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Abstract

We describe analytical formalism for estimating neutron radiative capture and
elastic scattering cross section covariances in the resolved resonance region. We
use capture and scattering kernels as the starting point and show how to get aver-
age cross sections in broader energy bins, derive analytical expressions for cross
section sensitivities, and deduce cross section covariances from the resonance pa-
rameter uncertainties in the recently published Atlas of Neutron Resonances. The
formalism elucidates the role of resonance parameter correlations which become
important if several strong resonances are located in one energy group. Impor-
tance of potential scattering uncertainty as well as correlation between potential
scattering and resonance scattering is also examined. Practical application of the
formalism is illustrated on 55Mn(n,γ) and 55Mn(n,el).
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Chapter 1

Introduction

Our goal is to resolve continuing issues with neutron cross section covariances
in the resolved resonance region. These issues were discussed at several recent
US nuclear reaction data meetings, notably the Covariance Workshop in Port Jef-
ferson 2008, Mini-CSEWG Meeting in Port Jefferson 2009 and CSEWG Meet-
ing in BNL 2009. Of these issues probably the most important is the decline
of uncertainties observed after collapsing covariances into multigroup representa-
tions. This decline, caused by the lack of medium- and long-range correlations, is
deemed to be unphysical. The other issues include unrealistically low uncertain-
ties claimed by some evaluators, adjustment of thermal cross section uncertainties
to get agreement with resonance parameter uncertainties, proper inclusion of scat-
tering radius uncertainty and discrepancies between the major processing codes
NJOY and PUFF in processing resonance parameter covariances (MF32 file).

The present work attempts to find a solution to these issues by developing
a transparent formalism for cross section covariances (MF33 file) based on res-
onance parameter uncertainties of Atlas of Neutron Resonances [1]. The idea
is to derive suitable analytical expressions that would provide sufficient insight
for propagating resonance parameter uncertainties into cross section uncertain-
ties. This should be done for a single resonance located in one energy group (bin),
and also for several resonances in one energy group (bin) in order to fully under-
stand and prevent decline of cross section uncertainties in collapsing. The full
covariance matrix will be constructed with a thermal region based directly on ex-
perimental data, avoiding the adjustment issue; scattering radius uncertainty will
be handled explicitly, and by using MF33 representation we would bypass MF32
processing issue.
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Formalism for Covariances in the Resonance Region

In the past we have already attempted to derive and analyze analytical expres-
sions in the resonance region by looking into detailed energy dependencies for
capture [2]. This appeared to be not very practical since the resonance widths are
in general much smaller than a width of typical energy bin in multigroup repre-
sentations. Thus, even though we have seen fine details, we failed to get sufficient
understanding on the multigroup level.

In view of this the present work starts with kernels which properly reflect
strength of resonances and are thus suitable for characterizing cross sections over
broader energy bins. The inspiration came from S. Mughabghab [3] who was us-
ing kernels in his quick estimates of uncertainties. The details of the procedure,
however, were not fully documented. Therefore, we decided to work out rigorous
mathematical procedures that would reveal all details and avoid future confusion.

Before we proceed with developing actual formalism, several comments should
be made.

Not unexpectedly, in the course of the present work it was found out that the
idea of using kernels for obtaining capture (and fission) cross section covariances
in the resonance region is not new. It has been originally proposed by J.D. Smith
III in 1980 [4] and since then it has been used in processing of MF32 files both by
NJOY and PUFF. Since PUFF is using analytical expressions for sensitivities we
could check our own expressions derived for capture with those given in PUFF-IV
Manual [5].

The situation with elastic scattering is more complicated due to interference
effects and presence of potential scattering. Neither NJOY nor PUFF use the
scattering kernel in processing and the PUFF manual does not offer analytical ex-
pressions for sensitivities. However, following S. Mughabghab’s procedure for
estimating elastic scattering cross section uncertainties, we use scattering kernel
as the starting point for computing group cross section even though it represents
an approximation which is less robust than in the case of capture.

It appears that the kernel approximation to infer covariances has also been used
by Fritz Fröhner in early 1990s. Fröhner applied analysis of resonance areas of
transmission and capture data in order to evaluate resonance parameters (MF2 file)
and resonance parameter covariances (MF32 file) for structural materials [6, 7, 8].
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Formalism for Covariances in the Resonance Region

Starting from resonance areas of transmission dips (A±∆A) and capture peaks
(Aγ±∆Aγ) he deduced neutron and radiative widths (Γn±∆Γn, Γγ±∆Γγ) and pro-
duced MF2 and MF32 files for 56Fe and 60Ni. However, only MF2 was included
in JEFF-3 library, while MF32 including proposed scattering radius uncertainty
extension of ENDF-6 format appear to have been lost. We propose to proceed in
reversed order. We would start with resonance parameter uncertainties and infer
resonance areas (kernels) uncertainties which are proportional to cross section un-
certainties.

The report is organized as follows. In Chapter 2 we derive expressions for
average cross sections using capture and scattering kernels. In Chapters 3-5 we
describe formalism for uncertainties of average cross sections, starting from a
single resonance in Chapter 3, followed by many resonances in Chapter 4 and
complemented by thermal region in Chapter 5. Then, in Chapter 6 we discuss
correlation coefficients. This new formalism was implemented in the resonance
covariance module of the code EMPIRE as described in Chapter 7. Chapter 8 is
devoted to a sample case, 55Mn capture and elastic scattering. Conclusions are
given in Chapter 9.
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Chapter 2

Average cross sections from kernels

The starting point in development of our formalism is a suitable description of
the average cross section for a single resonance. The average, even if done over
relatively broad energy interval compared to the width of the resonance, should
preserve reasonable degree of the resonance individuality, yet considerably sim-
plify its treatment. While averaging should be avoided if a detailed description of
resonance cross sections is required, it should be adequate for producing covari-
ances on the group level required by most applications.

2.1 Radiative capture
For simplicity we restrict ourselves to single-level Breit-Wigner (SLBW) formal-
ism. This is sufficiently representative for our purposes and relatively easy to im-
plement analytically. We first discuss a single resonance in one energy group, then
proceed with several resonances in one group. For the moment, we consider non-
fissile materials, provide expressions for capture cross sections. We also note that
the expressions for fission cross sections can be obtained by straightforward mod-
ification - replacing radiative width with fission width and adding fission width to
total resonance width.

For a single resonance of the energy E0, at the neutron incident energy E, the
capture cross section can be expressed by the Breit-Wigner formula as

σγ(E) = πo2 ΓnΓγ

(E − E0)2 + 1
4Γ2

, (2.1)

4
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where we dropped all indices related to quantum numbers. Here o is the de Broglie
wavelength of the incoming neutron,

o =
~√

2mE
, (2.2)

m is the neutron reduced mass and ~ the Planck constant. The spin statistical
factor is given by

g =
2J + 1

2(2I + 2)
, (2.3)

with J being the spin of the resonance and I the spin of the target nucleus. The
total resonance width is given as

Γ = Γn + Γγ, (2.4)

with Γn and Γγ being the neutron and radiative width, respectively. The reso-
nance parameters, E0, J,Γn and Γγ, along with their uncertainties can in principle
be found in the Atlas of Neutron Resonances [1].

As a next step we compute the capture kernel which characterizes the strength
of the resonance. The kernel is defined as integral

Aγ =

∫ +∞

−∞
σγ(E)dE, (2.5)

which gives (Ref. [1], p.72, Eq. 3.4)

Aγ = 2π2o2g
ΓnΓγ

Γ
. (2.6)

Considering an isolated resonance of the energy E0 located in sufficiently
broad group with the energy width

∆E = E1 − E2 (2.7)

one can approximate the average cross section in this group using the capture
kernel

σ̄γ =
1

∆E

∫ E1

E2

σγ(E)dE ≈ 1
∆E

∫ +∞

−∞
σγ(E)dE = a

gΓnΓγ

Γ
, (2.8)

Page 5



Formalism for Covariances in the Resonance Region

which is our starting relation for deriving the formalism for covariances of average
(group) capture cross sections. We simplify notation by introdicing the quantity

a =
2π2o2

∆E
, (2.9)

which has units of barn/eV and can be computed using the wave number defined
as

k =
1
o

=

√
2mE
~

= 2.19677 × 10−3 A
A + 1

√
E. (2.10)

Here, the numerical constant, taken from NJOY manual yields k2 in barns [9] (see
p.III-9), A is the mass number and E is the neutron incident energy in eV. Then,

a =
2π2

k2

1
∆E

=
2π2

(2.197 × 10−3)2

(A + 1)2

A2

1
E0∆E

giving

a = 4.089 × 106 (A + 1)2

A2

1
E0∆E

, (2.11)

which exhibits strong energy dependence on E0. This dependence can be largely
omitted as long as we are discussing single resonances, but it will play an impor-
tant role once we deal with many resonances in a single energy group.

2.2 Elastic scattering
Description of neutron elastic scattering requires a more complicated formalism
since one has to add potential (hard-sphere) scattering and account for quantum-
mechanical interference effects.

Following Fröhner [10], within the SLBW formalism the elastic scattering
cross section for a single resonance can be expressed as

σn(E) = 4πo2(2l + 1) sin2 φl + πo2g
ΓnΓ cos(2φl) + 2(E − E0)Γn sin(2φl)

(E − E0)2 + 1
4Γ2

, (2.12)

where φl is the phase shift
φ0 = kR′, (2.13)
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φ1 = kR′ − arctan(kR′) (2.14)

and R′ is the scattering radius.

Eq. (2.12) has three terms. The 1st term describes potential scattering, which
is nearly constant as a function of energy. The second term stands for the symmet-
ric resonance cross section. The 3rd term, containing 2(E − E0)Γn sin(2φl) in the
numerator, describes interference between potential (hard-sphere) and resonance
scattering which is negative at E < E0 and positive at E > E0. These negative and
positive contributions are approximately equal and they cancel out if one com-
putes the average elastic scattering cross section by integrating the cross section
over a broad energy interval around the resonance energy E0.

Using the expression

cos(2φl) = 2 cos2 φl − 1 = 1 − 2 sin2 φl (2.15)

one can re-write Eq. (2.12) into the form identical with that given in the ENDF-6
Formats Manual [11] (see p. 317)

σn(E) = 4πo2(2l + 1) sin2 φl + πo2g
Γ2

n − 2ΓnΓ sin2 φl + 2(E − E0)Γn sin(2φl)
(E − E0)2 + 1

4Γ2
.

(2.16)
The following comment should be made. Strictly speaking, Eq. (2.16) given

in ENDF-6 Manual [11] cannot be obtained from Eq. (2.12) provided by Fröhner.
However, NJOY Manual (see Ref. [9], p. III-8) starts with a relation that differs
somewhat from Eq. (2.12), instead of ΓnΓ cos(2φl) it uses {ΓnΓ(cos(2φl) − (1 − Γn/Γ)},
which would readily lead to ENDF-6 expression.

2.2.1 Low energy approximation
In the low energy approximation only s-waves play a role, kR′ is small, hence

sin φ0 ≈ kR′ (2.17)

and the 3rd term in Eq. (2.16) can be neglected since

Γ2
n >> 2ΓnΓ(kR′)2. (2.18)

Page 7
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One thus gets for s-wave neutrons

σpot
n ≈ 4πR′2 (2.19)

and

σn(E) ≈ 4πR′2 + πo2g
Γ2

n + 2(E − E0)Γn sin(2φ0)
(E − E0)2 + 1

4Γ2
(2.20)

and the area under the elastic scattering resonance, An, can be expressed analyt-
ically. Since the contribution from the interference term approximately cancels
out, the result of integration is similar to the capture kernel and reads [1] (see
p.72, Eq.3.3)

An =

∫ +∞

−∞
σres

n (E)dE = 2π2o2 gΓnΓn

Γ
, (2.21)

where the cross section is restricted to the resonance term, σres
n (E). The average

scattering cross section in sufficiently broad energy group of the width ∆E =

E1 − E2 around the resonance energy E0 can thus be obtained as

σ̄n =
1

∆E

∫ E1

E2

σn(E)dE ≈ 1
∆E

∫ E1

E2

4πR′2dE +
1

∆E

∫ +∞

−∞
σn(E)dE, (2.22)

which is the sum of potential scattering and resonance scattering,

σ̄n = σ̄pot
n + σ̄res

n ≈ 4πR′2 + a
gΓnΓn

Γ
, (2.23)

with the resonance term being similar to the expression for the average capture
cross section.

