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STOCHASTIC TEMPORAL PROPERTIES OF THE SASE FEL* 

S. Krinsky
#
, BNL, Upton, NY 11973, U.S.A.

Abstract 
We review the statistical description of the chaotic time 

evolution of the radiation from a self-amplified 

spontaneous-emission free-electron laser in the linear 

region before saturation.   

INTRODUCTION 

   A high-gain, self-amplified spontaneous-emission 

(SASE) free-electron laser (FEL) [1, 2], based on modern 

beam technology, has the advantage of operating without 

a resonator and hence is capable of generating coherent 

radiation with wavelength down to the x-ray region. The 

LCLS at SLAC has recently achieved high gain and 

saturation at 1.5 Ǻ [3].  A review of SASE theory can be 

found in ref. [4]. 

   The gain in an FEL is based on the constructive growth 

of a microbunching instability in an electron beam, which 

grows as the result of an interaction between the electron 

beam and the electromagnetic wave it emits as it traverses 

the magnetic field of the undulator. The instability 

modulates the electron density on the scale of the 

radiation wavelength resulting in coherent radiation. 

Provided that the instability is strong enough, the 

radiation grows exponentially before reaching saturation. 

The wavelength of an FEL is determined by the resonance 

frequency 
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Here   is the relativistic factor of the beam, and w and 

wa  are respectively the undulator period and rms field 

strength parameter.   

     The SASE FEL starts up from the shot noise in the 

electron beam [5-7].  The temporal behavior of the system 

is that of a narrow-band amplifier with a broadband 

Poisson seed.  Before saturation the output is a Gaussian 

random process and the radiated field is chaotic, quasi-

monochromatic, polarized light.  Near saturation, the 

transverse behavior of the output is dominated by an 

intense, single spatial mode. Ignoring the transverse 

dependence, the radiated electric field can be expressed in 

the form         

                 tiziktzAtzE rrexp,, ,                 (2)                                 

where z represents the location along the undulator at 

which the SASE is observed and t represents the temporal 

position in the radiation pulse.  The SASE field before 

saturation is the superposition of many electromagnetic 

wave packets emitted from randomly distributed, 

individual electrons.  Within the classical,   one-

dimensional   theory, the  slowly  varying envelope can be 

approximated by 
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where eN is the total number of electrons in the bunch, 

zA0  contains the exponential growth factor, jt  is the 

random arrival time of the thj  electron at the undulator 

entrance, and wrrg kkv
3

2
/ .  The wave packet 

width 3/1 , where zkwr /33  is 

the SASE bandwidth [5,6] and  the FEL Pierce 

parameter [2].  

STATISTICAL DESCRIPTION 

Overview 
To describe the shot noise, one considers the arrival 

time of the individual electrons at the undulator entrance 

to be independent random variables, and determines the 

statistical properties of the output radiation by averaging 

over the stochastic ensemble of arrival times.  In the 

linear regime before saturation, the Central Limit 

Theorem implies that the probability distribution for the 

spectral intensity 
~

I , or the time-domain intensity tI , 

is the negative exponential distribution [8-11] 
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and the intensity fluctuation is 100%.  The bracket 

indicates an ensemble average over the arrival times. 

     The output intensity as a function of time exhibits 

spiking [12] (see Fig. 1a), and the width of the intensity 

peaks is characterized by the coherence time [8-16], 

/cohT , where  is the SASE gain bandwidth.  

The spectral intensity also exhibits spikes (Fig. 1b), and 

the width of the spectral peaks is inversely proportional to 

the pulse duration. 

At a fixed position z along the undulator, consider the 

energy in a single SASE pulse,   

                        dtztEzW
2

),()(  .                      (5)                                          

For z fixed, one can think of  dividing the pulse into M 

statistically independent time-intervals of width Tcoh .  

The energy fluctuation within a single coherent region is 

100%, but the fluctuation WW /  of the energy in the 

entire pulse is reduced [8-11,14], 
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       (a)                                                          (b)                                                               (c) 

Figure 1:  (a) Intensity spiking in the time-domain.  Width of peaks is characterized by the coherence time cohT .                

(b) Intensity spiking in the frequency-domain.  Width of spectral peaks coh   inversely proportional to pulse length.      

(c) Average spectrum of many SASE pulses.  Spectral width p  inversely proportional to the coherence time. 

