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Spin Resonance Strength Calculations

ED Courant

Brookhaven National Laboratory, LIptonNY 11973

Abstract. In calculating the strengths of depolarizing resonances it may be convenient to reformulate
the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as
introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown
that resonance strengths calculated by the conventional and the revised formalisms are identical, Re­
sonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential
to consider not only the direct effect of the dipole but also the contribution from oscillations induced
by it. .
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Introduction
The dynamics of particle spin in accelerators has been explored extensively

[1]. In the process of acceleration beams tend to be depolarized by resonances with
perturbing fields. But in a few recent papers [2] the experimental results have led to
apparent disagreements between the resonance strengths inferred from the experimen­
tal results and theoretical values. Therefore it is felt to be desirable to review and
reexamine the theory of depolarizing resonance strengths, especially in cases where a
rf dipole or solenoid is present.

The Thomas-BMT equation [3] for the behavior of spin in magnetic fields is
customarily written

dS = Ls x [(1+Gy)B1- + (l +G)BII] (1)
dt my

where BII =(v ·11)'0 and 131- =13 - Ell =(v x B) x v are the longitudinal and trans-

verse parts of the magnetic field B, V being the unit vector in the direction of the
particle velocity, q and m are its charge and mass, and y is the Lorentz energy factor.

The conventional analysis employs a Frenet-Serret coordinate system based on a
closed reference orbit as we consider particles whose motion takes place near (though
not exactly on) that orbit. We assume the reference orbit is in a plane and has a cir­
cumference 2nR. We define the coordinates to be: s = the distance along the reference
orbit from an origin point (arbitrarily chosen) on the reference orbit to the point on
the reference orbit closest to the particle; x and z = the horizontal and vertical compo­
nents of the vector from that point to the particle.

Using s instead of the time t as the independent variable, expressing the com­
ponents of the magnetic field in terms of the excursions of the particle, and using the
spinor-SU2 formalism for analysis of rotation dynamics (as invented by Hamilton
150 years ago), (1) becomes
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(2)
i ('-Gy IRee-iXJ<1>'=__ ~ <1>* .
2 S elX Gy I R

where the prime denotes differentiation by s; the complex 2-component spinor (D de­
scribes the components 81, 82, 83 of the spin in the x, sand z directions

viaS1= (<DtO"l<D>; 82 =<cDt0"2~>; 83 =(¢T(j3€D);X= Gy(8 - a), 8= 1ds'j p-x'

is the turning angle, e=s/R is the azimuth along the reference orbit, and the depolariz­
ing term C; equals

( = -(1 + Gy)z"- i[G(y -l)z'l p - (1 + G)z(1/ p)' + (l + G)Bso! / Bp] (3)

The diagonal elements of the matrix in (2) mean that the basic precession frequency
about the vertical (spin tune) is Gy ,and the off-diagonal terms produce changes (de-

polarization) in the spin. The depolarizing term C;;e-iX is a combination of oscillations

at various frequencies:

S -iX 1 L -L« ee =- &e r
R r

r

(4)

(5)

and e, is the strength of the depolarizing resonance which occurs at the energy where

the spin tune Gy equals Ky. Here Ky, the r-th resonance value of Gy, may be imperfec­
tion resonances, Kr= any integer k; "intrinsic" resonances (due to vertical betatron
oscillations) x; = kP±vz, where Vz is the vertical betatron tune, P is the periodicity of
the magnet structure, k is any integer; broken periodicity resonances x; = k±vz which
occur when the structure periodicity P is inexact; RF resonances Kr =k ± (J)r! / (J)orbit

induced by radiofrequency dipoles and/or solenoids placed somewhere on the orbit.
When the orbit is the closed orbit produced by imperfections, without betatron oscil­
lations, (4) is a straightforward Fourier series and resonances occur when Gy = an in-

teger k; the resonance strengths 6k can be calculated by Fourier analysis of t;e-IX as

defined in (3):

_ 1 fJrR;-- -i(k8+X)d _ 1 fJrR;-- -iG]Bdck - - ~ e s - -- ':l e s
2n 2ff

Ifbetatron oscillations are present we have intrinsic and/or broken peri­
odicity resonances Kr = k ± Vz ; we consider z to be the trajectory ofbetatron oscilla-

tions of frequency v Z.' The frequencies Ki in (4) are not multiples of one frequency;
therefore (4) is no longer a simple Fourier series but a general combination of oscilla­
tions (an almost periodic function), and Fourier analysis (5) does not apply directly.