The low energy approximation should work well up to about 100 keV for
lighter nuclei. This can be shown as follows: if the wave number k is expressed
in units of cm−1, then the numerical constant in Eq. (2.10) reads 2.197 × 109. By
considering 55Mn with R′ = 4.5 fm as given in Atlas and E = 105 eV one gets

kR′ = 2.197 × 109
√

E 4.5 × 10−13 ≈ 10−3
√

E ≈ 0.3,

meaning that kR′ is still sufficiently small so that sin(kR′) ≈ kR′. For heavy nuclei
such as 235U the scattering radius is much larger, R′ = 9.6 fm, and the energy limit
at which kR′ ≈ 0.3 drops to about 20 keV.

Page 8
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It is instructive to compute the average resonance scattering cross section us-
ing Eq. (2.23). We consider the 1st resonance of 55Mn at E0 = 337 eV and use
ENDF/B-VII.0 parameters [12]: J = 2 implying g = 5/12, Γn = 21.99 eV, Γγ=

0.31 eV, Γ = 22.30 eV and R′ = 5.15 fm. Assuming ∆E = 500 eV ≈ 22 Γ one gets

σ̄res
n = a

gΓ2
n

Γ
= a

5
12
× 21.99 × 21.99

22.30
= 9.035 a ,

with

a = 4.089 × 106 (A + 1)2

A2

1
E0∆E

=
4.089 × (56/55)2 × 106

3.37 × 102 5 × 102 = 25.16

giving
σ̄res

n = 25.16 × 9.035 = 227.3 b.

This cross section compares well with the value obtained by Sigma retrieval sys-
tem [13] applied to ENDF/B-VII.0 and integrated from 150 eV to 650 eV,

σ̄res
n = 228 b − 3.3 b ≈ 225 b,

which was corrected for the potential scattering cross section

σ̄pot
n = 4πR′2 = 4π (5.15 × 10−13 cm)2 = 3.3 b.

Also if one considers a symmetrical cut by ±10Γ around 337 eV, from 114 eV to
560 eV, one obtains 249 b from the kernel and 251 b from Sigma.

2.2.2 Approximations at higher energies
Eq. (2.23) is applicable in the low-energy approximation which is reasonable for
many nuclei of practical interest. For materials such as Cr, Fe and Ni, however,
the resonance region extends up to hundreds of keV, e.g., 850 keV for 56Fe. In
these cases the low-energy approximation is no more valid above about 100 keV
and two effects should be taken into account. First, potential scattering should be
directly computed from phase shifts,

σpot
n (E) = 4πo2(2l + 1) sin2 φl. (2.24)

Second, the full resonance term

Γ2
n − 2ΓnΓ sin2 φl (2.25)

Page 9
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should be preserved in Eq. (2.20). Considering that σpot
n (E) is slowly varying

function of energy and the dominant contribution to integral of the resonance term
comes from relatively narrow energy range (compared to E) around E0, where
sin2 φl can be considered to be approximately constant, one gets

σ̄n ≈ σpot
n (Ē) + a

gΓn(Γn − 2Γ sin2 φl)
Γ

, (2.26)

where Ē ≈ E0 and sin2 φl is approximated with the value computed at E0.

2.2.3 Role of outside resonances
It should be noted that an evaluator of resonance parameters, MF2, would likely
introduce resonances outside the resolved resonance energy region (RRR). In
computing average cross sections these resonances would be accounted for by
processing codes, but not by kernel equations. Therefore, one should be aware of
it and be careful when comparing kernel and NJOY results.

• Bound resonances. These are introduced primarily to fix thermal region.
However, their elastic scattering tail might extend to much higher energies
depending on their neutron width. We note that in some cases they are really
large.

• High energy resonances. These are introduced primarily to take care of
contribution from missing resonances. Again, if their width is too large, the
tails would extend to much lower energies.
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Chapter 3

Covariances for a single resonance

In the kernel approximation a single resonance is described its average cross sec-
tion. Hence, covariance for a single resonance is just one number, uncertainty of
the average cross section.

A comment should be made on terminology used throughout this paper. We
will use the term uncertainty for the quantity known in statistical mathematics as
standard deviation, which is square root of variance.

3.1 Radiative capture

3.1.1 Computation directly from kernels
Capture kernels along with uncertainties are often readily provided in the Atlas
of Neutron Resonances. This is the case for many nuclides, including priority
materials for reactor applications such as 23Na, 27Al, 50,52,53Cr, 54,56,57Fe 58,60Ni,
90Zr, some fission products and others. This means that one can retrieve from
Atlas all necessary quantities,

gΓnΓγ

Γ
=

1
a

Aγ (3.1)

and

∆
gΓnΓγ

Γ
=

1
a

∆Aγ , (3.2)

needed to compute uncertainty of the average capture cross section. If the eval-
uator decides to use this handy information, then the computation of the relative

11
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uncertainty of the average capture cross section for a single resonance is straight-
forward

∆σ̄γ

σγ

=
∆Aγ

Aγ

. (3.3)

3.1.2 Computation from resonance parameters
Covariances of average (group) capture cross section can be obtained by folding
cross section sensitivities with the covariances of the resonance parameters. For a
single resonance one gets

〈δσ̄γ δσ̄γ〉 =
∑

i, j

∂σ̄γ

∂pi
〈δpi δp j〉

∂σ̄γ

∂p j
, (3.4)

where pi, p j are the resonance parameters and 〈δpi δp j〉 is their covariance. Ne-
glecting contributions from the imperfect knowledge of the resonance energy E0

and spin J and considering only i, j = Γn ,Γγ one gets

〈δσ̄γ δσ̄γ〉 =
∂σ̄γ

∂Γn
〈δΓn δΓn〉

∂σ̄γ

∂Γn
+ 2

∂σ̄γ

∂Γγ
〈δΓγδΓn〉

∂σ̄γ

∂Γn
+
∂σ̄γ

∂Γγ
〈δΓγ δΓγ〉

∂σ̄γ

∂Γγ
. (3.5)

Sensitivities

We proceed by deriving analytical expressions for sensitivities. These are defined
as partial derivatives of the kernel with respect to Γn and Γγ, and in principle also
E0 and J. Using Eq. (2.8) one gets

∂σ̄γ

∂Γn
= ag

∂

∂Γn

ΓnΓγ

Γ
= agΓγ

(
1
Γ
− Γn

Γ2

)
= ag

Γ2
γ

Γ2 (3.6)

and
∂σ̄γ

∂Γγ
= ag

∂

∂Γγ

ΓnΓγ

Γ
= agΓn

(
1
Γ
− Γγ

Γ2

)
= ag

Γ2
n

Γ2 . (3.7)

These equations can be re-written to their final form that shows sensitivities in
more transparent and useful way

∂σ̄γ

∂Γn
= a

gΓnΓγ

Γ

Γγ

Γ

1
Γn

= σ̄γ

Γγ

Γ

1
Γn

(3.8)
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and
∂σ̄γ

∂Γγ
= a

gΓnΓγ

Γ

Γn

Γ

1
Γγ

= σ̄γ

Γn

Γ

1
Γγ
. (3.9)

For completeness we also derive partial derivatives with respect to the reso-
nance energy E0 and spin J. In doing so one should consider just the term g/E0

in the expression for σ̄γ

g
E0

=
2J + 1

2(2I + 1)
1
E0
. (3.10)

Partial derivative with respect to E0 reads

∂

∂E0

1
E0

= − 1
E2

0

= − 1
E0

1
E0
, (3.11)

implying
∂σ̄γ

∂E0
≈ −σ̄γ

1
E0
. (3.12)

Partial derivative with respect to J should take into account quantum-mechanical
nature of spin, minimal change of spin being ∆J = ±1. Since g is simple linear
function of J one gets

∂

∂J
g =

∂(2J + 1)
∂J

1
2(2I + 1)

=
2∂J
∂J

1
2(2I + 1)

=
1

2I + 1
(3.13)

irrespective whether ∂J is treated as infinitesimally small quantity or as ∆J = ±1.
Therefore

∂

∂J
g =

2J
2(2J + 1)

1
J
≈ g

1
J

(3.14)

and
∂σ̄γ

∂J
≈ σ̄γ

1
J
. (3.15)

The above sensitivities can be checked against the expressions in PUFF-IV
Manual [5]. They are in full agreement except for sensitivity to J, where we in-
cluded relatively small additive term to preserve convenient compact expression
proportional to σ̄γ.
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Formalism for Covariances in the Resonance Region

It should be noted that resonance energies are typically known to ∆E0 ≈ 0.1%
precision and their contribution to cross section uncertainties in vast majority of
cases can be neglected. One should be careful, however, when dealing with those
few nuclei where the resonance region starts at very low energies. If E0 is close to
thermal point even small shift in the resonance energy might have strong impact
on the thermal cross section and its uncertainty.

Uncertainties caused by the lack of knowledge of resonance spins can be much
higher and easily reach 40% or so. As a rule, however, Atlas supplies gΓn or
2gΓn values rather than Γn, reducing thus the need for explicit inclusion of spin
in the uncertainty budget. If, however, the ratio Γn/Γ or Γγ/Γ cannot be well
approximated, then explicit knowledge of Γn is needed and ∆J should be taken
into account.

Covariances

Using the sensitivities given by ∂σ̄γ/∂Γγ and ∂σ̄γ/∂Γn, the covariance for the av-
erage capture cross section can be expressed as

〈δσ̄γ δσ̄γ〉
σ̄2
γ

=

(
Γγ

Γ

)2 〈δΓn δΓn〉
Γ2

n
+ 2

ΓnΓγ

Γ2

〈
δΓn δΓγ

〉

ΓnΓγ
+

(
Γn

Γ

)2
〈
δΓγ δΓγ

〉

Γ2
γ

. (3.16)

This equation allows the absolute covariance terms to be readily converted to their
relative values so that we finally obtain

(
∆σ̄γ

)2
=

(
Γγ

Γ
∆Γn

)2

+ 2
ΓnΓγ

Γ2

〈
∆Γn∆Γγ

〉
+

(
Γn

Γ
∆Γγ

)2

, (3.17)

where ∆σγ,∆Γn and ∆Γγ are relative uncertainties and
〈
∆Γn∆Γγ

〉
denotes relative

correlation between the neutron width and radiative width.

Eq. (3.17) represents our concluding expression for a single resonance. It
shows how the uncertainty of the average (group) capture cross section should be
computed. One can easily see that if Γn is much larger than Γγ, then both the 1st
and 2nd term can be neglected and

∆σ̄γ ≈ Γn

Γ
∆Γγ ≈ ∆Γγ if Γn >> Γγ. (3.18)
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Formalism for Covariances in the Resonance Region

This situation occurs for many strong resonances which in general are s-wave res-
onances, an example would be 55Mn.

Eq. (3.17) also shows that, unless neutron and radiative width are comparable,
the 2nd term can be neglected even if the correlation between neutron and radia-
tive widths would be strong. This in practice means that Γn x Γγ correlation for
a single resonance makes little or no impact on the average capture cross section
uncertainty.

