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Abstract. I review recent progress in finite temperature lattice calculations,
including the study of the nature of the deconfinement transition in QCD,
equation of state, screening of static quarks and meson spectral functions.

Keywords: lattice QCD, quark-gluon plasma
PACS: 11.15.Ha, 11.10.Wx, 12.38.Mh, 25.75.Nq

1. Introduction

One expects that at sufficiently high temperatures and densities the strongly inter-
acting matter undergoes a transition to a new state, where quarks and gluons are no
longer confined in hadrons, and which is therefore often referred to as a deconfined
phase or quark-gluon plasma. The main goal of heavy ion experiments is to create
such form of matter and study its properties. We would like to know at which tem-
perature the transition takes place and what is the nature of the transition as well
the properties of the deconfined phase, equation of state, static screening lengths,
transport properties etc. Lattice QCD can provide first principle calculation of the
transition temperature, equation of state and static screening lengths (see Ref. [ 1]
for recent review ). In this contribution I am going to review recent progress made
in the study of QCD transition at finite temperature, calculations of equation of
state, singlet free energy of static quarks and meson spectral functions.

2. The finite temperature transition and equation of state

One of the most interesting question for the lattice is the question about the nature
of the finite temperature transition and the value of the temperature Tc where it
takes place. For very heavy quarks we have a 1st order deconfining transition. In
the case of QCD with three degenerate flavors of quarks we expect a 1st order
chiral transition for sufficiently small quark masses. In other cases there is no
true phase transition but just a rapid crossover. Lattice simulations of 3 flavor
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QCD with improved staggered quarks (p4) using Nτ = 4 lattices indicate that the
transition is first order only for very small quark masses, corresponding to pseudo-
scalar meson masses of about 60 MeV [ 6]. A recent study of the transition using
effective models of QCD resulted in a similar estimate for the boundary in the quark
mass plane, where the transition is 1st order [ 4]. This makes it unlikely that for the
interesting case of one heavier strange quark and two light u, d quarks, corresponding
to 140 MeV pion, the transition is 1st order. However, calculations with unimproved
staggered quarks suggest that the transition is 1st order for pseudo-scalar meson
mass of about 300 MeV [ 7]. Thus the effect of the improvement is significant
and we may expect that the improvement of flavor symmetry, which is broken
in the staggered formulation, is very important. But even when using improved
staggered fermions it is necessary to do the calculations at several lattice spacings
in order to establish the continuum limit. Recently, extensive calculations have
been done to clarify the nature of the transition in the 2+1 flavor QCD for physical
quark masses using Nτ = 4, 6, 8 and 10 lattices. These calculations were done
using the so-called stout improved staggered fermion formulations which improves
the flavor symmetry of staggered fermions but not the rotational symmetry, The
result of this study was that the transition is not a true phase transition but only
a rapid crossover [ 8]. New calculations with stout action indicate that only for
quark masses about ten times smaller than the physical quark mass the transition
could be first order [ 9]. Even-though there is no true phase transition in QCD
thermodynamic observables change rapidly in a small temperature interval and the
value of the transition temperature plays an important role. The flavor and quark
mass dependence of many thermodynamic quantities is largely determined by the
flavor and quark mass dependence of Tc. For example, the pressure normalized by
its ideal gas value for pure gauge theory, 2 flavor, 2+1 flavor and 3 flavor QCD
shows almost universal behavior as function of T/Tc [ 5].

The chiral condensate 〈ψ̄ψ〉 and the expectation value of the Polyakov loop 〈L〉
are order parameters in the limit of vanishing and infinite quark masses respec-
tively. However, also for finite values of the quark masses they show a rapid change
in vicinity of the transition temperature. Therefore they can be used to locate the
transition point. The fluctuations of the chiral condensate and Polyakov loop have
a peak at the transition temperature. The location of this peak has been used to
define the transition temperature in the calculations with p4 action on lattices with
temporal extent Nτ = 4 and 6 for several values of the quark mass [ 3]. The com-
bined continuum and chiral extrapolation then gives the value Tc = 192(7)(4)MeV.
In this calculations the lattice spacing has been fixed by the Sommer parameter
r0 = 0.469(7)fm [ 10]. The last error in the above value of Tc corresponds to the
estimated systematic error in the extrapolation. The transition temperature has
been determined using the so-called stout staggered action and Nτ = 8, 10 and 12
lattices. Here the lattice spacing has been fixed using the kaon decay constant fK as
an input [ 13]. The deconfinement temperature has been found to be 170(4)(3) MeV
determined from the Polyakov loop [ 13] and 169(3)(3)MeV determined from the
strangeness susceptibility. This value of the transition temperature is significantly
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smaller than the value obtained with p4 action. One reason for this discrepancy
could be the fact that Nτ = 4 and Nτ = 6 lattices are too coarse for reliable contin-
uum extrapolation. Calculations on Nτ = 8 lattices indicate a relative shift of the
transition temperature by 5MeV compared to the Nτ = 6 results [ 14]. The transi-
tion temperature for the chiral transition was found to be 146−157MeV depending
on the observable, indicating that the chiral transition happens before the decon-
fiment transition contrary to the conclusion of Ref. [ 14]. However, it is possible
that chiral transition was misidentified in Ref. [ 13] due to the effect of Goldstone
modes below the transition temperature [ 15].