But since z = z+(B)eiJlzB + z.: (B)e-iv/J , where z+(8) and z_(e) = z.,*(e) are periodic

functions, we can separate ; into parts containing the factors eivzB and e-ivzB , which

we call s+ + s-; s+e-iVzB and s_eivz8 are periodic functions, and we perform Fourier

analysis for each part, finding, for G y = K = k±Vz ,
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__1_1JrR
? . -i(Ke+x)d _ _1_t71CR /' -iG;Bd

£ - '-.+e S - ~ . e S
K 2n ~- 2n x

(6)

To evaluate the resonance strengths in any particular case it is necessary to express
the integration factors S, s+, s- in (5) and (6) in terms of the components of the

lattice structure, as is done in [6].

Trajectory-based Coordinate System
The particles do not necessarily travel on the reference orbit, therefore the

spin components in the directions ex,es,ez are not exactly in the directions transverse

and longitudinal to the motion of a particle. Since the dynamical equation (1) shows
that the transverse and longitudinal spin components behave differently, it may be
desirable to formulate equations of motion that maintain this distinction, i.e, describe,
for a given particle, the behavior of the components of spin parallel and perpendicu­
lar to the direction of motion of that particle, rather than the components parallel and
perpendicular to the reference orbit.

In several papers Kondratenko [Sa] and Sivers [Sb] introduce a "natural" or
"local" reference frame based on the actual trajectory of the particle. In their formal­
ism the basis vector u2 is taken to be the unit vector vin the direction of the instan­

taneous particle velocity, and the other two are in the local radial and vertical direc­
tion orthogonal to v and to each other. In what follows we ignore second and higher
terms in the excursions x and z of the particle from the reference orbit. In this coordi­
nate system the depolarizing term <; in the spinor equation (2) becomes

(; =-Gyz"+i[Gz'l p+(l+G)z(l1 p)'-(l+G)BsoJ I Bp] (7)

Note that the leading term -Gyz" in (7) is different from the leading term

-(1 +Gy)z" in (3), which led some people, including the present author [8], to the.
erroneous conjecture that resonance strengths in the two frames differ by the factor
Gr / (l +Gy). Kondratenko [Sa] shows that this conjecture is incorrect and that the
resonance strength is the same in both systems. His derivation, in our terminology, is:
The difference between the resonance strength calculated in the two different frames
is (using a superscript r for the reference-orbit based system, and t for the trajectory­
based system)

£11..(1") - E
K

(t) = 2~ £1CR ( s(r) _. ((t)) eiGr0ds (8)

The integrand of (8) is

«(;(1") _ (t))eiCr0 = -[z"+ iGrB' z']eiG;B = -~(z' eiG(0) (9)
ds

which is a perfect derivative. The integral of a perfect derivative over a period aver-

ages to zero. Therefore &K(t) =£/r): the resonance strength is independent of the

frame in which it is calculated.
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It follows that in any particular case where the strengths of resonances are to
be calculated one may select the trajectory- based formalism or the reference-orbit
formalism, whichever is more convenient. The algorithms given in [6] for calculation
of resonance strengths for a given magnet structure, leading to the computer program
DEPOL, remain valid.

Resonance Strength with RF Solenoids or Dipoles
RF solenoids or dipoles may be inserted in an accelerator or storage ring in

order to deliberately excite spin resonances, either for the purpose of reversing (flip­
ping) the spin, or to enhance intrinsic resonances to a strength where the spin reverses
completely rather than partially.

The strength of these induced resonances may be calculated by using the re­
sults of the previous sections.

