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PROTON BUNCHING OPTIONS
∗

R. B. Palmer∗

Brookhaven National laboratory,

Upton, New York, 11786, USA
∗E-mail: palmer@bnl.gov

Muon Colliders1 need intense, very short, proton bunches. The requirements

are presented and a number of possible bunching systems discussed. The best
solution uses a small super-conducting buncher ring with 6 bunches that are

taken though separate transports and combined on the target.

Keywords : Muon Collider; proton driver; space charge tune shift

1. Introduction

Because a muon collider luminosity depends on the square of the bunch

charges, intense bunches of 2 1012 muons are required. To generate such

bunches needs intense proton bunches. Fig.1 shows the relative muon fluxes

vs. the proton energy used to make them. Pi production was from MARS

15.2 Muons were from an ICOOL3 simulation4 of the front end of a neu-

trino factory including pion decay, muon phase rotation, 80 m of transverse

cooling, and accelerator acceptances of 30 mm transverse, 150 mm longitu-

dinal. Since a muon collider is assumed to have a similar front end, this is a

good measure of relative efficiency. This efficiency is maximum at around 8

GeV. At this relatively low energy, the required number of protons is very

large ( ≈ 200 1012 ), and the space charge tune shift with the required 2 ns

bunch length, can be a problem.

Space Charge Tune Shift5 is given by

∆ν = Fdist

(

2πR
√

2π σz

)

Np ro

2π εN βvγ2
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Fig. 1. Relative pion production vs. proton energy.

For Gaussian beams Fdist = 3, εN is the normalized (95%) emittance

as used for protons at FNAL. The rms normalized emittance ε⊥ = εN/6.

2. Six buncher cases considered

The above formula is applied to the following numbered cases with param-

eters given in Tb.1.

Table 1. Parameters of bunchers

1 2 3 4 5 6

Booster Booster SC 24 FFAG 6
at inj at 8 GeV GeV bunch

E GeV 0.4 8 8 24 8 8
Circ m 474 474 200 561 339 200

Np 1012 0.06 200 200 96 200 200/6
σz m 1.2 .66 .66 .66 .66 .66

σθ mrad 1.2 1.2 2.5 0.83 25 2.5
εN µm 12 112 200 200 2000 200

ε⊥ µm 2 19 33 33 330 33
nb 84 1 1 1 1 6

∆ν 0.4 4.0 0.95 0.17 0.17 0.16

(1) To check the formula we consider the FNAL Booster at its 400 MeV

injection energy. It gives a tune shift of 0.4, as published.6

(2) This Booster, bunching 200 1012 protons to 2 ns at 8 GeV, assuming

the full geometrical emittance as used at injection (normalized 95%

emittance at 8 GeV of 112 µm), gives a space charge tune shift of 4: far

above the value of 0.2 considered maximum for such an intense beam.
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(3) A ring using super-conducting magnets would have a smaller circumfer-

ence e.g. ≈ 200 m (instead of 474 m) and could have a larger acceptance:

e.g. a 95% emittance of 200 µm (instead of 112 µm). But it’s tune shift

would still be an unacceptable 0.95.

(4) Since ∆ν ∝ 1/γ2, the tune shift can be lowered to a reasonable value

by raising the proton energy to 24 GeV. From Fig.1 the needed pro-

ton bunch intensity is now 96 1012. Assuming the same buncher ring

normalized acceptance and average bending field as case # 3, then the

tune shift for is a reasonable 0.17. But because pion production per

GeV is now less, the required proton power is a factor of ≈1.7 higher:

Not a good solution.

(5) Instead of raising the energy, one can try using a very large acceptance

ring, such as the 5-10 GeV FFAG designed for muon acceleration in

Study 2a.8 That ring has a 339 m circumference and a normalized

muon acceptance of 30 mm. With a 95% emittance one half this, the

normalized proton emittance εN = 30, 000/2× 106/970 ≈ 2000 µm.

The tune shift is now a reasonable 0.17. But when this huge emittance

is focused down to one third of the 5 mm target radius (σr = rtarget/3 ≈

1660 µm) then three times the rms angular spread is:

3σθ = 3
ε⊥

βγ σr

= 3
330

8 1660
= 75 mrad

over twice the crossing angle between the beam and jet, which is not

viable.

(6) But if one can have multiple bunches in the ring and bring them si-

multaneously onto the target, then there appears to be a good solution.

Consider the same ring as case #3 but with 6 bunches. The tune shift is

now an acceptable 0.16. The bunches can be extracted into transports

of differing lengths (trombones)7 to bring them all onto the target at

the same time: see Fig.2a. Since it is assumed that the beam intersects

the mercury jet target from the side at an angle ≈ 33 mrad, it should

be possible to bring multiple beams in from multiple azimuths, all at

the same angle to the jet, see Fig.2b. The three sigma angular spreads

are now 7.5 mrad, small enough to keep the transports for the beams

well separated from the jet and one another.

3. Conclusion

Pion, and thus muon, production is predicted to have a maximum for 8 GeV

protons. The muon collider then requires 200 1012 protons/bunch with σt ≈
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Fig. 2. a) Trombone transport lines to bring all bunches to the target at the same time;

b) Multiple beam target geometry

2 ns. The space charge tune shifts of such bunches in an FNAL Booster-like

ring is excessive.

The space charge is reduced if higher bending fields allow a smaller

circumference ring (474→200 m), and if the acceptance is increased ≈ 1.8×,

but this is not enough unless the proton energy is increased to 24 GeV,

with a resulting increase in required power of 1.7. The best solution is to

use multiple bunches in the ring, extracted into different transports that

bring them all to the target at the same time.
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