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Equilibrium Tail Distribution due to Touschek Scattering

B. Nash, S. Krinsky, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract
Single large angle Coulomb scattering is referred to as

Touschek scattering. In addition to causing particle loss
when the scattered particles are outside the momentum
aperture, the process also results in a non-Gaussian tail,
which is an equilibrium between the Touschek scattering
and radiation damping. Here we present an analytical cal-
culation for this equilibrium distribution. 1

INTRODUCTION
Electrons in a storage ring emit radiation which results

in both a damping process and a diffusion process. The ef-
fects of these processes, together with the symplectic mo-
tion through the magnets results in a Gaussian distribution
which has been well studied.

Given such a distribution, however, there are other pro-
cesses occuring. One is the scattering of particles off of
each other. The effect of multiple small scatters results in
a slow change of the beam core referred to as Intrabeam
Scattering. The single larger amplitude scatters results in
particle loss and is referred to as the Touschek Lifetime.
In this paper, we consider the fate of those single scattered
particles that are not lost due physical, or dynamic aperture.

In particular, we will consider the core beam as a source
for populating the beam halo through Touschek scattering.
After a scatter, the particle will damp down, returning to the
core. Thus, any region of longitudinal phase space will be
continually repopulated by Touschek scatters, while at the
same time losing particles due to damping to smaller am-
plitudes and gaining particles due to damping from above.
Together these effects result in an equilibrium tail distribu-
tion for a fixed core distribution.

HALO DISTRIBUTION DUE TO
TOUSCHEK SCATTERING

Core distribution
We introduce action-angle variables (J, φ), via

δ =

√
2J

βz
cos φ (1)

z =
√

2Jβz sinφ (2)

Here, βz = Cαc

2πνs
, C is the ring circumference, αc is the

momentum compaction, and νs is the synchrotron tune.
We divide the electron longitudinal distribution into a

core and tail distribution:

N(J, t) = NC(J, t) + NT (J, t) (3)
1Work supported by DOE contract DE-AC02-98CH10886.

Let us denote by N̄C(t) and N̄T (t) the total number of par-
ticles contained in each part of the distribution:

N̄C(t) =
∫

dJNC(J, t) N̄T (t) =
∫

dJNT (J, t) (4)

If we denote the number of particles that have been lost to
physical apertures by N̄L, then

N̄C + N̄T + N̄L = NP = const (5)

Let us denote by N̊(J) the number of particles scattering
out of the core NC into the amplitude J per unit time. Let
δ̂ be the maximum value of δ over a synchtron oscillation.
Then J = 1

2βz δ̂
2. Further, let δ̂acc be the momentum ac-

ceptance (i.e. the minimum value of δ̂ such that the particle
is lost. Now we have

dN̄c

dt
= −

∫ ∞

δ̂acc

dδ̂N̊(δ̂) ≡ − N̄2
C

T (δ̂acc)
(6)

where the latter results from Touschek scattering and T (δ̂)
is a quantity independent of the number of particles in the
core, with units of time. Solving this equation, and letting
N0 = N̄C(t = 0), we find

N̄C(t) =
N0

1 + N0t

T (δ̂acc)

(7)

The time it takes to lose half of the core particles, τ 1
2

, which
is the quantity standardly known as the Touschek lifetime,
is given by

τ 1
2

=
T (δ̂acc)

N0
(8)

Combining with (6) for t = 0, we find

1

τ 1
2
(δ̂acc)

= − 1
N̄C

∫ ∞

δ̂acc

N̊(λ)dλ (9)

To describe the dynamics of the tail, we assume that the
core NC is not changing much, and then use a Fokker-
Planck equation with an additional source term N̊ which
we derive later. Here, we let N = NT , the number of par-
ticles in the tail. Then,

∂N(z, δ, t)
∂t

=
∂H

∂z

∂N

∂δ
− ∂H

∂z

∂N

∂δ
+α

∂

∂δ
(δN)+N̊ (10)

where α is the radiation damping rate and we have ne-
glected quantum excitation since we assume that the damp-
ing effect will dominate for large amplitudes.