We proceed with the application of the above formalism to 55Mn capture by
examining the first 6 strong resonances, with resonance strength defined by the
capture kernel, see Table 3.1. The target spin is I = 5/2, implying 2g = 5/6 = 0.83
for resonances with spin J = 2 and 2g = 7/6 = 1.17 for J = 3 . We note that
55Mn is almost pure scatterer, meaning that Γn >> Γγ, hence ∆Γγ = δΓγ/Γγ de-
fines the average capture cross section uncertainty ∆σ̄γ. A comparison is made
with the uncertainties given in AFCI-1.2 library [14]. This library is produced
in 33-energy group representation, mostly with groups of the same lethargy 0.5,
starting in reverse order with group 1 (19.6 MeV - 10 MeV), down through group
22 (454 eV - 304 eV) to group 33 (10−1 eV - 10−5 eV).

Table 3.1: Example of 55Mn(n,γ) resonances. Shown are first 6 strong capture resonances
determined by the value of capture kernel, Aγ.

E0 J l 2gΓn δ2gΓn Γγ δΓγ Aγ/a ∆σ̄γ AFCI
keV eV eV eV eV % %

0.337 2 0 18.3 0.4 0.31 0.02 0.13 6.4 5.2
1.09 2 0 18 0.8 0.435 0.1 0.18 22.5 21
2.32 3 0 460 24 0.34 0.13 0.20 38.2 23
4.90 1 0.932 0.29 0.013 0.11 3.4 4.1
7.10 2 0 332 8 1.03 0.08 0.43 7.7
8.80 3 0 432 12 0.82 0.08 0.48 9.7 5.0a

a Refers to uncertainty in group no.16 with two resonances, E0 = 7.10, 8.80 keV.

A comment should be made on the p-wave resonance at 4.9 keV with un-
known spin J. Related uncertainty ∆J is partly taken care of by the combined
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Formalism for Covariances in the Resonance Region

quantity 2gΓn. Spin uncertainty cannot, however, be fully neglected, it contributes
to Γ, where Γn rather than 2gΓn steps in. The value ∆σ̄γ = 3.4% in Table 3.1
does not account for this contribution and it is thus somewhat underestimated.

3.2 Elastic scattering
According to Eq. (2.23) the average elastic scattering cross section has two terms,
the resonance scattering and potential scattering. Therefore, elastic scattering co-
variances should be obtained by quadratic summation of these two contributions,

(∆σ̄n)2 =

(
σ̄res

n

σ̄n
∆σ̄res

n

)2

+ 2
σ̄res

n

σ̄n

〈
∆σ̄res

n ∆σ̄pot
n

〉 σ̄pot
n

σ̄n
+

(
σ̄

pot
n

σ̄n
∆σ̄pot

n

)2

. (3.19)

This expression is general and includes also the term due to possible correlation
between potential and resonance scattering. What remains to be derived are ex-
pressions for relative uncertainties ∆σ̄res

n , ∆σ̄
pot
n .

3.2.1 Resonance contribution
Similarly to capture we derive sensitivities of the average elastic resonance scat-
tering cross section σ̄res

n with respect to the resonance parameters.

Low energy approximation

Starting from Eq. (2.23) one gets

∂σ̄res
n

∂Γn
= ag

∂

∂Γn

Γ2
n

Γ
= ag

(
2Γn

Γ
− Γ2

n

Γ2

)
= ag

Γn

Γ

Γ + Γγ

Γ
(3.20)

and
∂σ̄res

n

∂Γγ
= ag

∂

∂Γγ

Γ2
n

Γ
= agΓ2

n
∂

∂Γγ

1
Γ

= −ag
Γ2

n

Γ2 . (3.21)

Using Eq. (2.23) these relations can be transformed into expressions more
suitable for our purposes

∂σ̄res
n

∂Γn
= ag

Γ2
n

Γ

Γ + Γγ

ΓΓn
= σ̄res

n
Γ + Γγ

Γ

1
Γn

(3.22)
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and
∂σ̄res

n

∂Γγ
= −ag

Γ2
n

Γ

1
Γ

= −σ̄res
n

Γγ

Γ

1
Γγ
. (3.23)

Using the above expressions for sensitivities the covariance for the average
resonance scattering cross section can be expressed as

〈δσ̄res
n δσ̄res

n 〉
(σ̄res

n )2 =

(
Γ + Γγ

Γ

)2 〈δΓn δΓn〉
Γ2

n
− 2

Γ + Γγ

Γ

Γγ

Γ

〈
δΓn δΓγ

〉

ΓnΓγ
+

(
Γγ

Γ

)2
〈
δΓγ δΓγ

〉

Γ2
γ

.

(3.24)
The absolute covariances can be readily replaced by their relative values so that
we finally obtain

(
∆σ̄res

n
)2

=

(
Γ + Γγ

Γ
∆Γn

)2

− 2
(Γ + Γγ)Γγ

Γ2

〈
∆Γn∆Γγ

〉
+

(
Γγ

Γ
∆Γγ

)2

. (3.25)

What apparently counts in many cases in practice is the first term of Eq. (3.25)
only. One can readily see that if Γn is much larger than Γγ, then both multiplica-
tive and additive terms containing Γγ can be neglected and the average elastic
resonance scattering cross section uncertainty is

∆σ̄res
n ≈ ∆Γn if Γn >> Γγ . (3.26)

This holds for many strong elastic scattering resonances, such as essentially all
s-wave resonances in 55Mn. It should be noted, however, that other scenarios take
place, such as Γn < Γγ for fission products at low energies, for which the 3rd term
contributes and cannot be neglected.

The other limiting case occurs when Γn is much smaller than Γγ, implying
Γ ≈ Γγ. The uncertainty of the group cross section becomes

∆σ̄res
n ≈

√
(2∆Γn)2 +

(
∆Γγ

)2
if Γn << Γγ, (3.27)

assuming that correlation between Γn and Γγ is small. This limiting case, how-
ever, implies that the scattering kernel is very small as well. Hence, the average
scattering cross section is small and the resonance does not contribute much to
elastic processes. This suggests that potential scattering and thus ∆R′ (if known)
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Table 3.2: Example of 55Mn(n,el) resonances. Shown are first 6 strong resonances de-
termined by the value of the scattering kernel, An. The last two resonances fall into one
group in AFCI-1.2 covariance library [14].

E0 J l 2gΓn δ2gΓn Γγ δΓγ An/a ∆σ̄res
n AFCI Group

keV eV eV eV eV % % No.
0.337 2 0 18.3 0.4 0.31 0.02 10.8 2.2 5.0 22
1.09 2 0 18 0.8 0.435 0.1 10.6 4.4 3.9 20
2.32 3 0 460 24 0.34 0.13 197 5.2 2.4 18
4.90 1 0.932 0.29 0.013 0.4 5.2 17
7.10 2 0 332 8 1.03 0.08 199 2.4 16
8.80 3 0 432 12 0.82 0.08 185 2.8 1.4a 16

a Refers to uncertainty in group no.16 with two resonances, E0 = 7.10, 8.80 keV.

represents more important component in the corresponding energy range.

As an example in Table 3.2 we show 6 first strong elastic scattering resonances
in 55Mn. One can see that s-wave resonances are very strong and the only p-wave
resonance in this short list is weak and does not contribute significantly to overall
uncertainty budget.

Approximation suitable for higher energies

At higher energies the low energy approximation is no more valid and one has to
resort to full expressions. In practice this means to use

σ̄res
n = a

gΓnΓn

Γ
− 2agΓn sin2 φl . (3.28)

As a consequence the sensitivity with respect to Γn, Eq. (3.20), has one more term
and reads

∂σ̄res
n

∂Γn
= ag

Γn

Γ

Γ + Γγ

Γ
− 2ag sin2 φl , (3.29)

meaning that it is reduced compared to the low energy approximation and even-
tually it may reach zero. On the other hand, the sensitivity with respect to Γγ,
Eq. (3.21), remains the same. In addition, however, we have also sensitivity with
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respect to R’,
∂σ̄res

n

∂R′
= 4akgΓn sin φl cos φl. (3.30)

3.2.2 Potential scattering contribution
In the low energy approximation the contribution to elastic scattering covariances
from potential scattering can be readily obtained from Eq. (2.19). One computes
sensitivity

∂σ
pot
n

∂R′
=
∂(4πR′2)
∂R′

= 8πR′ (3.31)

and obtains relative uncertainty of the potential scattering cross section as

∆σpot
n =

∂σ
pot
n

∂R′
δR′

σ
pot
n

=
8πR′

4πR′2
δR′ = 2

δR′

R′
= 2∆R′. (3.32)

At high energies one should resort to full expression for the potential scatter-
ing. By summing up s- and p-waves and neglecting d-waves as well as distant
level contributions, Eq. (2.24) gives

σpot
n (E) =

4π
k2

{
sin2 kR′ + 3 sin2(kR′ − arctan kR′)

}
(3.33)

or
σpot

n (E) =
4π
k2

{
sin2 φ0 + 3 sin2 φ1

}
. (3.34)

The sensitivity is given as

∂σ
pot
n

∂R′
=

4π
k2

{
∂ sin2 φ0

∂R′
+ 3

∂ sin2 φ1

∂R′

}
, (3.35)

where the derivative of the s-wave term is

∂ sin2 φ0

∂R′
= 2 sin φ0 cos φ0

∂φ0

∂R′
= 2k sin φ0 cos φ0 (3.36)

and that of the p-wave reads

∂ sin2 φ1

∂R′
= 2 sin φ1 cos φ1

∂φ1

∂R′
,
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∂φ1

∂R′
=
∂(kR′ − arctan kR′)

∂R′
= k

{
1 − 1

1 + (kR′)2

}
. (3.37)

By putting these partial results together one gets

∂σ
pot
n

∂R′
=

8π
k

{
sin φ0 cos φ0 + 3

(
1 − 1

1 + (kR′)2

)
sin φ1 cos φ1

}
, (3.38)

which reduces to Eq. (3.31) at low energies as expected.

Then, the relative uncertainty of full potential scattering

∆σpot
n =

∂σ
pot
n

∂R′
δR′

σ
pot
n

can be expressed as

∆σpot
n = 2∆R′

kR′
sin φ0 cos φ0 + 3

(
1 − 1

1+(kR′)2

)
sin φ1 cos φ1

sin2 φ0 + 3 sin2 φ1

 , (3.39)

which reduces to Eq. (3.32) at low energies. The term in large brackets can be
viewed as the uncertainty correction to the low energy approximation. For illus-
tration we show in Table 3.3 this correction for 56Fe. As can be seen the deviation
from unity is fairly small even at 800 keV which is close to the upper end of the
resolved resonance region of 56Fe.

Table 3.3: Correction term for the relative uncertainty of the potential scattering cross
section for 56Fe. Value of R’= 5.9 fm was assumed (Atlas).

Energy φ0 φ1 s-wave p-wave σ
pot
n Uncertainty

keV radian radian barn barn barn correction
10 0.127 0.001 4.35 0.00 4.35 0.995

100 0.403 0.020 4.14 0.03 4.17 0.960
200 0.569 0.052 3.92 0.11 4.03 0.938
500 0.784 0.167 3.31 0.45 3.76 0.914
800 1.139 0.289 2.78 0.82 3.60 0.898
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Chapter 4

Covariances for many resonances

The previous analysis for a single isolated resonance can be extended to many
resonances located in one energy group. We proceed step by step so that all de-
tails of the procedure can be clearly followed. The formalism described below
is applicable both to capture and scattering, hence whenever appropriate, we use
notation σ̄ and drop the subscripts γ and n.

4.1 Formalism for many resonances
The average cross section due to several resonances located in one energy group
can be obtained as

σ̄ =
1

∆E

∫ E1

E2

∑

r

σr(E)dE =
∑

r

σ̄r , (4.1)

where the summation goes over all resonances r in the energy interval ∆E. It
should be noted that this equation represents good approximation of capture (and
fission), but it is less suitable for elastic scattering, for which multilevel Breit-
Wigner or Reich-Moore formalism should be adopted. This means that coherent
summation of scattering amplitudes should be applied rather than their incoherent
summation assumed by Eq. (4.1). Despite this, the proposed approach should rep-
resent sufficiently plausible approximation of elastic cross sections averaged over
broader energy groups.
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The sensitivities can be computed as partial derivatives of σ̄ with respect to
resonance parameters pi,r where i = γ, n. Thus,

∂σ̄

∂pi,r
=

∑

r′

∂σ̄r′

∂pi,r
=
∂σ̄r

∂pi,r
, (4.2)

meaning that the sensitivity for only one resonance remains on the right hand side,
since each resonance is defined by its own set of resonance parameters and does
not depend on the parameters of other resonances.

