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Abstract
Continuing interest in computing the coupling

impedance of cylindrical multi-layer beam tubes led to
several recent publications. A novel matrix method is here
presented in which radial wave propagation is treated in
analogy to longitudinal transmission lines. Starting from
the Maxwell equations the solutions for monopole
electromagnetic fields are in each layer described by a
2x2 matrix. Assuming isotropic material properties
within one layer, the radially transverse field components
at the inner boundary of a layer are uniquely determined
by matrix transfer of the field components at its outer
boundary. By imposing power flow constraints on the
matrix, field matching between layers is enforced and
replaced by matrix multiplication. The coupling
impedance of a stainless steel beam tube defined by a
matrix is given as a representative demonstration.

INTRODUCTION
The well known longitudinal resistive wall impedance

was derived by Neil and Sessler [1] for an infinitely thick
beam tube. Zotter [2] in a seminal paper gives the
impedance of beam tubes from various materials but with
finite wall thickness. The solutions for multilayer
structures are typically based on an algorithm involving
field matching at the boundary layers and sequential
matching of radial wave impedances [3]. Although this
method in principle allows many layers, the numerical
implementation becomes increasingly complex and can be
simplified by the use of a matrix method.

In the course of the study of the coated ceramic beam
tube in the RHIC injection kicker, this author noticed the
analogy of radial with longitudinal wave transmission and
conceived a novel method in which the sequential wave
impedance matching is replaced with multiplication of
appropriate matrices relating the electric and magnetic
field components in each layer [4]. Independently and
without reference to transmission lines, Lambertson
applied matrices to a double metal layer [5]. Using the
theory of transmission lines, Vos derived expressions for
the longitudinal impedance of multi-layer vacuum
chambers, but without using matrices [6]. Recently,
similar concepts were presented as field transfonnation
matrix formalism [7].

The matrix solution presented here is characterized by a
strict separation of the impedance contribution from the
space charge and from the surface impedance at the beam
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tube wall. The beam tube impedance is obtained as
solution of the homogeneous vector wave equation and is
independent of the driving current. Continuity of radial
power flow in the absence of the driving current is
assured by appropriate constraints on the matrix
describing each layer. Obviously, the transfer of field
components across the matrix implies the transfer of
impedances.

FIELD PRESENTATION
The electro magnetic field and its associated coupling

impedance in a longitudinally unifonn axially symmetric
circular beam tube excited by a time harmonic current, are
conveniently derived from the wave equation for the
longitudinal electric field component, Ez , in natural units

( c :::: 1, P.o :::: 1, Co :::: 1, but 2 0 :::: 120;r Q if shO\vn) [8]

dZE dE .-++-'+(p.c-p-Z)eEz ::::...L(/-l&~P-Z)kiz (1)
dr rdr' &s .

A logarithmic divergence in the space charge impedance
is avoided using a tubular beam with radius, a, current,
I , traveling in z -direction with velocity pc, and the

current density

. I .<:( ) -j(p1kz-WI)
l ::::--u r-a e
z 2;ra

where k:::: (()! c and the time dependence ej(t)( omitted. In
the circular symmetric geometry considered here, the
monopole electric field in any cylinder region is formed
as linear combinations of cylinder functions, written in
tenus of Bessel functions or for this paper in terms of
modified Bessel functions with argument (Kr). The radial

propagation constant, K
Z

:::: (fJ-z - /-l&s )e is determined by

the material parameters permeability Jl :::: Ji - j J.1" and

pennittivity plus conductivity &:;:::: & - j(J' / k . The e.m.

fields are here written with a as free parameter,

Ez (r) == Ko(Kr) + alo(lI.T)

& k dE (Kr) & k
He(r)=j-S--d-Cz

) :::: j-S-{-K;(Kr)+aIJKr)} (3)
K Kr K

The radial wave impedance is position dependent and
given as

Ez • K /(o(Kr) . K
Z,.: :::: --::::J---- - J-- (4)

He &sk K1(K1') l:sk

In a single layer infinite beam tube, inner radius b, the
coupling impedance is determined by the "wall
impedance" Z(b):::: ZK'



BEAM TUBE IMPEDANCE
The foundation for the present study is laid by first

deriving the expression for the longitudinal coupling
impedance seen by an axial beam in a beam tube with
known wall or "surface" impedance, Z (b) . The beam tube

properties are fully defined at the inner tube radius by its
waH impedance which can be found independently of the
beam even in the case of a layered tube (of course
assuming only linear materials). It is important to note
that the total coupling impedance consists of two parts,
the space charge plus a separate contribution from the
beam tube. The space charge is found by considering the
beam tube as a perfect conductor. Space charge and wall
impedance are energy dependent. Although this paper
treats the dependence rigorously, the final results are
given for an extreme relativistic and filamentary beam.