 

                                                                    

The energy per pulse is described approximately by the 

gamma distribution [8-11],         
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For an unchirped Gaussian pulse of rms duration 

coht T , Table 1 provides useful guidance [16]: 

 

Table 1.  Approximate description of SASE statistics     

Number of modes  
tM 2  

Pulse duration 
tpT 2  

Coherence time // MTT pcoh  

Temporal spike rms width 2/cohTt  

Temporal spike separation /2t  

Spectral width 2p  

Range spectral coherence 
tpcoh M //  

Frequency rms spike width 2/coh  

Frequency spike separation 
t/2  

                                                                                                                                  

Mathematical Formalism 
The mathematical formalism presented here is valid for 

a general random process E(t) with 0tE .  It need be 

neither stationary nor Gaussian.  The Wigner function 

[17], defined by 

        itEtEdtW exp
2

*
2

, ,       (8) 

has many of the properties of a phase space density, 

although it can take negative values.  Integrating the 

Wigner function over frequency, we obtain the average 

instantaneous intensity, 
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and integrating over time, the average spectral intensity 
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2
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   The number of temporal modes M in a radiation pulse 

should be equal to the ratio of the area of the time-

frequency phase space it occupies divided by the 

minimum required phase space area.  With this in mind, 

the number of modes M can be expressed in terms of the 

Wigner function via, 
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Working in the time domain, Eq. (11) can be written in 

the form [9] 
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where the integrated intensity W is given by 
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The Schwartz inequality implies 1M .   

   Let us define the radiation pulse duration Tp by 
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and define the coherence time Tcoh by 

                               MTT pcoh / .                               (15) 

It follows from (12), (14) and (15) that  
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   Working in the frequency domain, we can express the 

number of modes as, 

cohT

tI

t

Ωcoh 
Ωp 
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We define the spectral width p  of the pulse by 
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and the range of spectral coherence by  

                         Mpcoh / .                              (19) 

Then the range of spectral coherence is given by 
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   The fluctuation of the integrated intensity W  is 
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For a Gaussian random process with zero mean [8-11],  
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In this special case, valid for SASE in the linear regime 

before saturation, it follows from Eqs. (11,21,22) that 
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Simplified Model of SASE Pulse 
   A full treatment of SASE from a Gaussian bunch would 

take into account the dependence of the FEL gain on the 

electron density profile, which results in a dependence of 

the wave packet duration  [Eq. (3)] on the temporal 

position in the pulse.  Here, we shall ignore this 

dependence and consider constant . 

   We suppose the electron bunch to have a Gaussian 

average density profile                            

                 
22 2/exp

2

1
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b ttw ,               (24)                                 

and consider the time dependence of the SASE amplitude 

(2) observed at a fixed position z.  Suppressing the 

dependence on z, we write the complex, slowly varying 

amplitude in the linear region before saturation as                      
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where i1  with 3/1 .  The times jt  are 

randomly distributed according to the Gaussian 

distribution twb  of Eq. (24).  We assume that 

1& rbr , so 0tA .  Averaging over the 

stochastic ensemble, we find the correlation function [16] 
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and the Wigner function [16], 
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Figure 2: Region of phase space occupied by 

radiation. r  .  Area is 02 t . 

 

Integrating the Wigner function over frequency we obtain 

the average instantaneous intensity, 
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and integrating over time, the average spectral intensity                             
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It is seen that the rms radiation bandwidth is given by                

            22222
0

2 4/1t .              (31)     

In ref. [16], the results in Table 2 are derived. 

 

    Table 2. Statistical properties in model. 

Number of modes  
142 22

0 btM  

Pulse energy fluctuation MWW /1/  

Pulse duration 
tpT 2  

Coherence time 
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Spectral width 2p  
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FREQUENCY CHIRPED SASE 

Characterization 
   Consider an electron beam passing through an undulator 

having period ww k/2 and rms field strength 

parameter wa .  The thj electron has energy j  (in units 

of its rest mass), average longitudinal velocity 

2

2

2

1
1

j

w
j

a
cv , and arrives at the undulator entrance 

at time jt .  We suppose the electron beam energy to have 

a linear chirp [18-21]  specified by 
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where bT  is the full temporal width of the uniform 

density electron pulse and jct  is the longitudinal 

deviation from the beam center 0jt .  From Eq. (1), we 

see that the energy chirp gives rise to a linear frequency 

chirp   

                                 jj ut0 ,                            (33)                                     

where bTu /2 0 . 