Using these sensitivities the covariance of the group cross section σ̄ can be
obtained as

〈δσ̄ δσ̄〉 =
∑

i,r,i′,r′

∂σ̄

∂pi,r
〈δpi,r δpi′,r′〉 ∂σ̄

∂pi′,r′
, (4.3)

where 〈δpi,r δpi′,r′〉 is the covariance of resonance parameters.

By dividing Eq (4.3) with the average cross section one gets expression for the
relative covariance

〈δσ̄ δσ̄〉
σ̄2 =

∑

i,r,i′,r′

1
σ̄

∂σ̄r

∂pi,r
〈δpi,r δpi′,r′〉 1

σ̄

∂σ̄r′

∂pi′,r′
. (4.4)

Using explicit expressions for the sensitivities derived in the previous Chapter
and making appropriate assumptions about the correlations between the resonance
parameter uncertainties one can get the uncertainty of the group cross section.

4.2 Explicit treatment of two resonances
To clarify the above formalism we explicitly show its implementation for two
resonances located in one energy group.

4.2.1 Capture computed directly from kernels
If one already knows uncertainties of capture kernels, then the procedure for com-
puting uncertainty of the group cross section is fairly straightforward. The group
kernel,

Aγ = Aγ1 + Aγ2 , (4.5)
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has absolute uncertainty

(δAγ)2 = (δAγ1)2 + 2
〈
δAγ1δAγ2

〉
+ (δAγ2)2 (4.6)

implying relative uncertainty
(
δAγ

Aγ

)2

=

(
Aγ1

Aγ

δAγ1

Aγ1

)2

+ 2
Aγ1

Aγ

〈
δAγ1

Aγ1

δAγ2

Aγ2

〉
Aγ2

Aγ

+

(
Aγ2

Aγ

δAγ2

Aγ2

)2

and meaning that

(
∆Aγ

)2
=

(
Aγ1

Aγ

∆Aγ1

)2

+ 2
Aγ1

Aγ

〈
∆Aγ1∆Aγ2

〉 Aγ2

Aγ

+

(
Aγ2

Aγ

∆Aγ2

)2

. (4.7)

Assuming maximum correlation between the two resonances
〈
∆Aγ1∆Aγ2

〉
= ∆Aγ1∆Aγ2 (4.8)

implies that the group cross section uncertainty is given by simple linear weighted
average of the two components,

(
∆Aγ

)2
=

(
Aγ1

Aγ

∆Aγ1 +
Aγ2

Aγ

∆Aγ2

)2

(4.9)

and thus the group cross section uncertainty is

∆σ̄γ = ∆Aγ =
Aγ1

Aγ

∆Aγ1 +
Aγ2

Aγ

∆Aγ2 (4.10)

as one would intuitively expect.

4.2.2 Capture computed from resonance parameters
We explicitly examine capture with two resonances in one energy group. Eq. (4.3)
can be rearranged as

〈δσ̄γ δσ̄γ〉 = 〈δσ̄γ1 δσ̄γ1〉 + 2〈δσ̄γ1 δσ̄γ2〉 + 〈δσ̄γ2 δσ̄γ2〉 , (4.11)

where the first and the last term are contributions from single resonances, and
the 2nd term arises from resonance-resonance correlations. Sensitivities to the
parameters of the 1st resonance can be expressed as

∂σ̄γ

∂Γn1
=
∂σ̄γ1

∂Γn1
= σ̄γ1

Γγ1

Γ1

1
Γn1

, (4.12)
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∂σ̄γ

∂Γγ1
=
∂σ̄γ1

∂Γγ1
= σ̄γ1

Γn1

Γ1

1
Γγ1

(4.13)

and similarly for the sensitivities to parameters of the 2nd resonance. Therefore,

〈δσ̄γ1 δσ̄γ1〉 =
(
σ̄γ1

)2

(
Γγ1

Γ1

δΓn1

Γn1

)2

+ 2
Γγ1

Γ1

Γn1

Γ1

〈
δΓn1

Γn1

δΓγ1

Γγ1

〉
+

(
Γn1

Γ1

δΓγ1

Γγ1

)2


and
〈δσ̄γ2 δσ̄γ2〉 =

(
σ̄γ2

)2
(... + ... + ...),

〈δσ̄γ1 δσ̄γ2〉 = σ̄γ1σ̄γ2(... + ... + ... + ...). (4.14)

These equations indicate that altogether we have 10 terms which account for all
possible combinations of the correlations between the resonance parameters under
consideration. Dividing by σ̄2

γ we transform the above expressions into relative
covariances

〈
δσ̄γ1 δσ̄γ1

〉

σ̄2
γ

=

(
σ̄γ1

σ̄γ

)2

(
Γγ1

Γ1
∆Γn1

)2

+ 2
Γγ1

Γ1

〈
∆Γn1∆Γγ1

〉 Γn1

Γ1
+

(
Γn1

Γ1
∆Γγ1

)2


and similarly for the other terms

〈δσ̄γ2 δσ̄γ2〉
σ̄2
γ

=

(
σ̄γ2

σ̄γ

)2

(... + ... + ...),

〈δσ̄γ1 δσ̄γ2〉
σ̄2
γ

=
σ̄γ1 σ̄γ2

σ̄2
γ

(... + ... + ... + ...). (4.15)

If Γn >> Γγ for both resonances as is the case for 55Mn, then the uncertainty
of the capture group cross section is

(∆σ̄γ)2 =

(
σ̄γ1

σ̄γ

∆Γγ1

)2

+ 2
σ̄γ1

σ̄γ

〈
∆Γγ1∆Γγ2

〉 σ̄γ2

σ̄γ

+

(
σ̄γ2

σ̄γ

∆Γγ2

)2

. (4.16)

This result is expressed as a weighted sum, with the weighting factors given by
the relative strength of each resonance. If we further assume that the relative
correlation has its maximum value

〈
∆Γγ1∆Γγ2

〉
= ∆Γγ1∆Γγ2, (4.17)
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then the outcome can be mathematically expressed as a simple weighted average
of the two resonance contributions

(∆σ̄γ)2 =

(
σ̄γ1

σ̄γ

∆Γγ1 +
σ̄γ2

σ̄γ

∆Γγ2

)2

. (4.18)

As an example we consider 55Mn and two resonances, E0 = 7.10 keV and
8.80 keV, in one group. After proper weighing which takes into account also E0

dependence of kernels one gets

∆σ̄γ =
0.43b
0.91b

7.7% +
0.48b
0.95b

9.7% = 8.6%.

4.2.3 Elastic scattering
By repeating the exercise for ∆σ̄res

n under the same condition as above, Γn >> Γγ,
one gets

(∆σ̄res
n )2 =

(
σ̄res

n1

σ̄res
n

∆Γn1

)2

+ 2
σ̄res

n1

σ̄res
n
〈∆Γn1∆Γn2〉

σ̄res
n2

σ̄res
n

+

(
σ̄res

n2

σ̄res
n

∆Γn2

)2

. (4.19)

As an example, considering again 55Mn resonances at E0= 7.1 keV and 8.8 keV,
with the maximum value of the correlation term,

〈∆Γn1∆Γn2〉 = ∆Γn1∆Γn2 , (4.20)

one can compute uncertainty of the group elastic scattering cross section as simple
linear weighted sum

∆σ̄res
n =

σ̄res
n1

σ̄res
n

∆Γn1 +
σ̄res

n2

σ̄res
n

∆Γn2. (4.21)

yielding

∆σ̄n =
199b
384b

2.4% +
185b
384b

2.8% = 2.6% .

This is much higher than the 1.4% claimed by AFCI-1.2, where apparently the
desired maximum value of the correlation term was not properly accounted for.

The contribution from potential scattering should be added exactly in the same
way as done for a single resonance. Thus, ∆σ

pot
n should be computed according

to Eq.(3.39) and then incorporated into ∆σn using Eq.(3.19).
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Chapter 5

Covariances in thermal energy
range

So far we discussed formalism for estimating covariances in the resonance energy
range. For the sake of completeness we will describe also the thermal energy
range, where simple, yet fairly reasonable covariance estimates can be made using
the approach proposed by M. Williams in 2004 [15].

5.1 Thermal radiative capture
With a few exceptions, such as 113Cd, 149Sm and 155Gd, capture cross sections
at low neutron energies follow the well-known 1/v law. Westcott factors, ideally
equal to unity, are usually used as a measure of the validity of this law. In Ta-
ble 5.1 we summarize Westcott factors for some of the AFCI priority materials,
all of which follow 1/v extremely well.

The upper energy limit for applicability of this law is usually considered to
be Emax = 10 eV. In practice it might be higher and closer to the 1st resonance,
probably as high as Emax ≈ E01 − 10 Γ1, giving about 100 eV for 55Mn (E01 = 337
eV, Γ1 = 22.3 eV). In this energy range

σγ(E) ≈ σγ(Eth)

√
Eth

E
, (5.1)

where Eth = 0.0253 eV is the thermal energy.
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Table 5.1: Westcott factors gw for selected materials based on data in JEFF-3.0 li-
brary [16].

Material gw Material gw
23Na 1.00008 54Fe 1.00008
50Cr 1.00006 56Fe 1.00007
52Cr 1.00008 57Fe 1.00112
53Cr 1.00007 58Ni 1.00008

55Mn 1.00011 60Ni 1.00004

There is only one degree of freedom, σγ(Eth), which determines capture cross
sections in the entire thermal energy range. Consequently, uncertainties can be
estimated as

∆σγ(E) ≈ ∆σγ(Eth), (5.2)

and the correlation matrix should reflect 100% energy-energy correlations.

This approach was successfully adopted by the recently completed low-fidelity
covariance project [17]. The method is based on well established physics of ther-
mal capture and experimentally determined uncertainties, making it likely the best
approach one can use. Application to average capture cross sections is straight-
forward and is not given here.

5.2 Thermal elastic scattering

5.2.1 Thermal scattering cross section uncertainty
Elastic scattering is of particular importance for moderator materials due to their
role in the neutron slowing down process and also for structural materials, such as
Cr, Fe and Ni, which are almost pure scatterers. Elastic scattering cross sections
are nearly constant over a large portion of thermal energy range. At sub-thermal
energies, under the free-gas approximation, this constant behavior changes to 1/v
due to molecular motion of target nuclei. Thus, at energies defined approximately
as 10−3 eV < E < 10 eV one has

σn(E) ≈ σn(Eth), (5.3)
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to be replaced by approximately 1/v behavior at energies below about 10−3 eV
which holds for temperatures > 300 K.

In accordance with M. Williams [15] this feature can be utilized for estimating
elastic scattering cross section uncertainties. Similar to radiative capture, there is
only one degree of freedom, σn(Eth), which determines cross sections over the en-
tire thermal energy range. Therefore, relative scattering cross section uncertainty
in the thermal region can be approximated as

∆σn(E) ≈ ∆σn(Eth) = ∆σs, (5.4)

whereσs is the free thermal scattering cross section, which together with its uncer-
tainty can be found in Atlas of Neutron Resonances. Again, the related correlation
matrix should be simple and should reflect 100% energy-energy correlations.

5.2.2 Impact of scattering radius uncertainty
A comment should be made on recent attempts to account for scattering radius
uncertainty ∆R′ in the uncertainty budget of elastic scattering. On the first glance
this is a correct idea, which, however, should be applied with caution. The point
is that the scattering radius is a derived quantity which in most cases has much
higher uncertainty than σs which is measured directly.

