Residual-gas-ionization beam profile monitors in RHIC

R. Connolly, J. Fite, S. Jao, S. Tepikian, C. Trabocchi

Presented at the 2010 Beam Instrumentation Workshop (BIW10)
Santa Fe, New Mexico
May 2-6, 2010

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
RESIDUAL-GAS-IONIZATION BEAM PROFILE MONITORS IN RHIC*

R. Connolly, J. Fite, S. Jao, S. Tepikian and C. Trabocchi
Brookhaven National Lab, Upton, NY, USA

Abstract

Four ionization profile monitors (IPMs) in RHIC measure vertical and horizontal beam profiles in the two rings (yellow and blue). These work by measuring the distribution of electrons produced by beam ionization of residual gas. In 2007 a prototype of a new design was installed in the yellow ring. During the 2007-2008 run it proved to be almost completely free from backgrounds from rf coupling, electron clouds and x-rays from upstream beam loss. In 2009 four new IPMs were built based on the prototype. During the 2009 shutdown two of these IPMs were installed. This paper describes the new IPMs and shows data from the 2010 beam run. The new IPMs have been extremely important in the commissioning of the RHIC stochastic cooling system.

INTRODUCTION

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory is a pair of concentric synchrotrons in which counter-rotating beams intersect at six points [1]. Beams ranging in mass from protons ($E_{\text{max}}=250$ GeV) to fully-stripped gold ($E_{\text{max}}=100$ GeV/nucleon) are accelerated and stored for several hours. There are detectors at two of the six intersection points for physics experiments with colliding beams.

Transverse beam profiles in RHIC are measured with ionization profile monitors (IPMs)[2,3,4,5]. An IPM collects the electrons in the beamline resulting from residual gas ionization during a bunch passage. The electrons are swept transversely from the beamline and collected on 64 strip anodes oriented parallel to the beam axis. After each bunch passes through the detector, the charge pulses are amplified, integrated, and digitized to give the bunch profile. Four IPMs are installed in RHIC to measure vertical and horizontal profiles in the two rings. Similar detectors are used at Fermi National Lab [6], DESY [7], and CERN [8].

The beam profile is measured primarily to find the transverse beam emittance which is the area occupied by the beam in transverse phase space, ie. (x,p_x) [3]. The beam radius at the IPM is equal to the square root of the betatron function, $\beta(s)$, times the emittance where s is the azimuthal coordinate of the IPM. The value of $\beta(s)$ is either calculated or measured and the beam radius is determined by profile measurements.
such a large signal flux that the MCP becomes charge depleted very quickly. After a single measurement turn the grid is returned to -6kV for about 100 machine revolution periods for the MCP to recover. This is repeated 100 times and the data are averaged.

Figure 2. Cutaway drawing of the IPM. The HV sweep electrode is on top and MCP and anode board on bottom.

Figure 3. Assembled IPM transducer.

Figure 4. The IPM display page.

The most interesting development of this beam run was the commissioning of the RHIC stochastic cooling system[9,10]. The yellow-ring system was the first to operate and ran more consistently than the blue ring system. Figure 5 is a four-hour emittance record from the IPMs showing the effect the cooling system had on the beam in the yellow ring. Yellow cooling is turned on shortly after 18:20 and reduces the emittances in both planes of yellow from (13π)μm to (5π)μm in about an hour. Emittances in blue continue to grow during this time. The profiles shown in fig. 4 were taken with yellow cooling on and show dramatically smaller beams in the yellow ring. Figure 6 is the log entry from the first time cooling was done in the blue ring. At 17:30 yellow cooling was turned off and at 18:00 blue cooling is turned on.

BEAM MEASUREMENTS

In 2009-10 RHIC ran gold beams and the IPMs were set up for single-bunch measurements. In this mode the digitizers can be triggered on any of the buckets desired. During most of the beam run we monitored the bunch in bucket 121. This bucket has beam in all fill patterns and is not affected by the tune measurements or gap cleaning. Figure 4 is the display page of the IPM application showing the data, Gaussian fits and calculated widths and emittances.
The IPMs are turned on at each machine fill. They take measurements at 30s intervals during the acceleration ramp and at 1 minute intervals during the store. All beam and system parameters are recorded at each measurement.

Figure 7 is a log entry showing the IPM records over a weekend. During this weekend the blue-ring emittances were nearly constant but the yellow emittances fluctuated over a range of \((20 \pi) \mu m\) to \((40 \pi) \mu m\).

DISCUSSION

The last paper on the RHIC IPMs, presented at the 2005 PAC [2], reported issues with the electron-control grid coupling to the beam and rf noise from the beam coupling into the detection electronics. Since that paper was written we have moved the control grid outside of the beam image-current path and placed the MCP and collector inside an rf enclosure inside the vacuum chamber. These improvements have almost completely eliminated backgrounds.

Also since the last paper, emittance measurements have been implemented on RHIC using a movable Schottky cavity [11]. A resonant cavity is moved transversely on the beam line. At each position the ratio of the power in the revolution line to the sum of the powers in the two betatron sidebands is measured. A parabola is fitted to the data to find the rms beam size, \(\sigma\), and the dispersion offset. These measurements agree exactly with the IPMs.

ACKNOWLEDGEMENTS

The prototype of the new IPM was built by Dave Kipp. Tom Russo developed the procedure for soldering the signal wires to the ceramic circuit boards.

REFERENCES

