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Abstract

General definitions of horizontal and vertical amplitudes for linear coupled motion are developed from the
normal form of the one-turn matrix. This leads to the identification of conditions on the matrix that give rise
to the linear coupling swm and difference resounances. The correspondence with the standard hamiltonian

treatment of the resonances is discussed.

i. Introduction

One of the hallmarks of linear coupling is the
resonant exchange of oscillation amplitude between
the horizontal and vertical planes when the dif-
ference between the unperturbed tunes is close to
an integer. The standard derivation of this phe-
nomenon (that is, the difference resonance) can be
found, for example, in the classic papers of Guig-
nard [1, 2, 3]. One starts with an uncoupled lattice
and adds a linear perturbation that couples the two
planes. The equations of motion are expressed in
hamiltonian form. As the difference between the
unperturbed tunes approaches an integer, one finds
that the perturbing terms in the hamiltonian can
be divided into terms that oscillate slowly and ones
that oscillate rapidly. The rapidly oscillating terins
are discarded or transformed to higher order with
an appropriate canonical transformation. The re-
sulting approximate hamiltonian gives equations of
motion that clearly exhibit the exchange of oscilla-
tion amplitude between the two planes.

If, instead of the hamiltonian, one is given the
four-by-four matrix for one turn around a syn-
chrotron, then one has the complete solution for the
turn-by-turn motion. However, the conditions for
the phenomenon of amplitude exchange are not ob-
vious from a cagual inspection of the matrix. These
conditions and those that give rise to the related
sum resonance are identified in this article. The
identification is made by expressing the one-turn
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matrix in normal form and defining appropriate am-
plitudes for oscillations in the horizontal and verti-
cal planes. The resonance conditions are found to
be encoded in a two-by-two matrix M formed from
the normai-form matrix W. The formulae obtained
are general in that no particular hamiitonian or cou-
pling elements are assumed. The only assumptions
are that the one-turn matrix is symplectic and that
it has distinct eigenvalues on the unit circle in the
complex plane.
The outline of the article is as follows: In Section
2 the properties of the one-turn symplectic matrix
are reviewed. In Sections 3 and 4 the normal form
of the matrix and normalized coordinates are intro-
duced. The matched ellipsoid and the horizontal
and vertical amplitudes are introduced in Sections
5 and 6. The conditions for resonance are iden-
tified and discussed in Sections 7 through 10. In
Section 11 the degrees of freedom in the choice of
the normal-form matrix are examined and various
parameters and matrices that are independent of
this cheice are identified. The Edwards-Teng pa-~
rameters |4, 5, 6] are derived from the normal-form
matrix in Section 12 and the matrix M is shown to
be proportional to the normalized coupling matrix
of Sagen and Rubin [7]. If the conditions for oue
resonance dominate over those for the other, the
number of parameters needed to specify the one-
turn matrix is reduced from ten to eight. This is
exploited in Section 13 where the measurement of
coupling parameters for the case of the difference
rescnance is discussed. For completeness, the cou-
pled lattice parameters introduced by Ripken [8, 9]
February 15, 2009



are derived from the normal-form matrix in Section
14.

2. The One-Turn Matrix

Let Xy, X{, Yo, Yy be the initial horizontal and
vertical positions and angles of a beam particle at
somme point along the equilibrium orbit of a syn-
chrotron, and let X, X', Y, Y’ be the positions
and angles at the point on the nth turn around the
machine. Writing

X X,
z=| Yy | m=| 3 (1)
14 v
we have
Z=T"Z, (2)
where
Ty T Tiy Tus
T - Ton Ty Tos Ty 3)

Ty I3z Tz Ty
Ty Ty Tyz Ty
is the four-by-four transfer matrix for one turn
around the machine. It will be convenient to parti-

tion Zy, Z and T into two-component vectors and
two-by-two matrices. Thus

w(B) (3) e

and
"M n
T= ( i ) (7)
where
_f Mp My
M= ( My, My ) (8)
_f Nz Nipp p
N= ( Nz Nap > ©
= ( my M2 (10)
Moy Mg ) ’

am (0 1), m
nar N2z

The matrix elements of m and n are proportional
to the skew quadrupole or solenocidal fields that give
rise to linear coupling between the horizontal and
vertical planes of oscillation.

Following Courant and Snyder [1¢]. we define the
symplectic conjugate of any two-by-two matrix

A= ar) @2

to be
\

A-( 4= ) (13)
We then have

AA=AA=JA|L (14)
and

A4+A=(TrA) (15)
where

|A| = A1 A2 — A12An (16)

Tr A = A + Ax (17)
and

10
Iz(o 1) (18)

is the multiplicative identity.

The matrix T is symplectic and we assume that
its four eigenvalues are digtinct and lie on the unit
circle in the complex plane. We assume further that
none of the eigenvalues is equal to 1 or —1. The four
eigenvalues are then A, A, Ay and A;, where [10]

Al =expity, Az = expitn (19)

dcosty =M+ N+ T2+ 4m+1  (20)

dcostiy =M+ N T/ (T? +4m+7|. (21)

Here
M=TrM = M;; + My, (22)
N =TrN = Ny + Nos (23)
and
T=Tr{M-N)=M-N. (24)



Under our assumptions, the phases ¥ and ¥, are
real with cosv; # costy. The tunes associated
with the eigenvalues are

@G =1/(2n), Q2 = tha/(2m) (25)
and po element of the set 1, 21, (2, 2Q2, @1 +
(@2, (31 — (J2 s equal to an iuteger. We also define

U =2cost)y —2cosyin (26)
which gives

U=2vT?+4|m + 7. (27)

We shall adopt the convention {7} that signs in front
of the square roots in (20), {21) and (27) are chosen
8o the U has the same sign as 7.