Lattice calculations of equation of state were started some twenty years ago. In
the case of QCD without dynamical quarks the problem has been solved, i.e. the
equation of state has been calculated in the continuum limit [ 16]. At temperatures
of about 4Tc the deviation from the ideal gas value is only 15% suggesting that quark
gluon plasma at this temperate is weakly interacting. Perturbative expansion of the
pressure, however, showed very poor convergence at this temperature [ 17]. Only
through the use of new re-summed perturbative techniques it was possible to get
agreement with the lattice data [ 18, 19, 20]. To get a reliable calculation of the
equation of state on the lattice, improved actions have to be used [ 21, 22]. Equation
of state has been calculated using p4 and asqtad improved staggered fermion actions
[ 23, 24] using Nτ = 4 and 6 lattices. Very recently these calculations have been
extended using Nτ = 8 lattices by the HotQCD collaboration using both p4 and
asqtad actions.

In lattice calculations the basic thermodynamic quantity is the trace of the
energy momentum tensor, often referred to as the interaction measure ǫ−3p. This is
because it can be expressed in terms of expectation values of gauge action and quark
condensates (see discussion in Ref. [ 24]). All other thermodynamic quantities,
pressure, energy density and entropy density s = (ǫ + p) can be obtained from it
using integration

p(T )

T 4
−
p(T0)

T 4
0

=

∫ T

T0

dT ′ ǫ(T
′) − 3p(T ′)

T ′5
(1)

The value of T0 is chosen to be sufficiently small so that it corresponds to vanishing
pressure to a fairly good approximation. In Fig. 1 I show the interaction measure
from the new calculations with two actions on Nτ = 6 and 8 lattices [ 14]. At
temperatures T > 220MeV the differences between calculations performed on Nτ =
6 and Nτ = 8 lattices are small, indicating that cutoff effects are under control
in this region. Cutoff effects are seen in the peak region for the p4 action, but
not for aqstad action. In this figure I also show the entropy density which raises
rapidly in the temperature region 180 − 200 MeV. At high temperatures it is only
10% or less below the ideal gas limit in agreement with expectations from improved
perturbative calculations [ 20, 25]. We also compare the results for the entropy
density with the weak coupling calculations of Ref. [ 26]. The entropy density of
strongly coupled supersymmetric gauge theory is three quarters of the ideal gas
value [ 27] and thus is significantly lower than the lattice result.
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Fig. 1. The interaction measure calculated (left) and the entropy density divided
by the corresponding ideal gas value (right) calculated with p4 and asqtad actions
[ 14]. Comparison with resummed perturbation theory and the weak coupling ex-
pansion is also shown. The solid line is the prediction for strongly coupled gauge
theory using AdS/CFT correspondence [ 27].

3. Color screening in the deconfined phase

To get further insight into properties of the quark gluon plasma one can study
different spatial correlation functions. One of the most prominent feature of the
quark gluon plasma is the presence of chromoelectric (Debye) screening. The easiest
way to study chromoelectric screening is to calculate the singlet free energy of
static quark anti-quark pair (for recent reviews on this see Ref. [ 28, 29]), which
is expressed in terms of correlation function of temporal Wilson lines in Coulomb
gauge

exp(−F1(r, T )/T ) =
1

N
Tr〈W (r)W †(0)〉. (2)

L = TrW is the Polyakov loop. Instead of using the Coulomb gauge the singlet
free energy can be defined in gauge invariant manner by inserting a spatial gauge
connection between the two Wilson lines. Using such definition the singlet free
energy has been calculated in SU(2) gauge theory [ 30]. It has been found that the
singlet free energy calculated this way is close to the result obtained in Coulomb
gauge [ 30]. The singlet free energy turned out to be useful to study quarkonia
binding at high temperatures in potential models (see e.g. Refs. [ 31, 32, 33, 34,
35, 36]).

The singlet free energy was recently calculated in QCD with one strange quark
and two light quarks with masses corresponding to pion mass of 220MeV on 163×4
lattices [ 37]. The numerical results are shown in Fig. 2. At short distances
the singlet free energy is temperature independent and coincides with the zero
temperature potential. In purely gluonic theory the free energy grows linearly with
the separation between the heavy quark and anti-quark in the confined phase. In
presence of dynamical quarks the free energy is saturated at some finite value at
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Fig. 2. The singlet free energy F1(r, T ) calculated in Coulomb gauge on 163 × 4
lattices (left) and the combination F1(r, T )−F∞(T ) as function of rT (right). The
solid black line is the parametrization of the zero temperature potential.

distances of about 1 fm due to string breaking [ 28, 38, 40]. This is also seen in Fig.
2. Above the deconfinement temperature the singlet free energy is exponentially
screened at sufficiently large distances [ 39] with the screening mass proportional to
the temperature , i.e.