To make our point we show how ∆R′ and ∆σs are coupled, using expressions
derived in Atlas on pp. 4-5. The thermal scattering cross section is given by the
sum of coherent and incoherent terms,

σs = σcoh + σincoh, (5.5)

where
σcoh = 4πa2, (5.6)

the scattering coherent length being

a ≈ R′ − 2.277 × 103 A + 1
A

∑

j

gΓ0
n j

E j
= R′ − b. (5.7)

Here, Γ0
n j is the reduced neutron width and summation goes over all resonances

(positive and bound). We note that a might be a negative quantity. Eq. (5.7) was
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used in many cases to obtain ∆R′ in Atlas,

(∆R′)2 ≈ (∆a)2 + 2.277 × 103 A + 1
A

∑

j


∆gΓ0

n j

E j


2

. (5.8)

Usually ∆a is small, hence ∆Γ0
n j determines ∆R′ meaning that these quantities are

strongly correlated. Eq. (5.8) also shows how the scattering radius uncertainty
impacts ∆σcoh and thus also ∆σs.

The trouble starts when one attempts to compute impact of ∆R′ on ∆σs using
usual propagation of errors for uncorrelated quantities. Computing the sensitivity
for the coherent scattering term as

∂σcoh

∂R′
= 8πa

∂a
∂R′

= 8π(R′ − b) (5.9)

one gets the absolute uncertainty

δσcoh = 8π|R′ − b|δR′ . (5.10)

In the case of 55Mn σs = 2.06 b is mostly due to coherent scattering, σcoh

= 1.734 b, the coherent scattering length being negative. Therefore, R’=4.5 fm
requires b = 8.22 fm to get 1.734 b. Using Eq. (5.10) and δR’= 0.4 fm one arrives
at δσcoh = 0.37 b, which is considerably higher than δσs = 0.03 b and implies
∆σs ≈ 0.37/2.06 or 18%. Comparison with other results is given in Table 5.2

Table 5.2: 55Mn(n,el) thermal cross section and its uncertainty from various sources com-
pared to uncertainty propagated from the scattering radius.

Source σn(Eth) ∆σn(Eth) Comment
Atlas 2.06 b 1.5% Atlas: σs = 2.06 ± 0.03 b∗)

ENDF/B-VII.0 2.16 b Covariances not provided
ENDF/A 2.12 b 2% New evaluation by ORNL in 2008
Low-fidelity 2.5% Based on Atlas, adjusted to VII.0
From R’ 18% Based on R′ = 4.5 ± 0.4 fm (Atlas)

∗) Atlas uses notation σs for the free thermal scattering cross section.
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Chapter 6

Correlation coefficients

In Chapters 2-5 we derived the formalism for obtaining uncertainties of cross sec-
tions averaged over suitable energy bins. This formalism uses available resonance
parameter uncertainties, but it can not be fully applied unless correlations between
resonance parameters in the energy bins were established. Once this is done and
the cross section uncertainties are computed, they constitute diagonal terms of the
covariance matrix. Then, one must establish correlation coefficients between the
energy bins to get off-diagonal terms of the full covariance matrix.

Before explaining how we arrived at default values of correlation coefficients
we make some more general observations.

6.1 Notation
Consider a set of parameters p j with the absolute uncertainties (or variances) δp j

and relative uncertainties ∆p j. Then, correlation coefficient between parameters
p j and pk is the normalized value of the off-diagonal term of the parameter covari-
ance matrix,

〈
∆p j∆pk

〉
=

〈
δp jδpk

〉

δp jδpk
. (6.1)

Consequently, correlation coefficients have values between -1.0 and +1.0.

Throughout this paper we use two different notations for correlation coeffi-
cients. In the formalism developed in previous Chapters we resorted to notation
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that stressed the link between correlation coefficients and relative uncertainties.
Therefore, correlation coefficients were denoted as

〈
∆p j∆pk

〉
.

To make correlation coefficients intuitively more understandable we will use also
equivalent notation

corr(p1, p2) = 〈∆p1∆p2〉 .

6.2 Transmission and capture measurements
In general, correlations are determined by experimental conditions and data reduc-
tion procedures. Thus, if one wants to assess correlations one should start with
analysis of experiments that supplied the data used by evaluators. Two different
measurements, transmission and capture, are needed for determining resonance
parameters.

In transmission measurement one measures attenuation of neutron flux caused
by elastic scattering and capture (fission). A characteristic feature of measured
transmission data are dips which refer to individual resonances. One measures
with sample-out and sample-in using samples with different thickness to deter-
mine flux attenuation for thin samples. The baseline shift in attenuated neutron
flux is due to potential scattering. For thin samples transmission dip areas are
proportional to

A ∝ gΓn. (6.2)

Radiative capture measurements supply the remaining information. Measured
data display peaks, with capture peak areas proportional to

Aγ ∝ gΓn
Γγ

Γ
. (6.3)

As usual, there are two types of uncertainties in these measurements, statistical
and systematic. This latter uncertainty is critical for long-range correlations. Sys-
tematic uncertainty is caused by a number of effects, such as weighting function,
normalization to standards, neutron flux determination, sample condition, detec-
tor efficiency, dead-time corrections, etc. Systematic uncertainties lead to positive
correlation between resonances.
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Data reduction procedures include number of steps, such as background sub-
traction, calibration, correction for attenuation in the sample, correction for mul-
tiple neutron scattering and others. All these effects lead to positive correlation
between resonances.

Assume, for example, that the data reduction involved subtraction of a com-
mon background b ± δb and multiplication by a calibration factor c ± δc. This
means that the data reduction recipe to get count α j from the raw count a j with
the statistical uncertainty ±δa j was

α j = (a j − b)c. (6.4)

Then, the covariance matrix elements can be obtained as
〈
δα jδαk

〉
=

〈(
∂α j

∂a j
δa j +

∂α j

∂b
δb +

∂α j

∂c
δc

) (
∂αk

∂ak
δak +

∂αk

∂b
δb +

∂αk

∂c
δc

)〉
, (6.5)

where sensitivities are
∂α j

∂a j
= c,

∂α j

∂b
= −c and

∂α j

∂c
= a j − b. (6.6)

Individual components of Eq. (6.4) are uncorrelated, therefore, all cross terms on
the right-hand side of Eq. (6.5) can be neglected giving

〈
δα jδαk

〉
≈ c2δ jk(δa j)2 + c2(δb)2 + (a j − b)(ak − b)(δc)2, (6.7)

where δ jk is the Kronecker delta. This expression makes it clear that the off-
diagonal terms of the covariance matrix and hence also correlation coefficients
due to data reduction are indeed positive. It also shows how difficult is to deter-
mine actual values of correlation coefficients without detailed information about
systematic uncertainties and data reduction procedure.

6.3 Default values of correlation coefficients
Difficult part of establishing correlation coefficients in our procedure consists in
the fact that they are not available in Atlas. Making their plausible estimate is
therefore one of the most important issues that an evaluator must resolve. This
holds for both MF33 and MF32 approach and the issue cannot be avoided.

According to our formalism one has to specify the values of several distinctive
types of correlations:
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• Correlations within a single resonance,

• Correlations between resonances in the energy bin,

• Correlation between potential scattering and resonance scattering,

• Correlations between energy bins,

• Correlation between thermal region and resonance region.

A summary of the default values of the correlation coefficients adopted in the
present work is given in Table 8.6. A justification for these values is discussed in
the following subsections.

Table 6.1: Default values of correlation coefficients (range -1.0 to +1.0) used in the
present work.

No. Type Quantity Default
1 Single resonance corr(Γn,Γγ) 0.0
2 Resonance-resonance corr(Γγ1,Γγ2) 0.5
3 corr(Γn1,Γn2) 0.5
4 corr(Γn1,Γγ2) 0.0
5 Pot. scattering-resonance corr(R′,Γn) -0.5
6 Bin-bin corr(σ̄γ1, σ̄γ2) 0.5
7 corr(σ̄n1, σ̄n2) 0.5
8 Thermal-resonance corr(σth

γ , σ̄γ) 0.0
9 corr(σth

n , σ̄n) 0.0
10 Cross-correlation corr(σth

n , σ
th
γ ) 0.0

11 corr(σres
n , σres

γ ) -0.5

6.3.1 Single resonance
There is only one correlation of interest in this category, corr(Γn,Γγ). It is difficult
to assign this correlation properly unless one has sufficient knowledge about the
evaluation procedure used to obtain individual resonance parameters that consti-
tute the basis for data in the Atlas. If the kernel approach was used, then this cor-
relation should be negative. It may, however, be also positive due to experimental
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procedure whereby neutron sensitivity corrections is not properly accounted for.

In view of these ambiguities our default value for this correlation was set to 0.

6.3.2 Resonance - resonance
Under this category three correlations should be considered:

• corr(Γγ1,Γγ2). Due to systematic uncertainties and data reduction discussed
above this correlations should be positive with values possibly close to 1.
This is in line with the need to prevent decline of uncertainties in multigroup
representation, which is deemed to be unphysical.

Default value for this correlation was set to 0.5.

• corr(Γn1,Γn2). The same arguments apply as for corr(Γγ,Γγ) correlations.

Default value for this correlation was set to 0.5.

• corr(Γn1,Γγ2). In accordance with the argument applied for a single reso-
nance we assume that this correlation can be neglected.

Default value for this correlation was set to 0.

6.3.3 Potential scattering - resonance scattering
Potential scattering is determined by the scattering radius R’, while resonance
scattering is driven by Γn. Therefore, the correlation coefficient under discussion
is corr(R′,Γn). We note that R’ remains fairly constant as a function of energy and
therefore potential scattering is bringing long-range correlation to elastic scatter-
ing.

Both R’ and Γn can be derived from transmission measurements. One can ar-
gue that a negative correlation does exist between the potential scattering radius
and neutron widths of resonances. The point is that increasing R’ implies de-
crease in gΓn and vice versa, while still preserving the same transmission. Similar
argument can be made on the basis of Eq. (2.23) which shows that the average
scattering cross section is sum of potential and resonance scattering, implying
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negative correlation between the two terms and hence between R’ and Γn. The
magnitude of the correlation coefficient can vary from -1 to 0, depending on the
quality of the data.

In the thermal energy region, the relation of the coherent scattering amplitude
in terms of the potential scattering radius and the resonance parameters shows that
there can be positive or negative correlation between R’ and Γn. This depends on
whether the resonance term in Eq. (5.7) is positive or negative, i.e., whether the
effect of the combined resonance terms from the positive energy resonances dom-
inate over those of the bound levels or not.

In 2010, CSEWG extended ENDF-6 format by inclusion ∆R′ under assump-
tion that there is no correlation between R’ and any of the resonance parameters.
Provision was made to allow for such correlations in the future.

Default value for this correlation was set to -0.5.

6.3.4 Energy bin - energy bin
According to our procedure, the evaluator should first establish suitable energy
bins (typically 10-15) over the whole resonance region. Resonance-resonance
correlations within each bin were discussed above. What remains to be deter-
mined are correlations between these energy bins. These are correlations of the
type corr(σ̄γ1, σ̄γ2) and corr(σ̄n1, σ̄n2).

Default value for each of these two correlations was set to 0.5.

6.3.5 Thermal region - resonance region
We treat thermal region and resonance region separately. This is justified by the
fact that in most cases thermal values are measured independently from resonance
quantities. This is true for both capture and elastic scattering, implying that in our
approximation there is no correlation between these two regions. We note that in
the evaluation of resonance parameters used in Atlas in many cases there is anti-
correlation.
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Default value for each of these two correlations was set to 0.

6.3.6 Cross-correlations
In principle there are correlations between different reaction channels, in our case
between capture and elastic scattering. These cross-correlations can be different
for thermal and resonance region.

Thermal region

In the thermal region elastic scattering cross sections are mostly determined by co-
herent scattering length measurements [1]. These are entirely independent from
capture cross section measurements. Hence, related cross-correlation coefficient
should be zero.