The symplectic condition implies that the two-
by-twe submatrices of T satisfy

M{+|m| = 1

IN| +|n} =

Mn+mN = 0 (28)
and

M|+ o] = 1

INi+ |m| =

Miii+nN = 0 (29)
where

0::(8 g) (30)

Equations (28) and (29) are actually equivalent,
and, as shown by Brown and Servranckx [11], they
impose a total of 6 independent constraints on the
16 matrix elements of T. The four-by-four sym-
plectic matrix T is therefore specified by 10 inde-
pendent parameters. Equations (28) and (29) also
imply

IMi = |N|, |m|=|n]. (31)

3. Normal Form

Under our assumptions it is possible to write T
in the form [12, 13]

T =wWuw? (32)

where

u:(fé g) (33)

cosyy  sin )
A:( o o ) (34)
—sinyy  cos¥ny

oSty  sintsy .
B= . 2’ 1, (35}
—sinyy costy

and W is a four-by-four symplectic matrix. We call
this normal form. Here we derive some important
relations between the elements of T and those of 4
and W. Partitioning W into two-by-two tnatrices
we have

w Wi Dy
W = ( Dg VVQ ) (38}

and the symplectic condition implies

Wil +Dzj = 1
Wal+ 1Dy} = 1
WD +DyWe, = 0 (37)
JVVl] + iDll = 1
in! + iD‘zl = 1
W;ﬁg + D1W2 = 0 (38)
Wil = Wa|.  |D1] = Dyl (39)
and
-1 _ W] 52
W™ = ( D,OW, ) (40)

Thus we have

()= )
(3w ) (o 8)(

which gives

M = W, AW, + D, BD, (42)
N = D3 ADs + WhBW, (43)
m = Dy AW, + WoBD, (44)
n = W AD;y + D1 BW,. (45)

Taking the trace of (42) and (43) gives

M=DTrA+(1-D)TrB (46)
N=(1-D)TrA+DTxB (47)
M- N = (2D - 1)Tr(A - B) (48)



where
D= W] = W, (49)
1= D =|D,| = |Dy]. (50)
Thus using (24} and (26) we have
T=(2D- 1)U (51)

and since we have adopted the convention that the
signs in (20) and (21) are chosen so that U has the
same sign as T', we must have

D= 1/2. (52)
Taking the symplectic conjugate of (45) gives

=D AW, + WoBD; (53)
and therefore

m+ 0 = D,W, Tr A+ W,D; Tr B. (54)
Using (38) we then have

m + i = UDy W, (55)
and

im + 10| = U?D(1 - D). (56)

Note that this follows also from {51) and (27).

4. Normalized Coordinates
Using (32) in (2) we have
Z=WU"W 2y (57)

and multiplying by W~ from the left we see that it
is natural to introduce normalized coordinates [14]
defined by

Z=w"'z (58)

Zo =W 1Z. (59)
This gives

7 = U"Zo. (60)

Partitioning Z and Zy into two-component vectors
we have

H(3) 2(8) e

< P9

and {60) becomes
X = A"X,, Y =B"Y, (62)

where

NS AP

Xz(g,), Yz(?,> (63)
. 2 . 7

Xy = - , Yo=1i & . 4
(%) #-(%) @

Then using the identities

(AMPAT =1 (B")'B" =1 (65)
we have

XX =X[Xo=¢6 (66)
and

Y'Y =YV, =e (67)
where

XX = X2 4+ X2,
YiY=v2+72

XiXo = Xg + X/* (68)
YiYo=Y7+ V52 (69)
Here and throughout the text we use a dagger to
denote the transpose of a vector or matrix. These
equations define the normal-mode emittances, ¢;
and ¢;, and show that they are conserved quan-

tities. They also show that there are phases ¢; and
¢o such that

Xo= ecosdy, Xj= /eisind, (70)
Vo = Vs cosds. Y. = \/ezsings. (71)

The four parameters e¢;, €3, ¢; and ¢, are the
“action-angle” parameters introduced by Luo [14].
These are initial condition parameters which either
determine or are determined by X, X{, Yy and Yy
through equations (59) and (70-71).

Now writing (58) as

7 = WZ (72)
and using (36) we have

X =wWiX+DY (73)

Y =D, X + LY. (74)
Then using (62) we have

X = W A"X, + D1B"Y, (75)

Y = Dy A X + WaB" Y, (76)

which give the turn-by-turn positions and angles X,
X', Y and Y7 in terms of the submatrices of W and
U and the initial normalized coordinates X, )?6,
Yy and V.



