Spin dynamics simulations at AGS

H. Huang, W.W. MacKay, F. Melot, T.Roser

Presented at the First International Particle Accelerator Conference (IPAC'10)
Kyoto, Japan
May 23-28, 2010

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Abstract

To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

INTRODUCTION

In order to overcome the spin depolarizing resonances, partial snakes [1] have been employed in the AGS during the polarized proton acceleration. With the two partial snakes in the AGS, all vertical intrinsic resonances and imperfection resonance conditions are avoided. To understand the residual polarization loss during acceleration, the spin numerical simulation has been done before but recently a new series of simulations for the AGS have been performed with the ray-tracing Zgoubi [2], that has proven to be efficient in that matter [3].

Spin dynamics simulations include: 1) crossing and neighboring of spin resonances; 2) dynamics in presence of the two helical snakes; 3) Q-jump. The AGS bare lattice is considered here, including sextupole components in the combined function main bends, exclusive of other nonlinearities as fringe fields, comprised of the two helical snakes where relevant. There are a series of goals in these numerical experiments, including: 1) assessing and checking the capabilities of the numerical code; 2) performing comparisons with other existing methods [4]; 3) extending spin dynamics investigations in relation with AGS, based on Zgoubi capabilities; 4) producing new results; 5) allowing further comparison with, and further planning of, numerical experiments.

In the following, the working hypotheses are first recalled: AGS lattice, snakes, etc., together with the basis of the analytical approach of depolarizing resonance effects to which the text will be referring in due place. The next Section shows typical effects of depolarizing resonance neighboring and crossing, whereas the last Section reports on spin dynamics in the presence of snakes and on Q-jump resonance crossing. These examples, in reduced number here, have been drawn from Technical Notes that expose on numerous simulations, to which the reader may refer for further details [5, 6].

BARE RING, RESONANCE STRENGTHS

LATTICE Tab. 1 displays general optical parameters of the AGS 12-superperiod bare lattice as drawn from the ray-tracing method, with comparison with MAD8 values. Note the ≈ 3.2 cm difference in orbit length, which results from the lattice description in MAD (bends, using 'SBEND', whereas a more realistic representation, 'MULTIPOL', straight axis, is used in Zgoubi). However this effect is of minor importance for the moment. Note also the non-zero closed orbit in Zgoubi, Fig. 1, as induced by the straight axis combined function dipoles. MAD and Zgoubi
yield identical β_x and β_y betatron functions, however computation of AGS DA at injection (Fig. 2) requires the ray-tracing method.

SPIN In the numerical simulations we take rf voltage $\tilde{V} = 290$ kV, synchronous phase $\phi_s = [180-]30$ degrees ($\gamma_{tr} = 8.451$, Tab. 1), hence $\Delta E = 145$ keV/turn, then, given proton mass as $M_0 = 938.272$ MeV, anomalous magnetic moment of proton as $G = 1.79285$, and depolarizing resonance crossing speed $\alpha = G \frac{\Delta E}{\gamma^2} = G \frac{1}{\gamma^2} \frac{\Delta E}{\gamma}$, the crossing speed value is $\alpha = 4.4096 \times 10^{-5}$. Besides, $\tilde{B} = \Delta E / (2\pi R \rho) = \Delta E / (C \rho)$. Given AGS circumference as $C = 807.043$ m (Tab. 1), and $1/\rho = B/B\rho = 0.01171$ m$^{-1}$, then $\tilde{B} = 2.104$ T/s.

When presenting simulation results in Tabs. 2, 3, we refer to the classical formulas, below.

- **Froissart-Stora** : Polarization after crossing a resonance (Fig. 3) is given by
 \[
P_{\text{final}}/P_\text{initial} = 2 \exp(-A^2) - 1 \tag{1}
\]
 where $A^2 = \pi |\epsilon|^2 / 2\alpha$ and ϵ is the resonance strength. A^2 can be computed, cols. 3, 4 in Tabs. 2, 3 respectively.

