 
MARKOV MODEL 

2.1 Assumptions 

The following considerations significantly affect the development of the Markov model: 
 
1. All components, including those playing a standby role, e.g., the backup central 

processing unit (CPU), are operating at all times and can fail at any time. 
2. Typically, a component can have more than one failure mode with different effects that 

must be modeled differently.  A component is assumed to fail only once in a given failure 
sequence, i.e., after one failure mode of the component has occurred, other modes cannot 
occur for the same component.  

3. In evaluating the effects of sequences of failure modes, the order in which failures take 
place is recognized to affect the impact on the system.  Therefore, the order must be 
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accounted for in developing the model, i.e., in defining possible transitions out of a 
system state and their end states. 

4. The components of the system cannot be repaired or replaced while the system is 
operating.  

5. Failures of different components are independent of each other, regardless of how they 
are physically wired together. 

 
Assumption 1 is generally true for a digital system.  Assumption 2 is believed to hold for 

most of the digital components, because available information on digital component failures 
seems to suggest so.  It may be possible that a certain component fails to an intermediate failure 
mode before it reaches one of the other failure modes.  If recognized, such sequence of failures 
can be analyzed and modeled using the approach of this study.  Assumption 3 reflects one of the 
major reasons for using the Markov model in such studies as this one.  Since the model was 
developed to assess the frequency of an initiating event with the plant in power operation, it is 
expected, as stated in Assumption 4, that if some components of the system fail, they will not be 
repaired because doing so would likely cause or require a reactor trip.  

It is recognized that determining the effects of component failure modes in a real digital 
system could be much more complex than what this study assumes.  Assumption 5 is introduced 
because, otherwise, detailed analyses of the designs at the circuit level, which are unavailable in 
this study, must be performed for individual components to determine how a specific failure of a 
component affects the connected components.  

2.2 Development of a Markov Transition Diagram 
A Markov transition diagram of the system starts from a system state in which every 

component is in perfect condition.  The possible transitions out of this state are all of the failure 
modes of the system’s components.  Each such failure mode would lead to a different system 
state that may or may not be a failed state. If a state is a failed state of the system, then it 
becomes an absorbing state, i.e., one with no transition out of it. If a state does not correspond to 
system failure, then additional component failure modes are considered as possible transitions 
out of the system state that engender additional system states. This process continues and the 
transition diagram grows to represent a tree wherein all the end states of the tree are absorbing 
states. The development of the transition diagram is described graphically below. 

 
It is assumed that there are M components and each component, i , has ],1[, MiNi ∈ failure 

modes (component states) that are represented as ],0[],,1[,),( iji NjMiC ∈∈ . It also is supposed 
that ],1[,)0,( MiC i ∈ represents the component’s normal state, i.e., there is no failure of component 
i ,  as illustrated in Fig. 1.  

 
The Markov model starts from a system state with no component failure, i.e., the initial 

system state is )0,()0,2()0,1( MCCC ⋅⋅⋅ ; the transitions to other states that contain component failures 
are characterized by the Markov model depicted in Fig. 2.  
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Figure 1.   Markov models for M independent components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.   Markov model of a system with M components. 
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Let ),( jiλ be the failure rate of failure mode j of component i.  Each additional failure 
generates a new system state; the order of failures should be strictly followed when generating 
the transition diagram in this model because differences in their order may produce different 
results. 

 

Understanding the notations of the system states in Fig. 2 is very important. Components 
with failures always appear before those without failures, and the failures that appear first are the 
ones that occur earlier. For example, there are two failures in the system state )0,1(),2(),( 2

CCC Nji  

)0,1()0,3( −⋅⋅⋅ MCC  with the j-th failure mode of component i occurring first, followed by the failure 
mode 2N  of component 2; no other components are failed in this system state. 

Fig. 2 shows that there is no component failure in Layer 1, one in Layer 2, and M failures in 
Layer (M+1).  Generally, a fully expanded Markov model would consist of all possible 
combinations of component failures in all possible orders, as indicated in this figure.  The 
transition diagram expands very quickly with increasing numbers of components and component 
failure modes.  In practice, a system state that represents system failure can constitute an 
absorbing state without further expansion.  This consideration drastically reduces the size of the 
transition diagram, such that the model is manageable. 

2.3 Analytical Solution of the Markov Model 
The structure of the transition diagram in Fig. 2 adopts the form of a tree.  Therefore, the 

associated differential equations can be solved sequentially from left to right.  That is, the 
equation for the node with every component in good condition is solved first, and the solution 
substituted into the equations for the states immediately to its right, thereby allowing the 
equations to be solved.  The process continues along each branch of the tree until an absorbing 
state is reached. 