5. The Matched Ellipsoid

Consider now the matrix

E=Www' (77)
Using (32) one finds that

TET = wuutwt (78)
and since YWU' =T we have

TET =E. (79)

By construction the matrix E has unit determinant
and is real, symmetric and positive definite. (A real
symmetric matrix B is positive definite if and only
if the quadratic form ZTEZ > 0 for every vector
Z # 8.) It follows that the set of initial positions
and angles X, X|, Yo, Y{ defined by

ZIE Zy =« (80)
is a four dimensional ellipsoid. On the nth turn
around the machine we have

Z = T"Zy (81)
and

Z'E'Z = Z}(TH" E~1 T Z,. (82)
But (79) implies

T'E'T=E™' (83)
and (by induction)

(TH?E'T" = E~ 1. (84)
Thus

ZE'Z=ZEZ=¢ (85)

and we see that the particle positions and angles lie
on the same ellipsoid after each turn. The ellipsoid
is then said to be matched to the lattice.

6. Horizontal and Vertical Amplitudes

Partitioning E into two-by-two matrices and us-
ing (36) in (77) we have

F C \
where
F = WiW] + D, D] (87)
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G = W, Wi + DyD} (88)

C= {wmg n Dlw;} . (89)

The projections of the matched ellipsoid onto the
X, X’ and Y, Y’ planes arc then the regions defined
by {11]

{XTFX} <« (90)
and
{(YIG 'Y} <« (91)

respectively. The borders of these regions are the
ellipses defined by taking the equal signs in (80) and

(91). This suggests that we define horizontal and
vertical amplitudes

Jo = FTUXF X} = F{X'FX} (62)
and

Jy=G"H{Y'G'Y} =G{Y'GY} (93)
respectively, where

F=|F"Y2, G=|G|7Y/? (94)
and we have used the identities

F!=|F'F, G!=|G|'IG (95)

Note that by construction the matrices FF and GG
have unit determinant and are symmetric and pos-
itive definite. Thus we can write

IF = ( b;x: — 0y )
. Tap gr

GG — < by —ay )
Ay Gy
and we find that J, and J, have the familiar
Courant-Snyder forms

(96)

(97)

Jp = g2 X+ 20, X X'+ b, X'? (98)
Jy = g,Y? +2a,YY +5,Y"? (99)
where
bage — a2 =1. byg, —al =1 (100)
To obtain F' and G we need to calculate
FF =
{W1WI + DlDJ{} {W‘{Wl + 5151} (101)



GG =
{waw] + DDl (W)W, + DB, ). (102)
Here it wili be useful to introduce the matrix
M =TDW; = —W,oD, (103)

where the second eguality follows from (37). Using
{14-15} and (49-50) we have

F
+
1

F -
{D?+ (1= D)+ T (MW[DIDy) } I (104)

{D2 11— D)? +§f(1:321>

and using (103) we have

éW;Wz) } I (105)

Tr (WI WIDID1 ) = Tr (M) (106)
Tx (DD, ) = Te (MMT). (107)
Thus
F=G=

(D + (1= DR+ (MM 2 (108)
Now using (73) and (74) in (92) and (93) we have

{Xfw* +YTDT}‘F{ } (109)
G{x*DT +YTW*}§{ } (110)
where
F=W\W, + DD, (111)
WIFW, = D14+ Mt M (112)
DIFD, = (1 - D)L+ M M (113)
WIFD, = DM + (1 — D)MT (114)
and
G = WiW, + DyD; (115)
DIGD, = (1— D)’ I+ MM (116)
WIGW, = DT+ M M (117)

DIGW, = - (1 — D)M — DM (118)

Thus
=F{D%; + (1 — DYe3}
{XT MiMK + iﬁ?}
+2F I DXTMY + (1 - D)X MTY} (119)

Jy = F{{1 - D)*e; + D%}
+F {XfoMﬁ + ‘?TZV?TVT?}
_2F {(1 - DXIMY + DS{‘&W?} (120)

where F is given by {108}.
Note that we can use (103) to express Dy and Dy
in terms of Wy, Ws and M. Thus

| E— 1
Dy = =W M, Dy=——W,. .
) lelvz A DW2M (121)
and we have
WS vVl
DDl = HE MMM wi (122)
DD} = Dzng MiWg (123)
t Lot
WiD} = — = WIMIW] (124)
t_ Lo ot
DW= leMWQ. (125)

This gives

F=WwW {I o2 MM } wi (126)
1 .

G =W, {1 + MM } wi (127)

C= -}jwl {AM - mtywi (128)

7. Sum and Difference of the Amplitudes

Taking the sum and difference of (119) and (120)
we have

.}nj-.,y—f {D + l_D)Q}(tl 4-62)
2P {XIMMR + T MY
+2F2D - DX {M - MY (129)



and
J_T - ‘]11 = f‘1<2D - 1)(61 - %.2}
+ 2FXH{M+ MY (130)

where M is given by (103} and

MM =DW, WDy = D(1 - D)L (131)
Here we see that if

M= M (132)
then

MM =MM=D(1 - D} (133)

MIM=MM=D{1 - D) (134)

Te(MMT) = Tr(MIM) =2D(1 — D) (135)

F = {D*+0-Dy+2D1-D)}"*
-1 (136)

and (129) becomes
Jo+ Jy = €1 + €. (137)

This is just the result obtained in the standard
hamiltonian treatment {1, 2, 3] of the linear cou-
pling difference resonance. Under the condition
(132) we also find that (126}, {127} and (128) be-
come

1 1 .
F = -ﬁwlwi, G = s W] (138)

C=0 (139)

We shall see in Section 12 that the elements of
WiW]/D and WoWi/D are just the Courant-
Snyder parameters introduced by Edwards and
Teng.