(a) RF Solenoids
First; consider a radiofrequency solenoid with field B,ml = .J2Byms cos OJYj't .at

one point in the ring, which we designate as {)=O. It rotates the spin by an angle

. SJ2Brmsds
b s cos OJrlt; !J.s :::: (1 + G) (10)

Bp
once per revolution, and does not affect the orbit. (The integral over Brrns extends over
the length of the rf magnet). Therefore we may set z = z ' = 0, and (8) simplifies to

S == -i(l +G)B
so'

/ Bp = -it1 s6p (e) cos vrf (} (11)

where 6p (e) is the periodic delta function and 11rj :::: mrj I {Oorbit is the rf frequency

normalized to the revolution frequency. Since cos vrle = (/l/if8 + e- iVtj 8
) /2 we can, as

before, divide S into s+ + s- and obtain, for Gy=K=k±vZ t

(12)

in agreement with [7] and [10]. Thus there are two resonances of equal strength and
equal phase in each interval of Gybetween one integer and the next. If vrf is exactly a

half integer these coalesce into a single resonance of twice the strength. Note that, since
t1s contains the factor 1/ Bpthese resonances become weak at high energy; therefore rf

solenoids are primarily useful for low-energy rings such as IUCF or COSY.

(b) RF Dipoles
An alternative is to use rf dipoles with transverse fields. We assume that we

have a radiofrequency dipole with radial horizontal field -Iis.; cos mrrt at one point

in the ring, which we designate as 8=0. The beam deflection it produces is

A = fJ2Brmsds
1:1 cos OJrjt; u (13)

Bp
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The spin rotation associated with this deflection is, according to eq, (1), just
(I +Gr) times the deflection, and this leads to the naive equation

6. S.fiBrmsds
&=(l+Gr)~-=(l+Gr)---- (14)

4n 4/{Bp

for the resonance strength at Gr = k ± vif [7,10]. But this is clearly incomplete and

therefore incorrect; thus any disagreement of experimental results [2] with (14) is of
no significance. The dipole induces a forced vertical oscillation in the whole ring,
which in turn also affects the spin just like any other vertical oscillation, and this ef­
fect must also be considered, as recognized in the text of [1OJ and by other authors
[11 ].

The equation of orbit motion for the forced oscillations is

d 2z ~.
-2+K(s)z =-opCB)cosvrjB (15)
ds R

where K(s) is the focusing gradient function, e= siR is the normalized azimuth, bp(O)
is the periodic delta function, and vrf = Wry / OJorbil ' We assume the solution of the ho-

mogeneous equation corresponding to (15) is known; the vertical tune is V z and the

orbit functions are /3z(s), az(s). The solution of(15) is

vz{3z!1 ~ ( ei(k+Vd)'I'. ei(k-v,/ )~ J (16)

z =~ L.. 2 ( )2 + 2 ( )2
k=-oo vz - k + vrJ Vz - k - vrJ

The equations of spin dynamics expressed in terms of the trajectory excursion z(s)
remain valid . As in the discussion leading to eq. (6) the depolarizing term is
S =S+ + s- J where, in the trajectory-based frame, with K± = k ± vrf J

lI_tl co e
iKd J [l+GY( 2 K+

2 J r- 1( ' K+). ('I )'1C;±=-" L 2 2'- K{3z -1+ 2 +G- laz +'--=' +l(I+G){3z - (17)
4n k=-oo Vz - K± f3z Vz P liz P J

The resonance strengths are, analogously with (6), for Gr ;::: K = k ± vrf '

1 f2trR· v r21Z' '

GK ;::: 21r Jo S±e
l KqJ

ds = 2~ Jo fizS±e
l KqJ

do:

In the simple case of uniform focusing,
R = R / v . a = O' Kj3 2 ;::: l: P ;::: R' m;::: () (1/ p)' =01-'2 z' Z 'z' , -r ,

and (17) becomes

(18)

(19)
A 00 ixua
L! e I't' r 2 ]S±=-- I 2 21 (l+GY)K± +G(r-1)K±

41fR k t/ - K L,=-ao y z ±

For each k only a single term of the infinite series contributes to (20): For
K;::: Gr ;::: n + l/rj (n any integer) this is the term k = -n, K~=- n - vrf = -Gy in s-,
obtaining
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(20)

tJ. e-iGyrp
(K ::= 2 2 [O+Gr)(Gr)2- G(y-l)Gy]

- 4JrR Vz -(Gr)- .

R £2Tl iG J.J2Brmsds (Gr)3 + G2
y[;/\." :::: - SK-e YqJdrp::::

21C 4nBp Vz
2 _(Gy)2

and the same expression for K:::: Gy:::: n -" "ri : Kondratenko, Kondratenko and Fila­

tov [12] have found the same result for the case of uniform focusing.
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