Let P and P& respectively represent the probability and its rate of change of a state of the 
Markov model of Fig. 2.  The following differential equations can be written for the first two 
states of the shaded branch of the transition diagram by inspecting Fig. 2: 
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where the second term on the right side of Equation (2) represents transitions from the state 

)0,()0,1(),( Mji CCC L to all of its associated states in Layer 3. 
In general, for a given system state consisting of a sequence of k component failures, i.e., 

),(),(),( 2211 MM jijiji CCC L , ],0[],,1[
kikk NjMi ∈∈ with Mk ,,2,1 L= , and 0≠kj and 

01 ===+ Mk jj L , we have  
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where PR is the state ),(),(),( 2211 MM jijiji CCC L with k failures, and PS is the state preceding PR. 
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As discussed, the equations are solved sequentially, i.e., solving Equation (1), substituting 

the solution into Equation (2), and then solving Equation (2), and so on. This process continues 
along each branch of the transition diagram until attaining an absorbing state.   For an absorbing 
state with k failures, the second term on the right-hand side of Equation (3) becomes zero.  It is 
demonstrated that the solutions of absorbing states with one, two, and three failures are 
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Equivalently, the solution of the differential equations in the frequency domain can be 

obtained using Laplace transforms.  The induction method, described in Appendix C of [2] 
proves that, in general, for a system state consisting of a sequence of k component failures, the 
solution of Equation (3) in the Laplace transformed space is  
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Undoubtedly, if 0≠Mj , i.e., all components of the system are failed in a certain way, 
Equation (10) becomes 
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Furthermore, stopping the expansion of the Markov model in such a way that the number of 
failures contained in end states is k , the probability of system state ),(),(),( 2211 kk jijiji CCC L  

)0,()0,()0,1( 1 Mk ii CCC LL
+

 for 0≠kj  and 01 =+kj , which then becomes an end state, is given by 
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It should be noted that the poles of Equations (10) to (12) always are distinct (the poles are 
the roots of denominators in these equations). Therefore, the corresponding time-domain solution 
of the equations can be expressed in terms of the poles of Equation (10).  The probability of state 

),(),(),( 2211 MM jijiji CCC L with 0≠kj and 01 ===+ Mk jj L  is given by 
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It can be readily shown that Equation (13) leads to Equations (4) to (6) if k is set to 1, 2, 

and 3, respectively.  Section 3 describes using the solution in quantifying the top event of 
interest, i.e., loss of automatic control of the DFWCS.  

For a system of many components, with each component having a few failure modes (i.e., 
component states), it is impractical to consider all system-level states that can be defined in terms 
of component-level states, i.e., the possible system-level states are too numerous.  This issue of 
state explosion is addressed by considering the dominant contributors or sequences of the 
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system, using a concept similar to that of cutset truncation typically done in a probabilistic risk 
assessment (PRA).  That is, those system states with a larger number of component failures tend 
to have a lower probability of occurrence than system states with fewer component failures.  The 
system states are quantified to calculate the probability of system failure during the expansion of 
the transition diagram; this expansion is terminated when the calculated system-failure 
probability converges, as described in Section 3. 

3 QUANTIFICATION OF THE RELIABILITY OF THE DFWCS SYSTEM 

The procedure for employing the proposed reliability method for a digital system is 
summarized here; more details are given in [1, 2].  

An approach for supporting a Failure Modes and Effects Analysis (FMEA) to develop the 
reliability model of a digital system was proposed in [1, 2]. By decomposing a digital system to 
the levels of modules, and eventually, generic digital components, such as an analog/digital 
converter and a multiplexer, failure modes of individual components can be postulated and the 
impact on the system of a specific component failure mode can be determined by propagating it 
based on knowledge of how the system functions and malfunctions.  

To address the underlying difficulties in implementing such an approach, which are mainly 
related to complexity of current digital systems and interactions between digital systems and 
plants, an automated tool has been developed in [2, 3] to support the FMEA of the DFWCS. The 
nature of the automated FMEA tool is a simulation platform formulated using the original source 
code of the DFWCS CPU (Central Processing Unit) modules, and recreating the controller 
software interfaced by input- and output-variables representing physical signals exchanged 
between modules, the system, and the controlled process. For any given component failure 
mode(s), its effects on associated signals are determined first and then the variables 
corresponding to these signals are modified accordingly. Criteria are developed as part of the 
automated tool, based on the definition of the system’s failure (i.e., a loss of automatic control of 
the main feedwater system) and the status of both CPUs and controllers, such that the system’s 
state, i.e., its response, can be determined automatically. More details are given of the DFWCS 
system, the proposed FMEA approach, and the automated FMEA tool in [1-3]. 