Similarly, if

M= Ml (140)

MM =-MM =-D(1 - D)I (141)
Te(MMY) = Te(MIM) = —2D(1 — D) (142)

1/2

{D*+(1-D)?~2D(1~ D)}
= @p-1n (143)

and (130) becomes
Jm_t]y:él — €2 {144)

which is just the result obtained in the standard
treatment of the linear coupling sum resonance.
Under the condition (140) we also find that (126)
and (127) become

;

F=(2D~- z)ylli—/\f% (145)
W

G=(2D- 1)&%& (146)

and we again find that F and G are proportional
to WiW!/ D and WoWi/D.

8. Further Algebraic Reduction of the Am-
plitudes

Let us now look more closely at the matrix M
which appears prominently in the expressions for
the amplitudes. Writing

_f M My ,
M= ( M M > (147)

it is useful [7] to define parameters 4, B, w, and ¢
such that

2A cosw = My + Moo
2Asinw = Myg — Moy (148)

2Bcost) = My — My,
2Bsiny = My + Ma;. (149)

This shows that AM can always be written in the
form [7]

M= AQ + BY (150)
where
Q- ( cosw smg ) (151)
—sinw cosw
¥ = ( cos ¢ sin ) ) n (152)
sinyy  — cos

The matrices @ and ¥ have the properties

QT =00 =¥ = ¢iy =1 (153)

Q=0 ¥=-v, =y (154)



Thus
Mt = AQH 4 BY (155)

M = Aqt - BV (156)
and we see that
M-M =0 (157)

if and only if B = 4. Similarly we have
MM =0 (158)
if and only if A = 0. As we have seen, these con-
ditions are associated with (137) and (144) respec-
tively.

The matrices £ and ¥ have the additional com-
mutation properties

YOI =0F Q' =90 (159)
which give

MM = (A? — BT (160)
and, along with (131),

IM| =D(1 - D)= A? - B (161)
We also have

PO+ QU =90 - Qv =0 (162)
and therefore

Tr(¥Q) = 0. (163)

We can now express the terms of .J, and J, con-
taining the matrix M in terms of the matrices O
and ¥ and the coeflicients A and B. Thus

XIMY = 4 {ifm?} - B {i‘fm?} (164)

MM = (A% + B - 24BOY (166)
YiMIAMY (A2 + B%)cy

~ 24B {?Tsz\p?} (167)
MIM = (A% + BH1 + 2ABYQ (168)

XIMIMX = (A4 BYq
+ QAB{XWQX} (169)

and, using (163),
Tr(MMT) = Te(MIM) = 2(4%2 + B?). (170)

Using these results in (119}, (120) and (108) we
obtain

Jo = F{D%: +(1-D)%}
+ F{A?+ B (e +e2)}
+ 24F {5{?‘9??}
+ 2(1-2D)BF {f(ﬁﬂ?}

+ me‘{ﬁf\m)’{—?m\y?} (171)

and
Jy = F{D%+(1- D)%}
+ F{A*+BY(a+ )}
- 2A1«'{ifﬂf‘§}
+ 2(140)31@{5{*@?}
+ 2ABF{5§WQ§(-?TQ¢?} (172)
where
F = {1-2D(1-D)+2(A%*+ B} "/*
= [1+4B2}7"% (173)
To proceed further we compute
Xy = Xjamtais v,
= Xiolamis*y, (174)
Xtoy = X{amiesy,
= XleAB"Y, (175)
Yiouy = YiBMIaus'Y,
= Ylwa'B™y, (176)
XtgaX = XiamtvoarX,
= XlwoAX, (177)

where the components of }A(@ and ?0 are given by
(70-71). We then have

Xtoiy = eres cosé (178)
XivyY = Vergg coséy (179)



YUY = eycos s (180)

XI00X = ¢; cos s (181)
where

€ = iy — s+ o — 1 + v (152)

&y = ny +nthy — O — da + 4 (183}

=20y -2+ ¥ —w=2E§ — (184)

G =2my -2 +y+w=E(+E (185)
and

Y1 =21Q1, Yo =27Q2. (186)

Thus the horizontal and vertical amplitudes become
Jo F{D%: +(1-D)’e}

F{A* +BYH (1 +e2)}

2F \Jeies {Acosé_}

2F/e1e3 {(1 —2D)Bcosfy}

2ABF {e;cos () — eqcos(a} (187)

I

+ + + 4

and
Jy = F {DZGQ + (1= D)zel}
+ F{A*+ B (e +e2)}
— 2F\/eje3 {AcosE_}
+ 2F/eez{(1 —~2D)Bcoséy}
+ 2ABF {e1cos(; — €acos(a} {188)

where

D(1—- D)= A%*-B? (189)
and

F={14+482}72 (190)

These expressions are exact. They give the ampli-
tudes of oscillation in the horizontal and vertical
planes in terms of the initial condition parameters
€1, €2, @1 and ¢a, and the parameters D, A, B, w,
1, Q1 and @9 of the one-turn matrix. The simple
appearance of the parameters A and B in the ex-
pressions shows the utility of expressing the matrix
M as AQ + B¥. Note that each amplitude con-
tains frequencies @1 — @2, Q1 + Q2, 2Q1 and 2¢,.
If B = 0, only frequency ¢J1 — (J2 appears, while if
A =0, only frequency @1 + (J2 appears. Note also
that frequency 01 — @2 is absent from the sumn of
the amplitudes and is the only frequency present in
the difference.