Assuming N = N(J), and averaging over φ, one finds:

∂N(J, t)
dt

= α
∂

∂J
(JN) + N̊ (11)



The solution to this equation is given by

N(J, t) = N0(Jeαt)eαt +
∫ ∞

0

dxN̊(Jeαx)eαx (12)

where N0(J) = N0(J, 0) is the tail distribution at t = 0.
Consider the case where initally the tail is empty (N0(J) =
0). Then

N(J, t) =
1

αJ

∫ Jeαt

J

N̊(λ)dλ (13)

Noting a similarity to expression for the Touschek lifetime,
(9), and using the following relationships for changing vari-
ables:

N̊(J)dJ = N̊1(δ̂)dδ̂ (14)

N(J)dJ = N1(δ̂)dδ̂ (15)

Where the 1 represents the distribution in the new variable
and we drop after this. Letting t →∞ in (13), the equilib-
rium distribution is

Neq(δ̂) =
2
αδ

∫ ∞

δ̂

dδ̂′N̊(δ̂′) (16)

and applying (9), we find an equilibrium distribution

Neq(δ̂) =
2N̄C

αδ̂

1

τ 1
2
(δ̂)

(17)

N̊(δ) from scattering
We work in the beam frame. The number of parti-

cles scattering per unit time into a solid angle dΩ =
d cos χdφ = dudφ is

Ṅ(~x, v, vz) = vN0ρ(~x)
dσ

dΩ
(18)

with N0 the total number of particles and ρ the normal-
ized spatial distribution. For the scattering cross section,
we take the Moller cross section:

dσ

dΩ
=

r2
0c

4

v4

(
4

sin4(θ)
− 3

sin2(θ)

)
(19)

and
cos θ = x̂ · v̂′ = sinχ cos φ (20)

Integrating (19) over φ, we find

dσ

du
=

r2
0πc4

v4

2− u2

|u3|
(21)

Now, we would like to find the number of particles scat-
tering into a particular longitudinal velocity. This is given
by

Ṅ(~x, v, vz) = vN0ρ(~x)
∫

dΩ
dσ

dΩ
δ(

vz

v
− u) (22)

or

Ṅ(~x, v, vz) = vN0ρ(~x)
dσ

du
|u= vz

v
Θ(1− vz

v
) (23)

with (21), this becomes

Ṅ(~x, v, vz) =
r2
0πc4

vv3
z

(2−
(vz

v

)2

)Θ(1− vz

v
) (24)

Next, we need the distributions of ~x and v. Both are Gaus-
sian:

ρ(~x) =
1

(2π)3/2σxσyσz̄
e
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z̄ (25)

and

f(v) =
1√

2πσv

e
−v2

2σ2
v (26)

Now, we can show that∫
d~xρ2(~x) =

1
8π3/2σxσyσz̄

(27)

Thus, we have

Ṅ(vz) =
r2
0c

4N0

8
√

2πσxσyσz̄σv

1
v3

z

∫ ∞

vz

dv
(2−

(
vz

v

)2)
v

e
−v2

2σ2
v

(28)
Now, to derive the Touschek lifetime, we need to inte-

grate this from the maximum stable longitudinal velocity
ṽz to infinity:

1
τ

=
∫ ∞

ṽz

Ṅ(vz)dvz (29)

After changing the order of integration, we find

1
τ

=
r2
0c

4N0

8
√

2πσxσyσz̄σv

∫ ∞

ṽz

dv (30)

∫ v

ṽz

dvz

(2−
(

vz

v

)2)
vv3

z

e
−v2

2σ2
v (31)

Doing the vz integral, we get

1
τ

=
r2
0c

4N0

8
√

2πσxσyσz̄σv

1
ṽ2

z

(32)

∫ ∞

ṽz

dv

v

(
1−

(
ṽz

v

)2 [
1 + ln(

v

ṽz
)
])

e
−v2

2σ2
v (33)

