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1. Introduction

H.-T. Ding

Matsui and Satz [1] proposed long time ago the melting of charmonium states due to color

screening can signal the formation of Quark Gluon Plasma in heavy ion collisions. The suppression

of the electrons from J I l/I is observed both at RHIC and SPS [2], however, its interpretation is not

quite understood. This phenomenon has been studied quite extensively in potential models [3],

based either on models or finite temperature lattice QCD results for the heavy quark potential in a

non-relativistic Schrodinger equation. Depending on the form of the heavy quark potential used,

the dissociation temperature of charmonium can be ranged from shortly above Tc up to values

similar to those obtained in lattice QeD [4]. With the lattice QCD approach, the properties of

the chalmonium, which can be directly seen from the spectral function, is enclosed in the lattice

QeD calculated euclidean time correlation functions. To extract the spectral functions from the

correlation function, Maximum Entropy Method [5] is normally used.

Here we contribute an operational approach to address the in-medium behavior of charmonium

and address the issue of the default model dependence ofthe spectral function obtained from MEM.

2. Lattice correlators and spectral functions

We look into the momentum-projected Matsubara correlators

G(r,j3, T) = Ieifi
.\' < Jf{(r,x)J~(O,O) >r,

.\'

(2.1)

where Jf{ is a suitable mesonic operator, j3 is the spatial momentum, T is the temperature of the

gluonic plasma and the Euclidean time r E [0,1 IT). Through analytic calculation, the Matsubara

correlator can be related to the hadronic spectral function as the following:

..., i'C<O ..., cosh (w( -c - 2i))
G}{(r,p) = dW(J/l(w,p,T) 'h(W) ,

.0 sm 2r
(2.2)

Extracting the spectral function at finite temperature lattice QCD is hampered mainly by two

issues: the physical extent of time is restricted by the temperature, -c < 1IT, and the finite number

of conelator points l making the inversion of Eq. 2.2 ill-posed.

3. Charmonium correlators

First, we analyze the sensitivity of the correlators to the spectral function by using the two

following references correlators:

GO(L T) = .~~ dW<J(w, T = O)K(r. T). Gjree(-c, T) = 10
00

dwa:lree(w, T)K(-c, T), (3.1)

where Go(r,T) is so called "reconstructed" correlator, and Gfree('r,T) is the free correlator at

finite T. Go(r, T) and G Iree( r, T) show the behavior if the spectral function at temperature T were

1what's more. the corrclator points are not precise but with statistical errors
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Figure 1: Ratio of correlator G( r. T) to Go{ r. T) versus rT: with different width of the resonance (left) and
different threshold of the continuum (right).

identical to that at T=O and at free limit, respectively. The ratios of the finite T correlators to these

two references are:
G(r.T) G(r,T)

Ro = . Rjree = (3.2)
Go(r. T) Gjree(r,T)

then Ro ::::::; I and Rjree :-:::::: I indicate the bound state still exist and already melt, respectively.

We consider the spectral function as a combination of the resonance and the continuum: 0' =
O'r + O'e. For the spectral function of the resonance, the following form is taken for T=O: 0',.( co, T =

0) = <5 (co - M), where M donates the mass of resonance. And at finite temperature T, we take
the spectral function of the resonance to have the relativistic Breit-Wigner fmID of O'r( co, y) =
N(y)~ {W2y2+~:LM2)2}' where yis the width of the resonance, and N(y) is the normalization factor
to maintain the relativistic Breit-Wigner the same strength as the delta function. For the continuum

part of the spectral function, we take the fOl1l1U1 a of O'c = 8~2 co2tanh (4~ ) J1- (-£»2 (2 + (t; )2),
where s is threshold of the continuum, for T=O, S = So = 4.5 GeV, for the free case, s=2m (m is
mass of the quark), for finite T, s is T dependent.