As discussed in Section 2, the states in the transition diagram in Fig. 2 are component failure 
sequences, developed as follows: An individual failure that does not fail the system constitutes 
the first failure in a double-failure sequence.  The second failure can be any individual failure 
mode of a different component.  Similarly, triple sequences arise from adding one of the 
individual failure modes of a different component as the third failure of a double combination 
that does not fail the system. It is not necessary to consider additional component failure modes 
for single failures or double sequences that fail the system. Whether the system is failed by the 
sequences is determined by using the proposed FMEA approach and the automated FMEA 
tool [2, 3]. Sequences containing a higher number of failures can be obtained by following this 
process.  

The role of common cause failures (CCFs) is important in the reliability assessment. In the 
reliability model of the DFWCS system, a CCF is treated as a failure of a "pseudo-component" 
that contains all of the associated components, e.g., the CCF of two CPU modules covers all 
failures of the major components that a CPU module contains. In this study, the failure rate of a 
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CCF was modeled by adding the failure rates of the failure modes of all components contained in 
a "pseudo-component" and using a beta factor.  

The top event of interest is the failure of a DFWCS to control feedwater automatically while 
the plant is operating at full power during one year; this is considered an initiating event (IE) for 
the PRA of the plant. An initiating event frequency, f , is the expected number of system failures 
per unit time that is related to the reliability of the system )(TR , i.e., the probability that the 
system is operating successfully in time period (0, T ), by  

                                                       
T

TRf )](ln[
−=                                                        (14) 

 
Equation (14) can be used to evaluate the initiating event frequency via the )(TR assessed 

over one year, employing the Markov model of the DFWCS. 

The defined top event does not consider the possibility of manually controlling the system. 
For some system-failure modes, manual control is possible using the DFWCS. However, 
modeling manual control is beyond the scope of the study. 

3.1 Quantification of Markov Model  
The Markov model is quantified using the data provided in Reference [2]. As indicated 

therein, the failure parameters used in this study have very large uncertainties, and the failure 
mode distributions of components might be incomplete. The failure data are not appropriate for 
quantifying models that will support decision-making (e.g., regulatory decisions or design 
changes). They are used only to demonstrate the reliability methods, and exercise the reliability 
models proposed in this proof-of-concept study for digital systems. 

Equations (7) to (9) are used to quantify the sequences of failure modes that cause system 
failure.  Table I summarizes this quantification.  There are 112 single failures; 39,497 double-
failure sequences; and, 11,972,960 triple-failure sequences. Considering that each of these 
sequences must be quantified, and that the number of individual, double, and triple sequences 
that must be evaluated to determine whether they fail the system is much larger, the 
computational effort is significant. The last column shows the cumulative probabilities of system 
failure obtained by successively adding the contributions of the single failure modes, double 
sequences, and triple sequences. The contribution of single failures is the highest, followed by 
that of double failure sequences; that from the triple failure sequences is only a small fraction of 
the total probability, i.e., approximately 6%. The cumulative probabilities in the last column of 
Table I indicate that the total system failure probability is converging and should be fairly close 
to the actual system failure probability. 

Using the total system failure probability (0.079) in TTRf /)](ln[−= , the frequency of loss 
of automatic control of the DFWCS is calculated to be 0.083 per year.  
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Table I. Quantification of system failure probability and frequency 
 

 Number of sequences that 
cause system failure 

Probability of sequences 
with system failure 

Total system failure 
probability 

(frequency per year) 
Individual failure 
modes 

112 0.051 0.051 (0.052) 

Sequences of two 
failure modes 

39,497 0.023 0.074 (0.077) 

Sequences of three 
failure modes 

11,972,960 0.0052 0.079 (0.083) 

 
 
 
3.2 Approximate Quantification of Markov Model 
 

The failure sequences of the DFWCS also are quantified using two approximate 
quantification methods, viz, the rare event approximation, and typical fault-tree cutset 
quantification.  

 
1. Rare event approximation (Simplified Markov model). In this simplifying assumption, 

competition among the failure modes is ignored, i.e., when quantifying a system failure 
sequence, only those failure modes that take place in the sequence are retained in the 
transition diagram and all others are assumed non-existent.  Fig. 3, below, represents the 
Markov model of such a sequence. 

 
 
 
 
                                ),( 11 jiλ                    ),( 22 jiλ                           ),( kk jiλ  

Figure 3.   A simplified Markov model. 