9, The Difference Resonance

Let us examine further the case B = 0. In this
case we have A2 = D(1 — D) and F = 1, and equa-
tions (187) and (188) become

Jy = Dep+ (1 - Djes
4 2{D(1 - D)egea} P cosé (191)
and
Jy = Dey+ (1= Dyey
~ 2{D(1 - D)erea}? cosc_ (192)
where
- =2mn{Q1 — Qa) + ¢2 — 1 +w. (193)

Here we see that the only n dependence in the ex-
pressions for J, and Jy, is in the terms contain-
ing cosé_ which oscillate with frequency @1 — Q2.
Moreover we have, as already shown,

Jo+Jy = €1+ €2, (194)

These are both characteristics of the amplitudes ob-
tained in the standard hamiltonian treatment of the
linear coupling difference resonance. We therefore
identify the condition B = 0 (or B2 « A?) with the
difference resonance. As we have seen, this condi-
tion is equivalent to M = MT which gives

My = Mgg, Mz = —~Mo;. (195)

The work of Calaga, Témas and Franchi [15] shows
that the normalized coupling matrix elements of
Sagan and Rubin (7] satisfy equations (195) when
the sum resonance driving term of the hamiltonian
treatment is zero. In Section 12 we shall see that M
is in fact proportional to the normalized coupling
matrix.
Since for B = 0 we have

D{1-D)=A>-B2=4%>0 (196)
it follows from (56) that we must have

m+nl >0 (197)
and we may define

K? = |m+1| (198)
Using this in (27) we then have

U? = T? + 4K? (199)



and (56) becomes

D1 - D) L (200)

K%
Substituting (200) into (191) and {192) we see that
the oscillations of J, and Jy, are greatest when 7' =
0 and go to zero as K2 goes to zero. We also have

11 T2 )2
— + _— Toe———
2732 { T2 4 4K? }

which shows that D goes to 1/2 as 7" goes to zero
and goes to one as K2 goes to zero. The parameters
T and K correspond to the unperturbed tune sepa-
ration and the coupling parameter in the standard
treatment of the linear coupling resonance.

By specifying values for parameters A, B, (J;,
Q4 we obtain values for D, U2, K2 and T2. As an
example of the difference resonance let us take

D= (201)

A=048, B=0048 (202)

Q1 =5.2364, Q= 4.2236. (203)
‘We then have

D = 0.6480 (204)

U = 2cos(2n@Qy) — 2cos(27Q)2)

= —0.1595 (205)

K% = D(1 - D)U? = 0.005806 (206)
and

7% = U? - 4K? = 0.002230. (207)

Figure 1 shows a plot of Jg, J, andJ;+J, obtained
with these values. Here we have taken ¢; = ¢g = 1,
¢ = ¢ = 0 and w = ¢ = 7/4. As expected
we see J, and Jy oscillations characteristic of the
difference resonance. The small-amplitude high-
frequency oscillations seen on all of the curves are
due to the parameter B being small but nonzero.
If we set B = 0 and keep A, 1, Q2 the same as be-
fore, we obtain the curves shown in Figure 2. Here
we see that the high-frequency oscillations are gone
and the sum J, + J, is constant. Setting B = 0
corresponds to discarding the high-frequency terms
in the hamiltonian treatment of the difference res-
onance.
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Figure 1: Horizontal and vertical amplitudes J, and Jy and
their sum versus turn plotted in black, red {dashed curve)
and blue respectively. Here normalized coupling matrix pa-
rameters A = 0.48 and B = 0.048. The small-amplitude
high-frequency oscillations seen on all of the curves are due
to the parameter B being small but nonzero.

100

Figure 2: Amplitudes J; and Jy and their sum obtained
with normalized coupling matrix parameters A = 0.48 and
B = 0. Here the high-frequency oscillations are gone and
the sum is constant.



10. The Sum Resonance

For the case A = 0 we have B? = D(D - 1),
F = {2D —1}"" and equations (187) and (188)
become

Jp = Dep+(D—1)es
—~ 2{D(D = 1)erea} P costy (208)
and
J, = Dea+(D-1)e
— 2{D(D - erex} P cose, (209)
where
£ = 2mn(Q: + Q2) — d1 — ¢ + . (210)

Here we see that the only n dependence in the ex-
pressions for J; and J, is in the terms contain-
ing cos &, which oscillate with frequency @1 + Qa.
Moreover we have

Jm —Jy = €1 — €9, (211)

These are just the characteristics of the amplitudes
obtained in the standard hamiltonian treatment of
the linear coupling sum resonance. We therefore
identify the condition 4 = 0 (or A? < B?) with the
sum resonance. Note that this condition is equiva-
lent to M = —M? which gives

Mz = May.

The work of Ref. [15] shows that the normalized
coupling matrix elements satisfy these equations
when the difference resonance driving term (of the
hamiltonian treatment) is zero.