- **Static case** : A^2 relates to the average S_y^2 of the vertical polarization component and to the distance to the resonance $\Delta = \gamma G - (12n - \nu_y)$ via
 \[
 2\alpha A^2 / \pi = \Delta^2 (1/S_y^2 - 1) \tag{2}
 \]
 (e.g., 1% (resp. 86.6%) depolarization, i.e. $S_y = 0.99$, corresponds to $\Delta = \gamma G - n = 7|2\alpha A^2 / \pi|$, i.e. an energy band $\pm \delta \gamma = \pm 7|2\alpha A^2 / \pi| / G$ (resp. $\Delta = \gamma G - n = \sqrt{3}|2\alpha A^2 / \pi|$)). Numerical $S_y^2(\Delta)$ data (the average value of S_y oscillation in Fig. 4) can be matched with Eq. 2 (Fig. 5), this yields A^2 and ν_y.

A limited number of resonances have been explored, relevant to the comparisons undertaken with the code DEPOL [4], one of the goals of the present study. It can be observed (Tab. 2) that resonance strength computed from ray-tracing differs from DEPOL’s results in some cases of weak resonances, such as $\gamma G = 48 - \nu_y$. In order to assess possible origin of this discrepancy in sextupole components, these have been switched off in all main bends in the bare ring: this practically does not change the results. Work is still needed to understand these differences.

TRACKING WITH SNAKES

Spin dynamics simulations in presence of partial snakes are presented here, more results and details can be found in Ref. [6].

AGS WITH SNAKES AGS is tuned to $\nu_x / \nu_y = 8.72 / 8.98$ in presence of the warm and cold partial snakes.
Both snakes are represented by a mid-plane 2-D magnetic field map, from what Zgoubi performs 3-D extrapolation. They introduce both horizontal ($\pm 4\,\text{mm}$) and vertical (≈ 0.99) closed orbit. The dynamic aperture (Fig. 6) is much reduced compared to the previous settings (Fig. 2). The vertical component of the spin \vec{n}-vector in presence of w- and c-snakes, recorded at ≈ 990 “pick-ups” along the ring circumference, is displayed in Fig. 7.

Resonance crossing in a first approach is explored by accelerating from $\gamma G = 43.5$ to $\gamma G = 46.5$ so to minimize the closed orbit and higher order effects induced by the snakes. Single particle tracking takes ~ 0.15 second per turn, real time, on a 1.3 GHz portable PC hence ~ 50 min for the present 20000-turn run. Acceleration hypotheses with snakes are the same as in the first Section, namely, energy gain $\Delta E = 145\,\text{keV/turn}$, crossing speed $\alpha = 4.4096\times 10^{-5}$, $B = 2.104\,\text{Ts}$, whereas $\phi_s = 150$ degrees.

Acceleration from $\gamma G = 43.5$ to $\gamma G = 46$ requires ~ 11000 turns, the experiment has been pushed to 20000 turns and $\gamma G = 49$. All resonances in that energy region are imperfection (integer) resonances but for $\gamma G = 36 + \nu_y \approx 44.98$. Spin flip of the vertical spin component S_y of the synchronous particle as observed (in an AGS arc) over the acceleration range is as expected [6], this is discussed further in the next Section.

Q-JUMP Conditions are as above and in addition $\beta_y \epsilon_y = 20\pi\,\text{mm.mrad}$ and $\epsilon_y = 0$ at start. A Q-jump scheme is added, causing $\Delta \nu_x = 0.04$, namely $\nu_x : 8.73 \rightarrow 8.77$ (and also $\nu_y : 8.9783 \rightarrow 0.9636$). It uses two quads located at equal $\beta_x = 25\,\text{m}$, with equal strengths and sum of these $\approx \Delta \nu_x / \beta_x$. Cycling of the two quads over $\gamma G : 43.5 \rightarrow 46.5$ is as follows: jumps are centered at $+0.25$ (ramp up, from zero to full quad strength) and $+0.75$ (ramp down) from all integer $G \gamma$ values, the jump length is 40 turns. Fig. 8 displays the average behavior for 50 particles with tune jump and it shows polarization is preserved, Fig. 9 shows details ($\nu_x = 35 + \nu_y$ region) of substantial local decrease of S_y oscillations in the presence of tune jump.

CONCLUSION

The stepwise ray-tracing code Zgoubi has been used for simulations of AGS beam optics and spin dynamics. Since it uses real electro-magnetic fields in the simulation, it is more realistic than other codes. It is especially a useful tool when the partial helical snake magnets are included. The code shows that the newly proposed horizontal tune jump method indeed helps polarization preservation.

Acknowledgements The cold snake map was generated by Ramesh Gupta, and the warm map by Masahiro Okamura and Junpei Takano.

REFERENCES