 

In the exponential growth regime before saturation, the 

SASE electric field has the form                      
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where the green’s function can be approximated by [21],          
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The wave number of radiation from the 
thj  electron is                 
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The complex parameter b  is defined by 
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   To analyze the statistical properties of the chirped 

SASE output, we consider the arrival times jt to be 

random variables and average over the uniform stochastic 

ensemble. The time correlation function is [21]   
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We find the coherence time 

                               /cohT ,                             (39) 

and the number of modes in the chirped radiation pulse                                                    

                // bcohb TTTM ,                    (40) 

are independent of the energy chirp. 

         The frequency correlation function is [21] 
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and the range of spectral coherence 

                      cohbcoh TuMTu / .                     (42)   

In the absence of the frequency chirp, bcoh T/2 .  In 

this paper, when we consider a chirped electron beam, we 

assume that bcoh TTu /2 .   

   The Wigner function is given by [21] 
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Pulse Slicing Using Monochromator 
   One can use a monochromator to select a short portion 

of the frequency chirped radiation pulse [19,20].  In order 

to investigate the properties of such filtered output, let us 

assume that the electric field ),( ztEF  after the 

monochromator has the form 
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where zE ,
~

 is the Fourier component of the electric 

field before the filter.  The time-correlation function of 

the filtered radiation is [21] 
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where 
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   The pulse duration is characterized by the rms width t  

given by [21] 

 

Figure 3: Time-frequency phase space for chirped 

radiation. 
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It is seen that the pulse duration cannot be made smaller 

than u/ , which is also apparent from the phase space 

geometry shown in Fig. 3.  The last term in Eq. (47) 

assures that the filtered pulse cannot be shorter than the 

Fourier transform limit.  The minimum pulse duration is 

obtained for monochromator bandwidth 

                                  
2
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This corresponds to a minimum rms pulse duration, 
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   The energy fluctuation after the monochrometer is 
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where the number of modes is given by [21] 
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The coherence time of the monochromated pulse is  
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and the range of spectral coherence is 

                                    
F

m
coh

M

2
.                     (53) 

CENTRAL LIMIT THEOREM 
   The central limit theorem [8] states that the distribution 

P(V) of the normalized sum NrrrV N /)( 21   

of N independent random vectors approaches the normal 

law as N . For simplicity consider 0jr ; then as 

N ,                                      

   VMVMVP TK 12/12/
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1
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where ),...,( 1 K
T VVV is a K-dimensional row-vector 

(the superscript T indicates transpose) and V the 

corresponding column vector.  The symmetric matrix M 

is comprised of the second moments: 
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 M
-1

 is the inverse of the matrix M.  Note that when the 

central limit theorem applies, the distribution is Gaussian 

and hence is determined by the second moments.  Under 

these conditions, one need not compute all the higher 

moments to determine the distribution—a great 

simplification. 

   It is well-known that by choosing tAtAV *,  one 

can show [8-11] that the distribution of the normalized 

intensity IIQ /  is given by the exponential 

distribution QQP exp  as noted in Eq. (4).  It is 

probably less widely known that by following Rice [8], 

one can use the central limit theorem to determine the 

probability distribution for intensity extrema. In this case, 

for a stationary Gaussian process, one selects 

tAtAtAtAtAtAV '*','','*,',*, , where prime 

denotes derivative with respect to time. Introducing the 

amplitude tR  and phase t  via 

                     tietRtAtA
2

/ ,                   (57)                                         

define the normalized variables, 
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Rice [8] has shown that the probability 

dtddddp ,,,  of finding an extremum of 

intensity in the interval dtdddd is given by    

222223

2
23exp

8
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   (59) 

Maxima correspond to 0  and minima to 0 .  

More details of the derivation can be found in ref. [8,16]. 

Integrating over ,,,,  one finds that the number of 

spikes per unit time is 2//1 t .  Carrying out 

integrations over specific subsets of variables, one can 

derive useful distributions characterizing peak height, 

width, and local phase derivative at the points of 

maximum (or minimum) intensity [8,16].  Some of these 

results have been compared to experiment at LEUTL 

[22,23]. 

FROG MEASUREMENTS AT LEUTL 

At LEUTL [22,23], frequency resolved optical gating 

(FROG) [24] was used to characterize the temporal 

evolution of the chaotic SASE output, and the 

experimental results were found to be in agreement with 

the predictions of analytic theory as well as numerical 

simulation.     

   As illustrated in Fig. 4, the FEL output intensity as a 

function of time exhibits spiking.  The width of the 

intensity spikes is characterized by the coherence time.  