Since for A = 0 we have

My = —Maa, (212)

D(D-1)=B>-A’=B%>0 (213)
it follows from (56) that we must have

lm +f| < 0. (214)
Thus we may define

K? = —jm + 1] (215)
and we have

K2
DD-1)= Tk (216)

Substituting (216) into (208) and (209) we see that
in this case the oscillations of J, and J, increase

i1

-
w

B
iV

ANl A

a5
L WV Yy ,\,‘w’h}:
0 RS VP SRS S YO ST S N W | | ST S YN WU W N
0 20 40 60 80 100

Figure 3: Amplitudes J; and Jy and their difference plotted
in black, red (dashed curve) and blue respectively. Here
normalized coupling matrix parameters A = 0.056 and B =
0.56. The small-amplitude high-frequency oscillations seen
on all of the curves are due to the parameter A4 being small
but nonzero.

without bound as 7% approaches 4K 2. The motion
is unstable for T% < 4K2. We also have

11 72 1/2
D=-4+-0 ———
2 T2\ T2 —4K?

which shows that D becomes large as T? approaches
4K? and goes to one as K2 goes to zero. As an
example of the sumn resonance let us take

(217)

A=005, DB=056 (218)

Q1 =5.2124, Q2 =4.7973. (219)
We then we have

D= 1.2486 (220)

U = 2cos(2nQ1) ~ 2cos(2mQ3)

= -0.1176 (221)

K? = D(D - 1)UU? = 0.004291 (222}
and

T? = U? 4+ 4K? = 0.030987. (223)

Figure 3 shows a plot of J., J, and J, — J,
obtained with these values. Here we have taken
er=1lea=05 1 =¢a=0andw=¢ =7/4. As
expected we see J; and J, oscillations characteristic
of the sumn resonance. The small-amplitude high-
frequency oscillations seen on all of the curves are
due to the parameter A being small but nonzero.



11. Change of Representation

The matrix W in the normal-form expression (32)
for T is not unique. In the Appendix it is shown
that if there is another symplectic matrix }W for
which

T =wuw! (224)
then we have
W =Wo (225)
where 0 must be of the form
P O
_ 226)
°-(% 2) 22
with
P ( coswy  sinw ) (227)
_—sinw;  coswy
and
_ COSWwg  sinwsg
Q= ( —ginws Ccoswy ) ' (228)

We shall call the transformation from W to W a
change in the normal-form representation of T. The
transformation is generated by the matrix O and we
use an underline to denote a transformed parameter
or matrix. The purpose here is to identify which
parameters and matrices of the previous sections
are independent of the representation.
It follows from (225-228) that

Ww' = wootwt = wiwt (229)
and therefore
E=wWw!=ww!=E. (230)

Thus E is unchanged by a change of representation.

The same is obviously true for the submatrices (F,

G and C) of E and it follows from (92) and (93)

that the amplitudes J, and Jy, are unchanged.
Writing

) wal p—l
w = (5 %)
_ w, D P 0 1
S(HR)(EY) e
we have
..V‘_)l = WP, 21 =D,Q (232)
D, =D P, W,=W,Q. (233)
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Since PP = QQf = I it follows that

wwh = wow! (234)
D, D} = D;D} (235)
W, W5 = Wa Wi (236)
D, D} = DyD} (237)

which shows that these symmetric positive-definite
matrices are unchanged by a change in representa-
tion. We also have

W= W=D (238)
Dy =[D:i|=1-D (239)
Wyl = [Wa| =D (240)
Dyl = Dol =1-D (241)

which shows that the parameter D is unchanged.
This is also evident from inspection of equation
(56).

For the matrix M we have

M =D,W, = QDW,P = QMP (242)

M = AQQOP + BQVP (243)
and

M= AQ + BY (244)
where

0=Qup = ( oty ) (245)

— 1 sin

N i I
and

w=wtw —ws (247)

Y = +wr +wa. (248)

Thus M does in fact change under a change in rep-
resentation, but only the phases w and v change;
the parameters A and B are unchanged.

There is a corresponding change in the phases ¢;
and ¢ associated with the normalized coordinates.
The transformed normalized coordinates are given
by

Z, = Wz,

Z, (249)



where

) (250)

X{J:(X:?>~ g{}:(%?)- (251)
Xo \ X
Using (225) and (59) we have
Zy= O "W %= 0 ' % (252)
X, =P'X,, ¥,=0Q'Y, (253)
Thus we have
XX, = XjXo =« (254)
¥, =¥ = (255)
and
Xo=iicosp, Xo=asing, ~ (256)
Yo=Geosg, Vo= Gsng,  (257)
where
P, =¢1+w (258)
@, = d2 + wa. (259)

The change in representation therefore shifts phases
&1 and ¢2 by wy and w, respectively. Note that
these equations along with (247) and (248) give

G~ tw=0r— ¢ +w (260)
which shows that the phases £, £_, (3 and (3 ap-
pearing in the expressions for J, and J, are un-
changed by a change in representation.

12. The Edwards-Teng Parameters

In terms of the matrix M we have

Dy = —l—Wlﬂ, D, = ‘*iWQM

3 5 (262)
and
_ 1/ pw WM
V=5 ( ~WoM  DW, ) (263)
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which we can write as

W = %7{( ™ },?;2 ) (264)
where
Defining

i=vD. F= %wb G= ;}}W-g (266)
and

W = éwg,fvzwgl = f—ié‘M]f‘*l (267)
we then have

W =RN (268)
where

R= ( —dév Z‘I’ ) (269)

7 0 oy

f’:('g g) (270)

The one-turn matrix is then

T =WUW~! = RUR™! (271)
where

U=NUN-L. (272)

‘We shall show that this is just the parameterization
of Edwards and Teng [4, 5, 6]. Furthermore we show
that M is proportional to the normalized coupling
matrix introduced by Sagan and Rubin [7].