Default value for cross-correlation in the thermal region was set to 0.0.

Resonance region

In the resonance region elastic scattering cross sections are determined as dif-
ference between transmission and capture measurements. Hence, related cross-
correlation coefficient should be negative. Since we are unable to establish its
value precisely, our estimate is -0.5. In practice, in many cases elastic scattering
cross sections are much larger than capture cross sections and impact of the cor-
relation is small.

Default value for cross-correlation in the resonance region was set to -0.5.
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Chapter 7

Resonance covariance module in
EMPIRE

The formalism developed in this report should be incorporated into the resonance
covariance module of the evaluation code EMPIRE [18] as an option for MF33
covariances rather than MF32. The MF33 option would offer several distinct ad-
vantages:

• More transparent results in terms of uncertainty step function, implying sim-
ple adjustment of uncertainties in the thermal region and incorporation of
∆R′.

• No need to harmonize data in MF2 file with MF32 file and bypassing depen-
dence on the processing codes with continuing issues in processing MF32
data.

• Better control over resonance-resonance correlations and prevention of un-
certainty decline at higher resonance energies due to collapsing of many
resonances into broad energy groups.

7.1 Functionalities
The resonance covariance module should offer the following functionalities:

1. Analysis of input. Easy inspection of input from Atlas that would allow
basic analysis of these data, identification of missing data and determination
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of the resonance energy range to be included into further evaluation by the
module.

2. Computing kernels and group cross sections. Module should compute cap-
ture kernel and elastic scattering kernel along with related average cross
sections for single resonances. Furthermore, it should compute capture
and elastic cross sections in broader energy groups and compare them with
multigroup cross sections produced by NJOY in order to judge whether ker-
nels represent suitable approximation of group cross sections. We assume
that there should be no problem with capture and fission (though interfer-
ence effects in fission may appear to be challenging), while elastic scattering
may cause certain difficulties which should be identified.

3. Computing cross section uncertainties. These should be computed from
resonance parameter uncertainties for single resonances, followed by un-
certainties of group cross sections composed of contributions from many
resonances.

4. Analysis of integral quantities. The module should compute integral quan-
tities (thermal, resonance integrals, Maxwellian average cross sections) in-
cluding their uncertainties. It should allow comparison of data produced by
EMPIRE with other sources of information, followed by improved evalua-
tion.

5. Documentation. Module should keep reasonable track about the evaluation
process and produce meaningful report in the form of MT451. This process
should be automatized, similar to what has already been implemented as a
part of evaluation of MF3 data in the fast neutron region.

7.2 Evaluation procedure
Basic steps of implementation the proposed kernel procedure can be formulated
as follows:

1. Examine thermal cross sections and their uncertainties in Atlas, including
dispersion with ENDF/B-VII.0 and other libraries. The goal is to determine
thermal capture and elastic cross section uncertainties to be adopted in the
present work.
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2. Examine availability of resonance parameter uncertainties in Atlas and de-
termine the range of applicability of kernel formalism. In doing so attention
should be paid to the following quantities:

• ∆E0: these uncertainties are usually small and well known;

• ∆J: spins are sometimes not determined for s-wave resonances, quite
often for much weaker p-wave resonances and likely not at all for d-
wave resonances ⇒ provision should be made to take related uncer-
tainties into consideration, one possibility being estimate uncertainty
by Monte Carlo simulation of spin assignment;

• ∆Γn: these uncertainties are important, it is difficult to estimate un-
known values ⇒ energy range of availability should be carefully de-
termined;

• ∆Γγ: these uncertainties are important, often one can estimate missing
values by using average values ⇒ energy range should be carefully
determined;

• ∆Aγ: often capture kernels are available and provide an alternative
way of producing covariances⇒ energy range should be carefully de-
termined.

• ∆R′: this uncertainty is important for elastic scattering and it might
represent dominant contribution to elastic scattering cross section un-
certainty at high energies⇒ values in Atlas should be carefully exam-
ined.

3. Determine energy bins independently for capture and elastic scattering. These
bins would define grouping of resonances. The number of energy bins is
guided by user needs. Thus for example, nuclear critical safety users work
with 44-energy groups in 10−5 eV - 20 MeV range. Fast reactor users prefer
33-energy group structure, with 14 energy groups in about 100 eV - 100
keV range.

• Compute average cross sections in these energy bins within the kernel
approximation and compare them with the values obtained by process-
ing ENDF-6 formatted file.

• If agreement is not satisfactory modify the energy bins to reach better
accord with the values computed from kernels. This would enhance
confidence in adopted binning.
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4. Compute capture and elastic cross section uncertainties for these energy
bins. These uncertainties would constitute diagonal terms of the covariance
matrix.

5. Estimate correlations to get off-diagonal terms of the correlation matrix.
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Chapter 8

Application to 55Mn

It remains to be shown how the proposed formalism can be actually implemented.
As an example we have chosen 55Mn. The reason for this selection is that covari-
ances for 55Mn(n,γ) and 55Mn(n,el) cross sections in the resonance region were
studied to some length using an alternative MF32 approach [19]. This allows us
to compare the present formalism with MF32 results.

Shown in Fig. 8.1 are 55Mn capture and elastic cross sections in the ther-
mal and resonance region using evaluated data from ENDF/B-VII.0 which were
Doppler-broadened to 300 K. The figure illustrates basic features of these cross
sections. Among them is clear 1/v dependence for capture in the thermal region
and fairly constant elastic cross sections in the range of about 10−2 eV to 10 eV.
One can also see considerable differences in the shape of these cross sections at
higher energies, while capture falls rapidly, scattering in the resonance region ini-
tially goes down with the energy and then remains approximately constant. These
cross sections have different pattern, suggesting that binning should be done inde-
pendently for capture and elastic.

Fig. 8.2 shows more details in the resonance region which in ENDF/B-VII.0
extends up to 100 keV. Average cross sections obtained by processing with the
processing code NJOY can be seen in Fig. 8.3. This figure makes it clear that
capture cross sections are 2-3 orders of magnitude smaller than elastic scattering.
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Figure 8.1: 55Mn capture (green) and elastic (blue) cross sections in the thermal and
resonance region. Data taken from ENDF/B-VII.0, produced by the NNDC retrieval and
plotting system Sigma. Doppler-broadening to 300K leads to characteristic increase of
elastic scattering at the lowest energies.

8.1 55Mn uncertainty data in Atlas

8.1.1 Thermal values
55Mn thermal cross section uncertainties are given in Table 8.1. We note that the
capture uncertainty, 0.37%, is considered to be too optimistic. Thus, 0.8% was
recommended by reviewers of IRDF-2002 dosimetry file, and Derrien et al. [20]
in 2008 reported 0.9%, we adopted 0.8%.

Dispersion in thermal elastic cross sections considerably exceeds the Atlas
value of 1.5% and we adopted 3% in order to better comply with ENDF/B-VII.0
as well as Derrien’2008 which will likely be adopted by ENDF/B-VII.1.
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Figure 8.2: 55Mn capture (green) and elastic (blue) cross sections in the resonance region.
Data taken from ENDF/B-VII.0, produced by the NNDC retrieval and plotting system
Sigma.

Table 8.1: 55Mn thermal capture and elastic cross sections and uncertainties in barns.
Shown are values given in ENDF/B-VII.0 (2006), Atlas (2006), and Derrien (2008) [20].

VII.0 Atlas ∆ ∆ Derrien ∆ ∆ Adopted
b b b % b b % %

σγ(Eth) 13.4 13.36 0.05 0.37% 13.27 0.12 0.9% 0.8%
σn(Eth) 2.17 2.06 0.03 1.50% 2.12 - - 3%

8.1.2 Resonance values
Resonance parameter uncertainties for 55Mn available in Atlas [1] are summarized
in Table 8.2. The resolved resonance region extends up to Emax

0 = 208 keV. The
uncertainties of the resonance energies, ∆E0, are small, they increase with the en-
ergy, starting from about 0.1% and rising to about 0.3%. Spins of s-waves are
known in the entire energy range, meaning that ∆Jl=0 = 0. However, this is not the
case for p-waves, these spins are known in just a few instances. The uncertainties
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Figure 8.3: 55Mn capture (red) and elastic (blue) from ENDF/B-VII.0. Group structure
for NJOY processing is chosen to match energy binning adopted in the present work and
discussed later in the text.

Table 8.2: Availability of 55Mn resonance parameter uncertainties in Atlas. Shown are
upper E0 values for which ∆Γn, ∆Γγ etc are known. Also given are % uncertainties for
average s- and p-wave radiative widths,

〈
∆Γγ0

〉
and

〈
∆Γγ1

〉
.

Nucleus Emax
0 ∆E0 ∆Jl=0 ∆Jl=1 ∆Γn ∆Γγ ∆Aγ

〈
∆Γγ0

〉 〈
∆Γγ1

〉

keV Emax
0 Emax

0 Emax
0 Emax

0 Emax
0 Emax

0 % %
55Mn 208 208 208 01) 208 1122) - 20 25

1) Spins of p-waves are virtually undetermined.
2) There are gaps in ∆Γγ, to be filled-in by average uncertainty values.

of neutron widths, ∆Γn, are known in the entire resolved resonance region up to
208 keV. Uncertainties of radiative widths are known up to 112 keV only, imply-
ing that one must fully resort to average uncertainty values,

〈
∆Γγ0

〉
and

〈
∆Γγ1

〉
, at
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higher energies. As there are quite a few gaps in ∆Γγ below 112 keV, these gaps
should be filled-in by the average values as well. We note that capture kernels are
not given in Atlas for 55Mn.

In order to get better feeling about the number of resonances we are dealing
with, summary of 55Mn resonances (g.s. spin I = 5/2) is given in Table 8.3. Atlas
lists 170 resonances up to 207.7 keV, with ∆Γn and ∆Γγ provided up to E0 = 111.76
keV. There are 148 resonances in this energy range, with ∆Γn and ∆Γγ known si-
multaneously for 71 resonances of which 50 are s-waves and 21 p-waves. These
are strong or fairly strong resonances that should be included into our consider-
ation, the remaining resonances being mostly weak. For the first 30 resonances
the uncertainties are known for 12 resonances, of which 9 are s-waves and 3 are
p-waves.

Table 8.3: Summary of 55Mn resonances.

Energy Number of Known Known both s- p-
range resonances ∆Γn ∆Γn,∆Γγ wave wave

0 - 207.7 keV 170 168 71 50 21
0 - 111.7 keV 148 146 71 50 21
0 - 23.6 keV 30 29 12 9 3

Scattering radius

Uncertainty of scattering radius, ∆R′, is of considerable importance particularly at
higher energies where potential scattering likely represents dominant contribution
to elastic scattering. It is important to realize the values of R′ and ∆R′ provided
in Atlas are in general derived from the data in the thermal region. In the case of
55Mn this gives R′ = 4.5 ± 0.4 fm or 8.9%.

What we need, however, is not the scattering radius uncertainty at the ther-
mal energy, but ∆R′ in the resonance region. In general, R′ is energy-dependent
quantity. Therefore, one should be cautious extrapolating the thermal value to res-
onance energies that extend to about 200 keV. To account for the lack of actual
knowledge of ∆R′ in the resonance region we decided to adopt twice the value
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determined at the thermal energy, i.e., 17.8%. As shown in Table 8.4 this uncer-
tainty complies with fairly large discrepancy between absolute values of R′ in the
ENDF/B-VII.0 library and Atlas of Neutron Resonances.

Table 8.4: Scattering radius and its uncertainty for 55Mn.

ENDF/B-VII.0 A t l a s Adopted
R′ R′ ∆R′ ∆R′ ∆R′

fm fm fm % %
5.15 4.5 0.4 8.9 17.8

8.2 55Mn(n,γ) covariances
We proceed in three steps. First, we establish energy bins by suitably subdivid-
ing the entire resonance region, then determine correlations within these bins and
compute uncertainties of average cross sections, and finally determine bin-bin cor-
relations and construct a complete covariance matrix.