Now, changing variables to w = ( ṽz

v ), we find

1
τ

=
r2
0c

4N0

8
√

2πσxσyσz̄σv

1
ṽ2

z

∫ 1

0

dw

(
1
w
− 1− 1

2
ln(

1
w

)
)

e
−ξ
w

(34)
with

ξ =
δ2
acc

γ2σ2
x′

(35)

We use the following relationships between beam frame
quantities and lab quantities in the ultra-relativistic limit:
ṽz = cδacc, σv = 1√

2
cγσx′ , σz̄ = γσz , γdt̄ = dt. Ap-

plying these and transforming to a time in the beam frame
(picking up an extra 1/γ), we get

1
τ

=
r2
0cN0

8πγ3σxσyσzσx′

1
δ2
acc

∫ 1

0

dw

(
1
w
− 1− 1

2
ln(

1
w

)
)

e
−ξ
w

(36)
where ξ is defined in (35).



Time dependent solution
The time dependent solution is

N(J, t) =
1

αJ

∫ Jeαt

J

Ṅ(J̃)dJ̃ (37)

Transforming (28) into the beam frame, we have

N̊(δ̂) = A 1

δ̂3

∫ ∞

δ̂

dq
(2−

(
δ̂
q

)2

)

q
e

−q2

γ2σ2
x′ (38)

where

A =
r2
0cN0

8πγ3σxσyσzσx′
(39)

In terms of δ̂ =
√

(2J/βz , we have

N(δ̂, t) =
2

αδ̂

∫ δ̂eαt

δ̂

Ṅ(˜̂δ)d˜̂
δ (40)

This is

N(δ̂, t) =
2A
αδ̂

∫ δ̂eαt

δ̂

dδ̃

∫ ∞

δ̃

dq
(2− ( δ̃

q )2)

qδ̃3
e

−q2

γ2σ2
x′ (41)

Changing the order of integration, we can break the 2-D
integration up into two pieces:

N(δ̂, t) =
2A
αδ̂

[∫ δ̂eαt

δ̂

dq

∫ q

δ̂

dδ̃ +
∫ ∞

δ̂eαt

dq

∫ δ̂eαt

δ̂

dδ̃

]
(42)

×
2− ( δ̃

q )2

qδ̃3
e

−q2

γ2σ2
x′

Doing the q integral and making the substitution w = ( ṽz

v )2

we get

N(δ̂, t) =
2A
αδ̂3

(A1 −A2) (43)

with

A1 =
∫ 1

e−2αt

dw(
1
w
− 1− 1

2
ln(

1
w

))e
−ξ
w (44)

A2 =
∫ e−2αt

0

dw(
1
w

(e−2αt − 1) + αt)e
−ξ
w (45)

which is seen to reduce to (17) for t much greater than a
damping time 1/α.

Application to NSLS-II
Let us apply these results to the case of NSLS-II. Us-

ing the NSLS-II Gaussian core, we will use (43) to find the
time dependent tail distribution. One can integrate our ex-
pression for the tail particle density to see the fraction of
particles contained beyond a given energy.

The parameters are as follows: α = 100 sec−1, βx = 7
m, εx = 5 × 10−10 m, βy = 14, εy = 10 pm, E = 3

GeV, N0 = 8 × 109, σz = 4.5 mm. These give a value
of A of 1.39× 10−7 sec−1. ξ, of equation (35) is 0.366 at
δ̂acc = 3%.

In figure (1), the distribution as a function of δ̂ and t is
plotted. We see that after 2 damping times, the distribu-
tion has reached an equilibrium. We have normalized the
distribution based on the underlying core Gaussian to give
a sense of the magnitude. The integrated total number of
particles beyond a given δ is given in figure (2). We can see
that there are several picoCoulombs of charge in the halo.

Figure 1: Approach to equilibrium of tail distribution
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Figure 2: Total number of particles with amplitude greater
than δ̂
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