F1(r, T ) = F∞(T ) −
4

3

g2(T )

4πr
exp(−mD(T )r), mD ∼ T. (3)

Therefore in Fig. 2 we also show the combination F1(r, T ) − F∞(T ) as a function
of rT . As one can see from the figure this function shows an exponential fall-off at
distances rT > 0.8. The fact that the slope is the same for all temperatures means
that mD ∼ T , as expected.

4. Spectral functions

Information on hadron properties at finite temperature as well as the transport
coefficients are encoded in different spectral functions. In particular the fate of
different quarkonium states in the quark gluon plasma can studied by calculating
the corresponding quarkonium spectral functions (for a recent review see Ref. [
29]). On the lattice we can calculate correlation function in Euclidean time. This
is related to the spectral function via integral relation

G(τ, T ) =

∫ ∞

0

dωσ(ω, T )K(τ, ω, T ), K(τ, ω, T ) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (4)

Given the data on the Euclidean meson correlator G(τ, T ) the meson spectral func-
tion can be calculated using the Maximum Entropy Method (MEM) [ 41]. For
charmonium this was done by using correlators calculated on isotropic lattices [
42, 43] as well as anisotropic lattices [ 44, 45, 46] in quenched approximation. It



6 P. Petreczky

has been found that quarkonium correlation function in Euclidean time show only
very small temperature dependence [ 43, 46]. In other channels, namely the vec-
tor, scalar and axial-vector channels stronger temperature dependence was found
[ 43, 46]. The spectral functions in the pseudo-scalar and vector channels recon-
structed from MEM show peak structures which may be interpreted as a ground
state peak [ 44, 45, 43]. Together with the weak temperature dependence of the
correlation functions this was taken as strong indication that the 1S charmonia
(ηc and J/ψ) survive in the deconfined phase to temperatures as high as 1.6Tc [
44, 45, 43]. A detailed study of the systematic effects show, however, that the
reconstruction of the charmonium spectral function is not reliable at high tempera-
tures [ 46], in particular the presence of peaks corresponding to bound states cannot
be reliably established. The only statement that can be made is that the spectral
function does not show significant changes within the errors of the calculations.
Recently quarkonium spectral functions have been studied using potential models
and lattice data for the free energy of static quark anti-quark pair [ 36]. These
calculations show that all charmonium states are dissolved at temperatures smaller
than 1.2Tc, but the Euclidean correlators do not show significant changes and are in
fairly good agreement with available lattice data both for charmonium [ 43, 46] and
bottomonium [ 46, 47]. This is due to the fact that even in absence of bound states
quarkonium spectral functions show significant enhancement in the threshold region
[ 36]. Therefore previous statements about quarkonia survival at high temperatures
have to be revisited.

The large enhancement of the quarkonium correlators above deconfinement in
the scalar and axial-vector channel can be understood in terms of the zero mode
contribution [ 36, 48] and not due to the dissolution of the 1P states as previously
thought. Similar, though smaller in magnitude, enhancement of quarkonium corre-
lators due to zero mode is seen also in the vector channel [ 46]. Here it is related
to heavy quark transport [ 49, 35]. Due to the heavy quark mass the Euclidean
correlators for heavy quarkonium can be decomposed into a high and low energy
part G(τ, T ) = Glow(τ, T ) + Ghigh(τ, T ) The area under the peak in the spectral
functions at zero energy ω ≃ 0 giving the zero mode contribution to the Euclidean
correlator is proportional to some susceptibility, Gi

low
(τ, T ) ≃ Tχi(T ). Therefore

it is natural to ask whether it can be described by a quasi-particle model. The
generalized susceptibilities have been calculated in Ref. [ 52] in the free theory
Replacing the bare quark mass entering in the expression of the generalized suscep-
tibilities by an effective temperature dependent masses one can describe the zero
mode contribution very well in all channels [ 53].

The spectral function for light mesons as well as the spectral function of the
energy momentum tensor has been calculated on the lattice in quenched approx-
imation [ 50, 51, 54, 55]. However, unlike in the quarkonia case the systematic
errors in these calculations are not well understood.
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5. Summary

Significant progress has been achieved in lattice calculations of thermodynamic
quantities using improved staggered fermions. Pressure, energy density and entropy
density can be reliably calculated at high temperatures when improved actions are
used. Different lattice calculations show that for the physical quark masses the
transition to the deconfined phase is not a true phase transition but a crossover.
There is some controversy, however, concerning the location of the crossover. Lattice
calculations provide detailed information about screening of static quarks which is
important for the fate of heavy quarkonia in the quark gluon plasma. Some progress
has been made in calculating spectral functions on the lattice, however, much more
work is needed in this case.
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