The e.m. fields in the beam tube generated by the
tubular current, with the common harmonic factor omitted
and noting that in contrast to many papers k = (I), are
found to be inside the current tube

EZi(r;r) = Alo(r;r)

H('<)i(r;r) = jAfJrl] (r;r) (5)

and outside of the current tube

Io(r;a)[K()(r;r)+alo(r;r)] .
E

7
(r;r) =A---=---------=-

_0 K o(r;a)+alo(17a)

H (17r)=jAfJrlo(1Ja)[-K](r;r)+alr(1Jr)] (6)
(,<)", . Ko('lJa)+alo(lJa)

with 17 = k / fJr, 13 the relativistic velocity factor, r the

relativistic mass factor, and A and a free coefficients yet

to be detennined. Matching ofEz (r) is built into the

expressions and imposing Ampere's law at r = a leads to

. k
A=j 2 [Ko(1Ja) + alo(1]a)] (7)

2;ra(fJr)

Matching the fields to the wall impedance value yields

a = jfJrZ (b)Kj(1]b)-Ko(1]b) (8)
10 (1]b) + jfJrZ (b)lj(17Kb)

Finally, the longitudinal coupling impedance per unit
length follows as Equ. 9

Z =_ Ez(a) =
II I

. klo(1]a) r . lo(17a)[Ko(llb)- jZ(b)fJrK ](1]b)]l- j ) K (1]a) - ~_....::...- .:.---=.l
2;r(fJr)2 l 0 10 (lJb) + jZ(b)fJr1j (1]b) J

The total result can be separated into the space charge
plus resistive wall impedance, Equ.l 0,

. k Jo(r;a)
ZII =-j 2' [Io(77b)Ko(lla)-Io(l]a)Ko(llb)] +

. 21[({3r) 10 (rIb)

2(b) 1; (lla)
+ ?

2;rb 10(r;b) + jZ(b)fJr1o(l]b)I1(l]b)

The total impedance is simplified for the relativistic
limit 1]~ 00 , and one step further for a filamentary beam

into the expression in Equ. 11

lim Z ~ - j k In E...1)
)'~'" II 2Tr(fJr)2 a

Z(b) ( 1 '\. k f8kbZ(b) + j3(kbZ(b»21

+ 2Trb l,l+ jkbZ(b)/2j- } 81fCPrYl (1+jkbZ(b)f2)2--J

which is a more general solution than Chao's "Exercise
2.1" [9] but reduces in the lmv frequency limit to his

lim Z, -;:; _ Z (b) (12)
oHct, Ii 21Cb

MATRIX METHOD
The e.m. fields and the coupling impedance of a beam

tube with infinite radial extent is discussed above. The
fields in a tube with finite radial thickness must satisfY
additional boundary conditions at the outer radius, but are
conveniently described by a matrix relating the field
components at a radius within the layer to those at the
outer radius, written here in the general fonn (and in
natural units to stream line the notation) of Equ. (13)

( Ez(r) 1= M(r,r;J =1 m,,,.(1',1'o) m"h(r,ro)l( Ez(ro) '\
~H(-)(r») Lmhc.(r,fo) mhhlr,ro)J H(,<)(1'o»)
The matrix elements must satisfy certain constraints to
achieve power flow in addition to field component
matching, implying that det illl(r , 1'0) = Yo ! r, and that at

the reference radius, r = 1'0 ' the matrix reads as

M(r",ro)=[~ ~l (14)

The coupling impedance of a multi-layer structure is
obtained by properly matching of the tangential field
components at the cylinder boundaries. In full analogy to
the treatment of longitudinal transmission lines the
matching is best done with radial transfer matrices for
each layer. In this method, the fields at the inner most
layer, r = b are determined via an overall matrix by the

wave impedance of the outennost layer at r
u

' The matrix

of a sequence of radially spaced cylinders is found as the
sequential product of aU individual matrices, starting from
the most inward radius, b , to the outennost radius 1'0' [4]

f\lf(h, l~,) = All (b, rOJ )A,fIl (I'll' rOll ) ..1\1X (1;(> r;J (15)

The rigorous expressions for the matrix elements in a
layer with radial wave number K and 5 s can be written

in tenns of modified Bessel functions as,

m"e(r,ro) = Kro [Ko(Kr)Ij (KIo)+ 10 (Kr)K] (Kro)]