The ratio Ro is shown in the Fig. I, in which the left plot is with different values of the

resonance's width and the right plot is with different values of the continuum's threshold. We can
see that both increasing the resonance's width and decreasing the continuum's threshold can make
Ro go farther away from the unity. The influence of the resonance, with the width of 0.9 GeV only

making a deviation of 9% at the symmetry point, is much smaller than that of the continuum, with

threshold being 0.8 GeV smaller than s()=4.5 GeV making a difference of 20%. The ratio R/ j-ee with
different values of the width of resonance and different values of the threshold of the continuum is

shown in the left and right plot of Fig. 2, respectively. Similar to Ro, the influence of the resonance
is smaller than that of the continuum.

4. Reliability of MEM

After checking the charmonium on the correlator level, we're going to the spectral function

level. The nOlmal technique to extract the spectral functions from the correlator is the MEM,

by maximizing a function Q( CY; a) = as[0'] - L [cy]. L [0'] is the usual likelihood function and

minimized in the standard Xl fit. The Shannon-Jayes entropy S[O'] is defined as

/

'00 0'( co)
S[O'] = dco[O'(co)·- lI1(co) - <J(co)log(-(-))],

. 0 m co
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Figure 2: Ratio of correlator G(!, T) to G!ree( r. T) versus rT: with different width of the resonance (left)
and different threshold of the continuum (right).

where m( w) is the default model (OM hereafter) and should be given as a plausible form of <J( w).

a is a real and positive parameter which controls the relative weight of the entropy S and the

likelihood function L. The final output <Jow is determined from a weighted average over a, <Jout ::::::

f da<Jo: (w )P[a IDm]' where the 1110st probable spectral function <Jo; (w) for given a is obtained by

maximizing the Q and P[aIDm] is the weight factor. The DM is very important as it strongly

r:q
F=O.:5

Fo:.3
Input----.......

1111

Figure 3: The OM dependence of spectral function obtained from MEM.

affects the output of the MEM when the quality of the data is not sufficient. As we're focusing

on the modification of the ground state of the spectral function, the nature choice of the DM is the

asymptotic behavior of the spectral function at large w in the free limit. Fig. 3 shows the outputs

of the MEM when using different det~\Ult models (m( w) = F * 4~2 ( 2
). The black line is the input

spectral function (one resonance plus continuum) and the mock data is obtained by adding random

Gaussian noises. All the three default models reproduce the location of the resonance well, in

which the one with F= I (has the same large w behavior as the input spectral function) gives the

most reliable image. For the olle with F=3, the output gets wiggled after the resonance, which is

normally considered as "lattice artifacts" but could also be the "MEM artifacts" [4]. At this point,

it could be better to use the free lattice spectral function [6] as the DM in practice.

However, due to the lattice cutotT, such an asymptotic behavior (like DM with F= 1) is not so

obvious and can not be obtained directly in the lattice simulation. It could be helpful to look into

the weight factor distributions and the COlTelators calculated from the default models, which are

shown in Fig. 4. When one puts some physical prior information into the OM, it could be better
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Figure 4: Weight factor distribution (left, for the visibility, the green line and the blue line are vertically

multiplied by 10 and 103 , respectively), correlators calculated from the DM and the input correlators (right).

that the correlators calculated from the DM is somehow comparable to the lattice correlator data

(and consequently the larger peak location or amplitude of the weight factor function, see left panel

of Fig. 4) rather than some orders of differences (see right panel of Fig. 4). And one also has to

keep in mind that, no matter what kind ofDM used, the correlators, that calculated from the output

spectral functions that obtained from the MEM, can always reproduce the lattice correlator data

within the errors. This essentially accents the importance of the prior knowledge of the spectral

function to put into the DM and a careful analysis of the DM dependence.

5. Summary

Within current scenario of the spectral function, the correlator is more sensitive to the change

of the continuum part than the resonance part, which makes the exploration of the resonance's

properties more difficult. For the frequently used method MEM, it may also produce some arti­

facts. As MEM can always reproduce the lattice cOlTelator data, it's very important to put as much

physical information as possible into the DM. When one is suspicious about some parts of the

spectral function from the MEM, it could be helpful to look into the correlators calculated from the

default models and the weight factor distributions. In this analysis the zero mode contribution [7]

is not included, which requires further research.
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