If the failure rates are distinct, then the  simplified Markov model can be easily solved from 
the solution of the full Markov model, i.e., by setting the poles in Equations (7) to (9) to the 
individual failure rates, e.g., p0 = ),( 11 jiλ .  If the failure rates are identical, as expected in some 
cases, then a numerical method is used to solve the inverse Laplace transform of the Markov 
states to obtain the time domain solutions; Appendix C in [1] gives details. 

This approximate method should generate a reasonable result, provided the top event of 
interest is a rare event, as is expected to be the case for a reactor protection system.  For the 
DFWCS whose failure is not very rare, the results may be unsatisfactory.    
 
2. Typical fault tree cutset quantification. In this simplification, in addition to the rare event 

approximation described above, the order in which failures occurs is ignored, and the full 
mission time for each failure event is used.  This is the typical way in which the fault-tree 
method quantifies a minimal cutset, i.e., each failure is quantified using the expression 

te λ−−1 , or its simplification, tλ . 

)0,()0,()0( 2,1 kiii CCC L  
)0,()0,()( 21,1 kiiji CCC L )0,()0,(),()( 3221,1 kiijiji CCCC L ),(),()( 221,1 kk jijiji CCC L  
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For a single failure of the system, this method is the same as the rare-event approximation.  
However, the outcomes expectedly will be significantly different for double and triple failures.  
Since single failures dominate the frequency of failure for the DFWCS, the deviation from the 
exact result may not be as large as anticipated for a system with greater redundancy, e.g., a 
reactor protection system. Table II summarizes the frequency of loss of automatic control 
calculated using the three methods described above. 
 

Table II.   Frequency of loss of automatic control 
 

 Exact Method Simplified Markov Fault Tree Cutset 
Method 

Frequency of Loss of Automatic 
Control (per year) 0.083 0.12 0.21 

 
The results in the table show that the frequency of loss of automatic control has a point- 

estimate frequency of 0.083 per year, denoting that such an initiating event is not very rare.  
Using the simplified Markov method does not consider the competition between different failure 
modes, and accordingly, only provides a rough estimate of the frequency.  In addition, the FT 
cutset method ignores the fact that sequences with the same component failure modes but 
different orders of occurrence may affect the system differently.  For these reasons, this method 
gives a less accurate result, i.e., more than a factor of 2 higher than the exact result. 

4 CONCLUSIONS 

A Markov approach is proposed and applied to assess the reliability of the DFWCS system. 
Under the assumptions given in Section 2, the Markov transition diagram can be developed and 
analytical solutions derived for any given states, i.e., the component failure sequences of the 
DFWCS system.  

Compared to the fault tree quantification method, the full and the simplified Markov 
quantification methods consider the order of component failures. The former offers an exact 
solution to the model, while the simplified Markov model does not account for competition 
among the failure modes.   

The Markov approach is one of the three major elements of the methodology for assessing 
digital system reliability proposed in the proof-of-concept reliability study [1, 2]. The other two 
elements of the methodology are (1) the novel FMEA approach that decomposes the system into 
the level of generic components, and (2) the conceptual development of the automated tool that 
supports the FMEAs of digital systems. The Markov model, together with the FMEA approach 
and the supporting automated FMEA tool are considered a generic conceptual framework under 
which the reliability assessment of digital systems can be performed. 

Even with the automated tool supporting the FMEAs and the analytical solutions to 
individual Markov states, the required computational effort is not trivial, as mentioned in 
Section 3. However, it should be highlighted that the proposed approach inherently can support 
parallel processing because the sequences can be analyzed, i.e., determining effects and 
quantifying the sequences, independently. Therefore, a linear scalability for performing FMEA 
and quantifying the failure sequences can be achieved by distributing the sequences onto 
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multiple computers, from which the results can be combined.  This approach offers a practical 
solution for overcoming the complexity and scale of digital systems. 

According to Assumption 4 in Section 2.1, repair is not modeled for failures of the major 
components because the repair is not possible.  For a system whose components can be repaired 
online, the Markov model approach remains valid but the Markov model will be modified by 
adding repair to the transition diagram. The solution of the Markov model using Laplace 
transform becomes much more difficult.  The simplified Markov model based on the rare event 
approximation can still be solved easily.  Assumption 5 is considered a limitation of the proposed 
FMEA approach. An idea similar to the software-based fault-injection method [4] can be used to 
study the reliability of components by modeling the physics of the electronic components. This 
method might suffice to refine the component FMEAs and address the limitation introduced by 
Assumption 5. 

 
It should be pointed out that purpose of the quantification is only to exercise the reliability 

assessment methodology proposed in this proof-of-concept study. Better data are needed before 
the conclusion regarding the reliability of the DFWCS can be drawn. 
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