8.2.1 Energy binning
When doing energy binning an evaluator determines which resonances are put to-
gether and subsequently handled as a single entity. One proceeds iteratively, starts
with estimates, computes average cross sections from kernels and compares these
approximate values with correct values obtained by processing MF2 in MLBW
representation with NJOY. Once good agreement is reached the binning is consid-
ered to be completed.

The outcome of our procedure is shown in Fig. 8.4. The results in the res-
onance region are complemented with thermal values obtained directly from the
thermal cross section and 1/v law. One can see that pretty good agreement was
achieved in the whole energy range, giving confidence that our approximation is
sound.
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Figure 8.4: Comparison of average cross sections for 55Mn capture obtained from kernels
(above 100 eV) and from NJOY in the whole energy range. Below 100 eV the kernel
values are obtained from 1/v dependence normalized to thermal cross section. Shown in
the insert is the energy region from 10−3 eV to 1 eV.
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8.2.2 Uncertainties for capture
Relative uncertainties of average capture cross sections can be seen in Fig. 8.5.
As already discussed the uncertainties depend on values of resonance-resonance
correlations. We assumed that the correlations can be adopted uniformly for each
energy bin and considered extreme values, fully correlated, corr(Γγ,Γγ) = 1.0 and
corr(Γn,Γn) = 1.0, completely uncorrelated resonance parameters (corr = 0 ) and
also intermediate correlation (corr = 0.5). One can see that at high energies the
impact is strong and unless full correlation is considered, there is appreciable
decline in relative uncertainties.

Figure 8.5: Relative uncertainties of average cross sections for 55Mn capture. Shown
are results for three different values of resonance-resonance correlation coefficients,
corr(Γγ,Γγ), applied uniformly within each energy bin. We note that impact of corr(Γn,Γn)
on capture is marginal.
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8.2.3 Covariances for capture
Full covariance matrix was produced by using the above uncertainties, adding bin-
bin correlation coefficients and converting this information into MF33 file. Then,
NJOY was used to process the covariances into 33-group representation. This was
done for three values of resonance-resonance and bin-bin correlation coefficients,
namely 0.0, 0.5 and 1.0. All of these correlations were considered to be identical
and they were thus applied uniformly across the whole resonance region. The re-
sults are shown in Fig. 8.6.

As expected the most conservative cross section uncertainties were obtained
for fully correlated resonance parameters, while the other extreme of uncorrelated
parameters leads to unrealistically low values. The intermediate approach seen
at top right seems to be still reasonable and probably represents the preferable
solution.
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Figure 8.6: Covariances for 55Mn capture in 33-energy groups for three values of
resonance-resonance and bin-bin correlation coefficients: 0.0 (top left), 0.5 (top right)
and 1.0 (bottom).
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8.3 55Mn(n,el) covariances

8.3.1 Energy binning
Similar to capture, as the first step one establishes suitable energy bins for reso-
nances. We note that the shape of elastic cross section is more complicated due
to presence of potential scattering, interference effects between potential and res-
onance scattering as well as resonance-resonance interference Therefore, in gen-
eral, one may end up with different binning than that established for capture. The
results of our procedure can be seen in Fig. 8.7 which shows average elastic scat-
tering cross sections. Approximate values obtained from kernels are compared
with correct values produced by NJOY using MLBW representation. One can see
that reasonable agreement was reached, suggesting that our approximation should
be sound.

Figure 8.7: Comparison of average cross sections for 55Mn elastic scattering obtained
from kernels (above 40 eV) and from NJOY in the whole energy range. The kernel values
in the thermal region (below 40 eV) were obtained directly from the thermal cross section.
Shown in the insert is the energy region from 10−3 eV to 1 eV.
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8.3.2 Uncertainties for elastic scattering
Relative uncertainties of average capture cross sections can be seen in Fig. 8.8.
As already discussed these uncertainties depend on adopted values of resonance-
resonance correlations, corr(Γn,Γn) and corr(Γγ,Γγ). Similar to capture we as-
sumed that the correlations can be adopted uniformly for each energy bin. Consid-
ered were extreme values, fully correlated (corr = 1) and completely uncorrelated
resonance parameters (corr = 0) and also intermediate correlation (corr = 0.5).
One can see that at high energies the impact is strong and unless full correlation
is considered, there is considerable decline in relative uncertainties.

Figure 8.8: Uncertainties of average cross sections for 55Mn elastic scattering. Shown
are results for three different values of resonance-resonance correlation coefficients,
corr(Γn,Γn), adopted uniformly for each energy bin. We note that impact of corr(Γγ,Γγ)
on scattering is marginal.

It is instructive to illuminate contribution of scattering radius uncertainty, ∆R′,
to the uncertainty of the average elastic cross section. This is shown in Fig. 8.9,
where we compare full elastic scattering uncertainties with those computed under
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assumption that R′ is known exactly. It is clear that within our formalism this
has no impact on the thermal region. At low-energy resonances, where σres

n is
much larger than σpot

n = 2.54 b, the impact of ∆R′ is positive but small. At high
energies, whereσres

n becomes comparable toσpot
n , the scattering radius uncertainty

increases the overall uncertainty quite considerably.

Figure 8.9: Uncertainties of average cross sections for 55Mn elastic scattering for two
scenarios of scattering radius uncertainty, ∆R′. Used in both cases were default values of
correlation coefficients, corr(Γn,Γn) = 0.5 and corr(R′,Γn) = - 0.5.
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8.3.3 Covariances for elastic scattering
A full covariance matrix was produced by using the above uncertainties, adding
bin-bin correlation coefficients and converting this information into MF33 file.
Then, NJOY was used to process the covariances into 33-group representation.
This was done for three values of resonance-resonance and bin-bin correlation
coefficients, namely 0.0, 0.5 and 1.0. Each of these correlations was applied uni-
formly across the whole resonance region. The results are shown in Fig. 8.10.

As expected the most conservative cross section uncertainties were obtained
for fully correlated resonance parameters, while the other extreme of uncorrelated
parameters leads to unrealistically low values. The intermediate approach seen at
top right seems to be still reasonable and is probably the preferable solution.
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Figure 8.10: Covariances for 55Mn elastic scattering in 33-energy groups for three values
of resonance-resonance and bin-bin correlation coefficients: 0.0 (top left), 0.5 (top right)
and 1.0 (bottom).
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8.4 Comparison with MF32
Covariances for 55Mn capture and elastic cross sections have also been estimated
using the MF32 approach, which is an option in the covariance resonance module
of the code EMPIRE [21]. MF32 approach uses resonance parameter information
from the Atlas of Neutron Resonances to create the resonance parameter covari-
ances. These are stored in file MF32 in accordance with the ENDF-6 formatting
rules. The idea behind this approach is that the complex job of propagating MF32
covariances to cross section covariances is delegated to well established process-
ing codes such as NJOY and PUFF.

8.4.1 Evaluation procedure
To create MF32, the resonance module reads information about all resonance pa-
rameters and uncertainties from the Atlas. Since the Atlas is based on experimen-
tal data, some data may be missing or incomplete. For example, spin assignments
may be missing for some resonances, and uncertainties of the neutron scattering
and radiative widths, ∆Γn and ∆Γγ, may be missing especially for higher incident
neutron energies and for weak resonances. The module therefore contains subrou-
tines for assigning unknown spins as well as for estimating unknown resonance
parameters and uncertainties. This is done as follows:

• Unknown spins are assigned by the code PTANAL using approach often
adopted by evaluators of MF2 data [22]. The assignments are made sta-
tistically in accordance with spin distribution prescribed by nuclear level
densities.

• Unknown radiative widths and their uncertainties were assumed to be equal
to average values given in the Atlas.

• No attempt was made to assign unknown neutron widths and their uncer-
tainties. This was the case for two resonances only, which were considered
to be weak and removed from the analysis.

The resonance parameter uncertainties constitute diagonal terms of the reso-
nance parameter covariance matrix. As for the non-diagonal terms, there is no
information available in Atlas and these terms must be estimated. In the preferred
representation of separating covariance matrix into uncertainties and normalized
correlation matrix, the normalized correlation coefficients are subject to estima-
tion. This was done as follows:
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• Correlations from adjustment of thermal uncertainties. One of the problem
faced by the evaluator is caused by the fact that uncertainties in Atlas are
not internally harmonized. Thus, the uncertainties of thermal values readily
available in Atlas do not agree with the uncertainties obtained from prop-
agating resonance parameter uncertainties which in general provide higher
thermal uncertainties. The challenge is that one should preserve thermal
and resonance parameter uncertainties and yet to reach mutual agreement
for thermal point. This is taken care of by the dedicated adjustment proce-
dure that uses the generalized least-squares approach of the code KALMAN
and assigns suitable correlations between negative and few initial positive
resonances. In many cases this procedure ends up with anticorrelations that
reduce contributions from resonances and produce desired thermal uncer-
tainty.

• Resonance-resonance correlations. These are corr(Γn,Γn), corr(Γn,Γγ) and
corr(Γγ,Γγ) correlation coefficients. If these correlations are set to zero,
then it would lead to reduction of uncertainties in the collapsing of cross
sections to multigroup representation. This effect can be fairly strong at
higher neutron resonance energies where energy grouping usually involves
many resonances (see next section). In order to prevent this effect we as-
sumed that the resonance-resonance correlation between neutron widths is
100% and also between radiative widths is 100%.

• Potential scattering. Potential scattering uncertainty can be taken into ac-
count via scattering radius, R′±∆R′, making use of recent (late 2009) exten-
sion of processing capabilities by both NJOY and PUFF codes. However,
this extension was relatively simple and assumes that R′ is not correlated
with the resonance parameters. Even though it is in accordance with the
extension of ENDF-6 formats adopted by CSEWG in November 2009, one
clearly needs more sophisticated implementation. In view of this for the
purposes of present exercise we did not take into account ∆R′.

8.4.2 Results and discussion
55Mn capture cross section uncertainties produced by the resonance module are
shown in Fig. 8.11. The histograms were obtained by processing MF32 file with
NJOY. The blue curve shows the uncertainty in a very fine group structure, while
the other curves refer to 33-energy group structure for different correlations. The
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Figure 8.11: Cross section uncertainties for 55Mn(n,γ) obtained from MF32 that extends
up to 208 keV. Three different scenarios for resonance-resonance correlations were con-
sidered. Blue curve refers to fine group structure with just one or very few resonances
per group which largely eliminates effect of correlations. Histograms refer to 33-energy
group structure assuming full correlation between capture and neutron widths: black - no
correlations, green - corr(Γn,Γn) = 1.0, read - corr(Γγ,Γγ) = 1.0. Fast neutron region is
based on MF33 and it is shown for completeness.
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black curve reflects no-correlation scenario and therefore uses only diagonal terms
in the resonance parameter covariance matrix, the red curve assumes 100% corre-
lations between Γγ for all resonances and similarly the green curve assumes 100%
correlations between Γn.

As we can see, the 33-group uncertainties tend to decrease at higher incident
neutron energies. This effect can be explained by rapidly increasing density of
resonances: the grouped uncertainty of uncorrelated resonances is proportional
to
√

N, with N being the number of strong resonances in the group. Preventing
this decrease for capture cross sections was caused by assuming corr(Γγ,Γγ) = 1.0
between all resonances.
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Figure 8.12: Cross section uncertainties for 55Mn(n,el) obtained from MF32 that extends
up to 208 keV. Scattering radius uncertainty was not taken into account, i.e., ∆R′ = 0.
MF32 was processed by NJOY using fine group structure (blue curve) and 33-groups to
illustrate collapsing effect (corr(Γn,Γn) = 1.0 - green, corr(Γn,Γn) = 1.0 - black). Fast
neutron region is based on MF33 and it is shown for completeness.