We note that the phase change is small near the intensity 

maxima but can be larger near the intensity minima.  The 

rapid phase variation at the minima is closely related to 

the loss of temporal coherence between spikes.  
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Figure 4:  (a) Typical raw FROG data and the retrieved field intensity (red, solid) and phase (blue, dashed) as a function 

of time (b) and wavelength (c) of the SASE output. See ref. [22]. 
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Figure 5: Distribution of (a) the spike width t  and (b) the peak-to-peak spacing t  between the intensity spikes 

normalized to the average spike width t , phase derivative at the intensity maxima (c) and minima (d) normalized to 

the rms SASE FEL bandwidth. Experimental data (symbols), theoretical calculation (solid line) and simulation results 

(dashed lines) are all presented when possible. Note different horizontal scales for (c) and (d). See ref. [22]. 

 

Each FROG image and its retrieval shows a full 

characterization  of  the  pulse,  including  the  field phase 

and amplitude. Study of the shot-to-shot variation of 

multiple pulses provides the information on the statistics 

of the chaotic optical field.  

   Let us consider the time domain intensity spikes. We let 

t  denote the rms spike width and t  the peak-to-peak 

spike separation.  In Figs. 5 (a) and (b), we show the 

probability distributions of the normalized rms spike 

width tt /  and the normalized spacing between 

the intensity maxima tt / . For the ensemble of 

the pulses measured, fst 52  is the average value of 

the rms spike width. In Fig. 5 a, the distribution of the  

spike widths has a peak at a value slightly smaller than 

the average. It has a long tail extending to larger spike 

width and an abrupt drop at smaller spike width.  The 

distribution in Fig. 5b for the spike spacing peaks at about   

0.3/ tt , and its average is 3.25, in reasonable 

agreement with theory for a totally chaotic optical field, 

5.322/1//2/ tt . 

Also shown in Figs. 5 (a) and (b), are the results of the 

numerical simulation (dashed lines) and analytic theory 

[16] solid lines.  

   Intuitively, since an individual intensity spike 

corresponds to a coherent region, the phase within the 

spike is expected to be correlated. On the other hand, due 



to the lack of communication between different coherence 

regions, there can be a phase jump in the transition region 

between two spikes, as illustrated in Fig. 4. This phase 

behavior was quantified by measuring the time derivative 

of the phase ( ' ) of the slowly varying envelope at the 

intensity maxima and minima. The measured distributions 

(symbols) are presented in Figs. 5 (c) and (d), which show 

that indeed the phase drift rate is small at the intensity 

maxima but may be much larger at the intensity minima.  

Also in Figs. 5 (c) and (d) are the results of simulation 

(dashed lines). Both simulation and the experiment data 

are seen to be in good agreement with the theoretical 

distribution (solid curves) derived in [16].   

   Since the distribution of phase drift rate is symmetric 

with respect to zero, we only show the positive half of the 

distribution. Of interest is the observed off-zero 

maximum of the distribution for the phase drift at the 

intensity minima, which implies there is a most probable 

decoherence rate between the coherence regions. 

   In Fig. 6a is plotted the probability distribution [23] of 

the normalized rms time-bandwidth product (tbwp) of the 

SASE pulses.  The distribution average is 1.8.  In Fig. 6b, 

the distribution of the SASE pulse energy is plotted and 

compared with a gamma distribution with M=1.8.  The 

deviation of the measured distribution from the expected 

form is believed to be due to experimental limitations 

described in ref. [23].  The data of ref. [23] showed that 

the pulses with the highest energy had the lowest tbwp. 

  

CONCLUDING REMARKS 
In this paper, we have considered the linear regime 

before saturation.  In the nonlinear saturation regime, 

SASE is no longer a Gaussian process and analytic 

treatment is very difficult.  A valuable numerical 

simulation analysis of the statistical behavior in the 

nonlinear regime can be found in ref. [10,11]. 

In the SASE FEL, temporal coherence is limited by the 

short coherence time.  Using a laser seed, one can 

generate a Fourier transform limited pulse.  In this regard, 

high-gain harmonic-generation has been studied 

experimentally in refs. [25,26].  In the HGHG FEL, the 

SASE provides a noise limitation [27,28]. 
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Figure 6: Probability distribution of (a) the normalized 

rms time-bandwidth product, tbwp/0.5= t2 , where 

o.5 is the minimum possible value; and (b) the pulse 

energy.  Experiment (symbols); simulation (dashed 

curves); theory (solid curves).   See ref. [23]. 
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