Since FFT and §§T are symmetric positive-
definite matrices with unit determinant we may de-
fine Courant-Snyder parameters ai, 31, 71, aa, 32
and ~ve such that

51 —& - _1_ t .
( I, >—.7~‘f = SWw(273)
and
—a

52
—as

Equations (234) and (236) show that these param-
eters are unchanged by a change in representation.
Using (232), (233) and {242) we also have

W, MZV_:;I = WzMW;l

PN 1
- ) = GGt = ﬁwzwg . (274)

{275)



which shows that W and R are unchanged by a
change in representation.
Defining now

WA
Fo= 2
il 1) (276)
- i Ga 0
_ i A - 277
YT ( —ay 1 } 1)
we have
FFt= ( br —a ) = FF (278)
g Y1
Ga -
’cfz( P2 2\~— Gt 279
Gg Car ) GG (279)
and it follows that we must have
F=rP, (=6Q (280)
where
_ Ci S]
_ ( G ) (281)
Y So
and
C}+82=1, CZ+52= (283)
Thus we have
N =NO (284)
where
F O P O
N—(Og), @:(OQ> {285)

and therefore
U=NOUOTIN = NUNTT. (286)

Carrying out the matrix multiplications we then

find
A O
U= ( 6 B ) (287)
where
A=FAF B=¢gBG! (288)

This along with the matrix R gives the parameter-
ization of Edwards and Teng.
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Note that we may always choose the representa-
tion such that

F=7F G=¢ (289)
Equation (267) then becomes

W = %ng—‘ (290)
and we have

M =dw (291)
where

w=G 'WF. (292)

This is just the normalized coupling matrix intro-
duced by Sagan and Rubin [7]. We also have, with
the help of (262) and (266),

Wy =dF, Di=Fw (293)

Dy = —Gw, W, =4dg. (294)
Equations (75-76) then become

X = dF A" Xy + FWB"Y, (295)

Y = —GwA"X, + dGB" Y, (296)

which give the turn-by-turn positions and angles
in terms of the Edwards-Teng parameters and the
initial normalized coordinates.
Note that using (150) in (291) we have
1 .
W= {AQ + BV} (297)
C
where Q and ¥ are given by (151) and (152), and
d is given by
d?(1 — d*) = A® - B2. (298)
The phases w and ¢ in the matrices © and ¥ are
fixed by the choice (289). Thus, the one-turn ma-
trix T is specified by the ten parameters @1, @2,
oy, a9, B, B2 A, B, w and 9.

13. Measurement of Coupling Parameters
for the Case of the Difference Resonance

If we are operating under the difference resonance
condition B = 0, then the number of parameters
needed to specify the one-turn matrix is reduced
from ten to eight. Measurements of the turn-by-
turn horizontal and vertical positions at a single



dual-plane beam position monitor (BPM) then be-
come sufficient to determine the coupling strength
K? = |m + 1| and the phase w. To show this, we
have for the case B =0,

w=+v1-d0 (299)
and eguations (295) and (296) become
FIX = dA"K, + e Q1B"Y, (300
and
GY = —eQA"X, + dB"Y, (301)
where
e=+v1-d? (302)
Using the identity
{ cosf sind cosy \ _
\ —sinf cosd sinxy /
cos(f — x)
( —sin{f — x) (303)
we then have
T cos(nyy — &1)
FoX=vVead ( —sin(nv; — ¢1)
wvae (_Salmem ) o)
Vg — G2 — w)
and
i ST cos(nys — ¢a)
G Y =Ved ( —sin(ntg — ¢2)
3 cos(nin — ¢y +w)
€1€ ( *Sin(n'l;”l _ d)] +w) (305)
which gives turn-by-turn positions
X = Ajcos(nty + x1)
4 Az cos(niy + x2) (306)
Y = Bjcos(nyr +m)
+ Bacos(nig + ) (307)
where
A = Ve Bid2 Ay = JeaBre? (308)
Bl = \/{-"15282, BZ = \/(‘2/82()!2 (309)
Xi=—¢1, Xe=—¢2—w (310)
Mm=7—¢1+w. N=—¢ (311)

and .

’(‘-."’}1 = 27TQ1¥ ’l,’)g = QTFQQ. (312)
We can fit (306) and (307} to turn-by-turn mea-
surements of the horizontal and vertical positions.
Using the fitted values of parameters Ay, Ag, B
and B, we obtain

d?e%e1 816000 = A1 A2 By By (313)
and

VerBreafh = A1By + Aa By (314)
which gives

a1 —d%) = Ai 428 By (315)

(A1 By + A2B;)*

Note that this expression is independent of which
normal mode is labeled 1 and which is labeled 2.
The expression is not valid if ¢; = 0 or ¢ = 0, but
one can always kick the beam so that both normal
modes are excited.

