
BNL-90324-2009-CP

Monitoring applications once they are released into
the user community

S. Binello, T. D'Ottavio, J. Laster, D. Ottavio

Presented at the 12th International Conference on Accelerators and Large Experimental
Physics Control Systems (ICALEPCS 2009)

Kobe International Conference Center, Kobe, Japan
October 12-16, 2009

Collider-Accelerator Department

Brookhaven National Laboratory
P.O. Box 5000

Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Monitoring Applications Once They Are Released Into the User Community*

Sev Binello#, Ted D'Ottavio, Jonathan Laster, Dan Ottavio

Brookhaven National Laboratory, Upton, New York, USA

Abstract
Once an application is released into the user

community, obtaining prompt and high quality
information on application usage, applicability and
reliability can be a challenge. Most Linux and Solaris
applications used at RHIC and associated accelerators
have been instrumented so that application and crash
information is gathered, stored and forwarded to the
appropriate developer for immediate analysis. To support
this process, databases were created to track developer
and application information. In order to keep these
databases relevant, a web based application release
procedure was created to collect information and
automatically update the database. Additional capabilities
have been developed that utilize and expand on the
various components of this system to promote
communication between developers and users, and to
monitor applications. An application feedback feature
allows users to instantly communicate with application
developers. An application history system records
application usage and reliability.

BACKGROUND

 Once an application is released into the user community,
developers are often unaware of its reliability,
applicability or usage. At the Collider Accelerator
Department (C-AD) at BNL, the user community consists
of operators, physicists and equipment specialists. Prior
to the development of the work described here, there was
little information available on the reliability, applicability
or usage of Controls applications. Crashes went
unreported and core dump files were ignored.
Furthermore, no automated mechanism was in place to
capture and collect information on whether applications
met user needs or expectations. Finally, nothing was in
place to capture program usage patterns that could be
mined for useful information.

APPROACHES

Three systems were developed to address these
concerns. A “Crash Utility” system was developed to
capture extensive crash information and forward it to
developers. A “Send Feedback” system was developed to
establish direct communication between application users
and developers. An “Application History” system was
developed to track application usage and reliability.

Examples of similar capabilities are encountered in
commercial software. In Windows, there is the “Online
Crash Analysis” (OCA) that generates the ubiquitous
“Please tell Microsoft about this problem” message when
a Windows application crashes. Many third party
applications also typically include a “Send Feedback”
feature.

Crash Utility System

The Crash Utility system was developed to collect and
promptly forward crash information to application
developers. The Crash Utility system consists of four
main components: a C library, a “CrashUtility” process, a
web-based application release procedure, and a
development environment infrastructure.

The main function of the C library is to set up signal
handlers that are entered when an application crashes.
The main function of the signal handlers is to instantiate
the CrashUtility process. It is this latter process that
performs most of the crash post processing. This design
has two main advantages. It puts few burdens on the
application once it crashes, and it allows for most
modifications to the Crash Utility system functionality to
be performed without requiring the application to be
rebuilt an application.

In order to keep work to a minimum at the time of the
crash, static information is collected and prepared when
the signal handlers are declared. This includes setting up
commands and collecting static information such as
process id, start time, console name, process name, and
build date.

Once the signal handler is entered its function is
twofold. It first executes a “pstack” command to obtain a
stack trace. The stack trace provides at least a minimal

*Work performed under the auspices of the U.S. Department of

Energy. sev@bnl.gov

amount of information and is a convenient means for
developers to quickly recognize crashes. It then forks off
the separate CrashUtility process.

 The function of the CrashUtility process is to store the
core file, gather information from the user, collect
process information, determine the developers to contact,
and send email notification. Core files are compressed
and moved to application specific directories. If the
application has a graphical user interface, a window is
generated to gather additional information from the user.
Process information is collected that includes Unix signal
name, primary and secondary contacts, time of crash, host
machine, display, Unix pid, executable path and name,
build date and executable date, start time, version control
information, login name, current working directory.
Crash information is then formatted into an email and
forwarded to a set of developers and managers, as well as
the user. Note that it would also be possible to email
compressed core files for off-site analysis.

Prompt email notification is an important feature of this
process. Not only does it provide the developer with
information necessary to help resolve the problem, it also
establishes a communication link between the user and
the developer.

Figure 1: Crash Utility System
To support email notification, a “Diagnostic” database

was created that contains application specific information,
such as individuals to contact, release dates, links to
documentation and comments, as well as developer
contact information. In order to maintain this database, a
web based application release procedure was created to
collect information whenever an application is released to
the user community.