Uncertainties for elastic scattering produced by MF32 can be found in Fig. 8.12,
where ∆R′ was assumed. Similar to capture, one would assume that corr(Γn,Γn)
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= 1.0 would also exhibit strong impact. It appears, however, that this is not the
case. Contribution from corr(Γn,Γn) = 1.0 ruined the thermal elastic scattering
uncertainty by making it much higher than the value based on experimentally de-
termined uncertainty. On the other hand, even though corr(Γn,Γn) = 1.0 resulted
in some increase of uncertainties at higher energies, it was clearly insufficient to
eliminate

√
N effect. We cannot provide plausible explanation for this behavior

and cannot exclude bug in the processing codes.

Figure 8.13: Relative uncertainties for 55Mn(n,el) based on the kernel approximation.
Assumed was ∆R′ = 0 and three different values of corr(Γn, Γn) = 1.0, 0.5 and 0.0.

55Mn(n,el) uncertainties obtained from the kernel approach assuming ∆R′ =

0 are shown in Fig. 8.13 for comparison. We considered three scenarios for
corr(Γn,Γn), namely, 1.0, 0.5 and 0.0. One can see that impact of this correlation
is within expectation. At the energy range of interest for comparing collapsing
effect, about 20 keV - 100 keV, where kernel and MF32 regions overlap one can
see that kernel with full correlation gives clearly higher uncertainties than MF32.
Thus, kernel uncertainties are within 5-13%, while MF32 are within 2-9%. This
again suggests that there might be possible issue in MF32 processing.
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8.5 Comparison with ENDF/A
ENDF/A library contains candidate evaluations for inclusion into new release of
ENDF/B library, in this case ENDF/B-VII.1. New 55Mn evaluation was performed
by Derrien et al [20, 23] who evaluated simultaneously MF2 and MF32 up to 122
keV by SAMMY. We retrieved the file from the NNDC GForge server on April 6,
2010, processed it using 33-group representation with the latest versions of NJOY
and PUFF to check for possible processing issues.

Results are shown in Fig. 8.14. Capture uncertainties manifest notable differ-
ences at high energies. Thus, NJOY claims that they go up to 2.2%, while PUFF
says that they go down to 0.6%. Elastic scattering uncertainties seem to agree
fairly well except for notable difference in the 3rd group from the right.

8.5.1 55Mn(n,γ) uncertainties

Table 8.5: Comparison of uncertainties for 55Mn(n,γ) and 55Mn(n,el). Given are values
reported in PHYSOR’2008 [20], values obtained by processing ENDF/A file and present
results.

Reaction Energies PHYSOR E N D F / A Present
keV % % % %

NJOY PUFF
(n, γ) 15 - 120 4.3 - 9.5 0.8 - 2.2 0.8 - 0.6 7 - 13
(n,el) 10 - 120 - 1 - 0.2 1 - 0.2 6 - 14

ENDF/A capture uncertainties can be seen in Fig. 8.14, top. We focus on un-
certainties by PUFF since it is ORNL code and ENDF/A file was produced also by
ORNL. Above about 10 keV uncertainties tend to decrease, from 0.8% to 0.6%.
If correct, 55Mn(n,γ) would be better determined than Au(n,γ) standard known to
about 1% at these energies [24]. Furthermore, uncertainties obtained by process-
ing are in contradiction with results reported in PHYSOR’2008 [20] and also in
MT451 description of ENDF/A file. These two sources make it clear that in the
energy range of 15 keV - 120 keV capture uncertainty increases from about 4.3%
to 9.5%. We believe that this issue points to lack of correlations in MF32.
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Figure 8.14: 55Mn(n,γ) and (n,el) covariances in 33-groups obtained by processing
ENDF/A file with the latest versions of NJOY (left) and PUFF (right). The difference
in capture uncertainties at high energies is striking (top).
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Our results for capture look more realistic, see Fig. 8.5. They comply with
expected tendency of increasing uncertainties with the energy and are in better
agreement with PHYSOR values, even though they are more conservative, see
Table 8.5.

8.5.2 55Mn(n,el) uncertainties
As shown in the bottom part of Fig. 8.14 ENDF/A elastic scattering uncertainties
above about 1 keV tend to decrease, from 1% to as low as 0.2%. Again, if cor-
rect, 55Mn(n,el) would be better determined than C(n,el) standard which is known
to about 0.5% in this energy range [24]. Thus, ENDF/A uncertainties for elastic
scattering are unrealistically low. In addition, ENDF/A evaluation seems to suffer
from two other issues. First, contribution from potential scattering has not been
included at all. Second, there is again lack of resonance-resonance correlations.

Our results in the resonance region, see Fig. 8.8, look more realistic and com-
ply with expected tendency of increasing uncertainties with energy. The difference
with ENDF/A is quite dramatic, see Table 8.5 for quick comparison.

8.6 Final results
Recommended covariances for 55Mn(n,γ) and 55Mn(n,el) are those shown in Figs. 8.6
and 8.10 top right.

8.6.1 Adopted correlation coefficients
The critical issue to be resolved in preparing covariances for 55Mn is to answer a
question about resonance-resonance correlations in any given energy bin (medium-
range correlations) and, to less extend also about long-range bin-bin correlations.
In the final analysis we adopted uniform value of 0.5 to all of them as shown in
Table 8.6. The reasons for our selection are as follows:

• Capture uncertainties obtained in the latest analysis of Derrien et al. (Ref. [20],
file included in ENDF/A) in the energy range of 15 keV - 120 keV increase
gradually from 4.3% to 9.5%. These uncertainties exclude extreme values
of the correlation coefficients, see Fig. 8.5, and are in line with our choice
of 0.5.
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• One should prevent decline of uncertainties in 33-group representation at
the high end of the resonance region. Experimentalists would agree that
such decline is not supported by experiments and our choice of 0.5 is pre-
venting such decline.

• Our analysis suggests that the resonance-resonance correlations should be
positive. This is due to systematic errors and data reduction. In the situation
that we have no way to determine their actual values, to go mid-way to 0.5
seems to be a reasonable solution.

• For correlation between R′ and Γn we adopted default value -0.5. This is
in line with reasoning that σpot

n is anticorrelated with σres
n and having no

detailed knowledge of the actual value of the correlation coefficient to go
mid-way to -0.5 seems to be reasonable solution.

• For cross-correlation between elastic scattering and capture in the thermal
region we adopted 0.0. This is in agreement with the fact that we use exper-
imentally observed uncertainties determined independently.

• For cross-correlation between elastic scattering and capture in the resonance
region we took into account the fact that σn >> σγ. Therefore, practical
impact of this correlation is negligible and for simplicity we adopted the
value 0.0.

8.6.2 Quality assurance
The following tests of the final 55Mn covariances were performed:

• Positive-definiteness of the covariance matrix. It was found that all eigen-
values are positive except of two tiny negative values for elastic and one zero
for capture indicating that the matrix is suitable for practical applications.

• Relative uncertainties too low. Our covariances do not show unrealistically
low uncertainties.

• Decline of relative uncertainties. Our covariances do not exhibit gradual
decline of uncertainties with increasing resonance energy.
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Table 8.6: Correlation coefficients adopted for 55Mn.

No. Type Quantity Default Adopted
1 Single resonance corr(Γn,Γγ) 0.0 0.0
2 Resonance-resonance corr(Γγ1,Γγ2) 0.5 0.5
3 Resonance-resonance corr(Γn1,Γn2) 0.5 0.5
4 Resonance-resonance corr(Γn1,Γγ2) 0.0 0.0
5 Pot. scattering-resonance corr(R′,Γn) -0.5 -0.5
6 Bin-bin corr(σ̄γ1, σ̄γ2) 0.5 0.5
7 Bin-bin corr(σ̄n1, σ̄n2) 0.5 0.5
8 Thermal-resonance corr(σth

γ , σ̄γ) 0.0 0.0
9 Thermal-resonance corr(σth

n , σ̄n) 0.0 0.0
10 Cross-correlation corr(σth

n , σ
th
γ ) 0.0 0.0

11 Cross-correlation corr(σres
n , σres

γ ) -0.5 0.0

Table 8.7: Uncertainties of integral quantities (thermal cross sections and resonance inte-
grals) for 55Mn. Compared are values computed from our covariance matrices and those
given in Atlas of Neutron Resonances.

Quantity Present Atlas Comment
Capture thermal 0.8% 0.37% We adopted 0.8%, see Table 8.1
Capture RI 3.3% 3.7%
Elastic thermal 3.0% 1.5% We adopted 3.0%, see Table 8.1
Elastic RI 2.4% -
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• Uncertainties of integral quantities. Our results are compared with values
in Atlas in Table 8.7. Uncertainties of our cross sections are higher than
the values given in Atlas as explained in Table 8.1. Resonance integrals
were computed by integrating over the energy range 0.5 eV - 208 keV, i.e.
up to the upper end of the resonance region. Agreement with Atlas for
capture is pretty good, uncertainty for elastic is not provided in Atlas as no
experimental values are available.

For completeness and future reference we write down explicit expressions for
resonance integrals. Usual resonance integral

RI =

∫ Emax
0

0.5eV

1
E
σ(E)dE (8.1)

should be computed as summation over small energy bins. Considering our course
bin structure and related average cross sections one can write

RI =
∑

i

RIi ≈
∑

i

1
Eeff

i

σ̄(Ei)∆Ei, (8.2)

where the effective energy for each bin, Eeff
i , must be suitably determined since

1/E is rapidly changing function. This is done as follows. Assume energy bin with
boundaries Ei and Ei+1, then effective energy is defined as the point which splits
the bin so that contribution from Ei to Eeff

i is the same as from Eeff
i to Ei+1,

∫ Eeff
i

Ei

1
E

=

∫ Ei+1

Eeff
i

1
E
,

ln
Eeff

i

Ei
= ln

Ei+1

Eeff
i

,

Eeff
i =

√
EiEi+1. (8.3)

Resonance integral uncertainty is obtained by quadratic summation of con-
tributions from individual bins taking into account both diagonal terms and off-
diagonal terms of the covariance matrix. Making use of relative uncertainty of
average cross section of a given bin, ∆σ̄(Ei), one gets

∆RIi =
1

Eeff
i

∆σ̄(Ei)∆Ei (8.4)
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and finally

(∆RI)2 =
∑

i, j

corr(i, j)∆RIi∆RI j =
∑

i

(∆RIi)2 + 2
∑

i< j

corr(i, j)∆RIi∆RI j. (8.5)

One should keep in mind that bins in the thermal region are fully correlated, there
is no correlation between thermal and resonance region, and correlation between
energy bins in the resonance is region is 0.5.
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Conclusions

We developed a formalism for producing MF33 covariances in the resonance re-
gion based on the kernel approximation for capture and elastic scattering and us-
ing data from the Atlas of Neutron Resonances. Extension to fission should be
straightforward. The formalism is transparent and based on analytical expres-
sions.

Practical application of this formalism was illustrated on covariances for 55Mn.
The formalism works well in particular for capture and the results look plausi-
ble, though one has to keep in mind that the outcome depends on the choice of
resonance-resonance correlations. These are not well known and one has to re-
sort on estimates driven by general considerations. Contribution from potential
scattering to uncertainty budget of elastic scattering cross sections is significant in
particular at high resonance energies. Our results were compared with an alterna-
tive MF32 approach, showing good agreement in capture covariances and issues
of MF32 approach in elastic scattering.

Comparison with recent 55Mn evaluation (2008) included in ENDF/A sug-
gested that there are several issues in the current ENDF/A file. In addition this
comparison confirmed issues in processing MF32 files as seen on not negligible
differences between 55Mn(n,γ) uncertainties produced by the most recent versions
of NJOY and PUFF.

In the near future our new procedure should be applied to Cr-Fe-Ni structural
materials which are almost pure scatterers and are priority materials for reactor
applications. Other candidates should include troublesome materials in ENDF/B-
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VII.0, primarily 89Y, followed by 191,193Ir and possibly also 156,158Gd. Extension to
fission and testing with a suitable actinide should be pursued as well.
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