Using the fitted values of 71 and @2 we also have

U =2cos(27nQ1) — 2cos(2nQ2). (316)

We then can calculate the coupling strength

K? =d?(1 - d*)U? (317)
and also
1? = U? - 4K*. (318)

From the fitted parameters x3 and 7, we obtain
the coupling phase

w =12 — X2- (319)
We also have
M- X1 =Tz~ X2+ T (320)

which shows that w is determined only to within a
phase of 7 due to the freedom to choose which nor-
mal mode is labeled 1 and which is labeled 2. Luo
has obtained these results with his matrix pertur-
bation approach [16] and with the standard hamil-
tonian approach [17].



14. The Ripken Parameters

For completeness we show here that the normal-
form matrix W provides a straight-forward route to
the coupled lattice parameters introduced by Rip-
ken |8, 9]. Since WiWI, D1 D, WoW} and D,D]
are symmetric positive-definite matrices with deter-
minants

waw]| = Wawj

| = D? (321)

D:1D}| = [D;D}| = (1 - D) (322)
we can introduce Courant-Snyder parameters de-
fined by

DE; =WW/, 1-DF,=D;D] (323)
DEy =WoW)., 1 —DIF, =D,D}  (324)
where
3 -
E; = 325
! ( —ay gs! ) ( )
_( b
F) = ( e, ) (326)
B2 —aq )
E, = 327
2 ( —a2 Y2 (327)
o by —a
F, = ( o g ) . (328)

It follows from equations (234-237) and (238-241)
that these parameters are unchanged by a change
in representation.

From equations (73-74) we see that the turn-by-
turn motion in the horizontal and vertical planes is
given by

X =X+ X, (329)
Y=Y +Y, (330)
where
=wWX, X,=DY (331)
Y; =X, Y.=W,Y. (332)
Thus we have
XIE['X; = D {xi{»viwf)“lxl}
= DXIX
= De (333)
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XIF'X, = ;1-1){{);;{79}@;?)*11(2}
= |1- DYty
= |1- Die (334)
tm—1 _ r ~iy—1
YiF;Y, 1—31{ 102D Yl}
= |1-DXX
= 1-Dlg (335)
and
YiE;'Y; = D{YiWoW))TYs}
= DY'Y
= Dea (336)

Here we see that X;, Xg, Y, and Y, are each
constrained to lie on an ellipse. The motion in
each plane is therefore given by the superposition
of motion on two ellipses as shown by Ripken. The
Courant-Snyder parameters of the ellipses are just
the Ripken lattice parameters.

Note that under the difference resonance condi-
tion B = 0 we have, with the help of {122-123) and
(132-134),

D
DDl = 1A (337)

1-D
D,D} = —__D—wwzwg (338)

and it follows that
F;=E;, F;=E,. (339)

Thus in this case the parameters of the two ellipses
associated with the horizontal motion are the same
and those associated with the vertical motion are
the same.
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A. Appendix
Suppose that

T = WUW™ = wuw* (340)



where W and W are symplectic. Multiplying this
by W™ from the left and by W from the right we
have

U=WIWUNTW=0uo™t (341)
where

O=Ww'Ww. (342)
Thus

UO = OU (343)
and writing

0= ( : zg ) (344)

where P, Q. L, V are two-by-two matrices, we have
A O P VY
c B L Q/

(La)(s5) 045

Carrying out the matrix multiplications one then
finds

AP =PA, BQ=QB (346)

BL =LA AV =VE. (347)
Suppose now that |Lj # 0. Then we have

B=LAL™! (348)

and it follows that B and A have the same eigen-
values. This contradicts our assumption that the
eigenvalues of T are distinct. Thus we must have
|L{ = 0. Similarly, one finds that {V| = 0. Thus
the equations BL = LA and AV = VB imply

IBL=0, LAL=0 (349)

VAV =0, VBV=0 (350)
where

L1 Ly ,
L= 351
( Loy Lo > (351)
o Vi Vi ) -

V= ( Var Vaz (352)

and

_ ( cosY;  siny -
A= \ —sing;  cosy ) (353)

cos?e  sin o
B= OR %2 2 (354)
—sinyn  cosiys
Carrying out the matrix multiplications, one finds

(L¥2 -+ Li}) sing =0
(L%, + L) sineyy = 0 (355)

(L3, + L3)sine; =0

(L%, + L) sinyy =0 (356)
with similar equations for the elements of V. Since
having both sint; = 0 and sinvyy = § would con-
tradict our assumption of distinct eigenvalues, at
least one of these must be nonzers. It then follows

that all elements of L must be zers. The same is
true for V. Thus
L=¢ V=0 (357)

Now, writing out the matrix elements of PA = AP
and QB = BQ, one finds

(P12 + PQl) Sil’l’l/)] =0
(P11 — Pag)sine; =0 (358)

(Qi2 + Qa1)sintp = 0
(@11 — Q22)sintp2 = 0. (359)

Here our assumption that no eigenvalue is equal to
1 or —1 implies that neither sin; nor sin» can
be zero. Thus we have

Pyy = —Pra, Paa=PFPn (360)
Qa1 = —Qi2, @2=Qu. (361)

The matrices O, P, and Q therefore must be of the
form

P O

0= < 0 Q ) (362)

_ (:1 51
P= ( 5 o ) (363)

_ Ca S2
a-( % ) -
Furthermore, sinice O is symplectic, we mnust have
C24+87=1, C34+8%=1 (365)

and thereiore

PPT=1 QQi=1 00 =1L (366)
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