All this data, though significant, would still be of
limited use if the core file and stack trace did not contain

symbolic information. With that in mind, the
development environment is configured so that all C++
and C programs are built with the debugger option turned
on (i.e. g++ -g), and symbolic information is not stripped
from the executable. This allows developers to debug an
application's core file as if they had been running the
application in the debugger in the first place. The
development environment is also configured to embed
information in the application during the build process.
Information about the kernel, operating system,
compiler, application source version, and build date is
embedded in the executable.

 To control the number of core files, only applications
released into the user community are processed in this
manner. This default behaviour may be modified by
environment variables. Furthermore, scripts are
periodically executed to delete old core files.

From a developer's perspective, the requirements are
simply: to make a single function call to the Crash Utility
library, to adhere to the build and release conventions,
and to respond reasonably promptly to crash reports.
There are no requirements for the user, only a request for
additional information.

Send Feedback System

Various components of the crash utility system have
been reused and expanded to facilitate communication
between users and developers. One of the most useful
features was the inclusion of a "Send Feedback" feature
in nearly all applications. This feature provides users with
the ability to notify developers about a bug as well as to
send comments and requests to developers and managers.

All applications with a graphical user interface are
outfitted with a standard menu bar that includes a 'Help'
menu. The 'Help' menu contains a 'Send Feedback' button,
which is the user's hook to the Send Feedback System. A
“sendFeedback” process is instantiated and presents a
window to the user. The user can enter their name, email
address, priority level of the request, and the feedback
message.

 An e-mail message is then sent to the user, developer,
and management. Further, an entry is made in the
department's "Action Please” trouble-tracking system as
an item needing attention from the Controls' Group. This
allows the department to track the request as if it was
made directly from the departmental web-based "Action
Please" system.

Application History System

 An Application History system was developed to track
application usage and reliability. This system records
start and stop times, exit status, machine and user name.
The goal of this system is to better manage applications.
Discovering unreliable applications is obviously
important, but also knowing how often the application is
used can help determine priorities. Determining key
users of an application would be helpful in the event
modifications are planned. Knowing who is running an
application can be used to notify users when a new
version is released.
 The Application History system is built around a
client/server model in which applications notify the
server when they start and exit and pass it relevant
information. The server in turn saves this information into
the “Application History” database. Communication
between clients and server is implemented with a message
queue. Messages are written to an NFS mount point by
the clients and are read by the server. Once the server
receives the message, the message contents are sent to the
database and the message is removed.

An advantage of this approach is that the
communication is asynchronous, so clients can send
messages to the server without blocking. Regardless of
the responsiveness of the server, clients can always write
a message and continue. Another advantage is that it only
depends on NFS for it to function correctly.

 Figure 2: Client/Server model.
The overhead incurred due to polling for new messages

is slight. Since it is acceptable for messages to reach the
database on the order of seconds, the polling time interval
is generous. Writing and reading to disk is also not
terribly burdensome as the amount of data transferred is
quite small, approximately 2K. One distinct drawback of
this approach is the inability to detect when a client

receives a SIGKILL (i.e. kill -9). Application History
relies on the assumption that an application will write a
message when it stops. However, since there is no way to
trap a SIGKILL signal, there is no way for a client to
write a stop message. To cope with this limitation a
separate utility is used to periodically confirm the
existence of applications listed in the database as running.

 The Application History database is accessible from a
web-based interface. The interface presents information
in several convenient views: all applications, all currently
running applications, and all crashed applications. It also
provides search and plotting features.

EXPERIENCE

The “Crash Utility”, “Send FeedBack” and
“Application History” systems have come on-line at C-
AD over a number of years. The Crash Utility has been in
place since 2002, followed quickly thereafter by the Send
Feedback system, and lastly in 2005, the Application
History system.

Email notification of crashes has proved useful to
users, developers, and managers alike. A problem with an
application is quickly realized. Developers have found
that the capture of crash information and storage of core
files with debug information has greatly facilitated
debugging. This in turn has led to quicker resolutions and
increased reliability. The Send Feedback system has
increased and facilitated communication between users,
developers and management. Operators, especially, have
made frequent use of this system. Recording the feedback
requests in the Action Please system has led to increased
responsiveness to user concerns. The Application History
system has provided a means to track application usage
and reliability, leading to improved application
management.

In summary, the work described in this paper has
increased communication, responsiveness and reliability.
It has been well received by users, developers and
management.

REFERENCES
[1] Dan Ottavio, “Design of the Application History System”,

Nov 2006

	70350
	BNL-90324-2009-CP
	Monitoring applications once they are released into the user community
	S. Binello, T. D'Ottavio, J. Laster, D. Ottavio
	Presented at the 12th International Conference on Accelerators and Large Experimental Physics Control Systems (ICALEPCS 2009)
	Collider-Accelerator Department
	Brookhaven National Laboratory

	binello