. .1("2}O
me/; (Y, Yo) = J---

k
[Ko(Kr)lo (Kro) -10 (Kr)Ko(Krc)]

8 s

mile(r, 1'0) = -j8skro[K1(Kr)lj (Kro) - J] (Kr)K] (Kro)]

mhh(r,rO) = Kro[Kj(K1')Io(Kro)+lj (Kr)Ko(Kro)] (16)

The matrix multiplication is readily perfonned by the
Wolfram-Mathematica program and does not need
explicit expressions for the elements in the overall matrix.
However, approximate matrix expressions are instructive:



lWatrix ofair (vacuum) betvveen nvo layers
Following the usual practice of ignoring the smail, non­
zero electric susceptibility, (&' ~ 1) ;::: 6x] 0-4 for the sake of

simplicity, air is treated as vacuum. A practical matrix
(and the extreme relativistic approximation,
K~ 17 :::: k! /3r -t 0) for vacuum between tvvo

layers, rand '0' follows as

m (r r .) =:: 1+ ..-!2
2e rr

2

-1 + 2In ro '1--j> 1
ee ' () 4(.or)2 '\ ra

2 r )

, kro 10milr r:):::::J'--ln-~Oe,,' , 0 (/3r)2 r

kr r,.2 l
m"e(r, 1'0) = j---2 i2-1!~O

2(/3r) L 1'0 J

101r 1'2e (r0
2

r ')1 ro '
mhh(r,lo):::::- 1+---~l?-l+ 21n- l ~-- (17)

r '- 4(fJyr r- ro , J r

Matrix ofhigh-conductivity metal
The high conductivity of a metal allows the simplification

of K to % = ~ j J1ak and Es to Err;::: - jer / k resulting in

the well kno'wn approximate expressions

mce (r,lo)::::~ coshX(Jo-r)

m (r r) :::: - r;:;;. X sinh X(1' - r)eh 'l 0 V1'0 j f . 0
er

mhe (1', 1'0) :::: -~ro / r er sinh %(1'0 - r)
%

mhh(r, 1'0) :::: ~ro i l' coshx(ro -r) (18)

IMPEDANCE MAPPING
The e.m. field pair at the outer radius of a layer is

"mapped" by the matrix to the inside and thereby also the
impedance. This can be generalized to the case of a
multi-layer beam tube.

The coupling impedance seen by the beam is
determined according to Equ. 11 from the waH or surface
impedance Z(b) at the inner beam tube radius, which in

turn is found from the "mapped" wave impedance, Z (f;1)

of the infinitely extended layer beyond the outer radius of
the beam tube. The wall impedance is in terms of the
field pair given by

Z(b) = - Ez(rJ = -Ez(rJM",,(b,r;J-He(rrJMeh(b,r,J (J 9)
H 0(r;,) Ez(l~»)Mhe(b,r,») + H(,) (l;,)Mhh (b, ro)

with the matrix elements found by multiplication
according to Equ. 15 and in terms of impedances

Z(b) = Z(I;,)11,;1"" (b, rJ -lvf,,;, (b, rJ (20)
1l.1hh (h, r,,) - Z (r" )li1h" (b, r,,)

Although strictly speaking, the infinite terminal layer
must be air, in practical terms, one can take a perfect
conductor, or an infinitely thick metal cylinder with the

wave impedances, Z(r,,) = 0, and Z(rJ:::: fj},tk/a,

respectively, Note that the matrix solution covers these

and more general situations equally well without change
to the matrices.

The case of vacuum has been treated in different ways.
Vacuum does not force the fields in the last layer, and
should be treated as an antenna radiation problem. Most
publications use ZIJ - jr; which for the last material layer

leads in the extreme relativistic limit to the
implausible Eo (1'0) ~ O. This author is exploring the

eigenvectors of [Iv!(b, Yo r lvi (;:, ,b) -11· Vas introduced

the heuristic concept of an inductive by-pass [10], in
which the free space impedance is used with Z (r;,) :::: 1for

Z(b):::: Zo l'vf"e(h,r,,)-M"h(b,rJ (21)
11.1;,;, (b, r;,) - .Mh" (b, i:,)

CONCLUSION
The matrix method [4], resuscitated here, to compute

the coupling impedances of single and multi-layer beam
tubes is demonstrated with an inductive by-pass in Fig, 1.
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Figure 1: Real (red) and imaginary (blue) impedance per
unit length of a straight metal tube with b :::: 23,5 mm,

wall thickness 2 mm, and a:;;:; 1.5x106/Qm [7]
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