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Abstract 
Various magnet sorting strategies have been used to 

optimize undulator performance, ranging from intuitive 
pairing of high- and low-strength magnets, to full 3D 
FEM simulation with 3-axis Helmholtz coil magnet data. 
In the extreme, swapping magnets in a full field model to 
minimize trajectory wander and rms phase error can be 
time consuming. This paper presents a simpler approach, 
extending the field error signature concept to obtain 
trajectory displacement, kick angle and phase error 
signatures for each component of magnetization error 
from a Radia [1] model of a short hybrid-PM undulator. 
We demonstrate that steering errors and phase errors are 
essentially decoupled and scalable from measured X, Y 
and Z components of magnetization. Then, for any given 
sequence of magnets, rms trajectory and phase errors are 
obtained from simple cumulative sums of the scaled 
displacements and phase errors. The cost function (a 
weighted sum of these errors) is then minimized by 
swapping magnets, using one's favorite optimization 
algorithm. This approach was applied recently at NSLS to 
a short in-vacuum undulator, which required no 
subsequent trajectory or phase shimming. Trajectory and 
phase signatures are also obtained for some mechanical 
errors, to guide "virtual shimming" and specifying 
mechanical tolerances. Some simple inhomogeneities are 
modeled to assess their error contributions. 

INTRODUCTION 
NSLS-II will have numerous planar in-vacuum hybrid-

PM undulators (IVU’s), designed to deliver high-
brightness multi-kilovolt photon beams. They will have 
period lengths typically on the order of 20 mm and will be 
optimized for high brightness at high harmonics. This 
requires minimizing the deleterious effects of field errors, 
which cause not only deviations in trajectory straightness, 
but also introduce phase errors which reduce peak 
brightness, especially at high harmonics. Strategies for 
minimizing these errors include imposition of tight 
dimensional tolerances on poles, magnets, module parts 
and support beams, on tolerance stack-ups, and on precise 
mounting of these components. The second is requiring 
tight magnetic tolerances on the permanent magnet (PM) 
blocks. Magnet manufacturers now routinely achieve 
magnet strength errors of <1% and magnetization angle 
errors of <1°. Still, it is routine practice to measure the X, 
Y and Z magnetic moments of PM’s with Helmholtz coils, 

and to apply some kind of sorting algorithm to minimize 
undulator field errors and their consequences. 
Characterizing magnet blocks in a Helmholtz coil or by 
far field measurements yields the average magnetic 
moments over the magnet. Magnetic inhomogeneities in 
the small IVU magnets are inherently small and will be 
ignored here. 

Magnet sorting methods and criteria for optimizing 
undulators range from intuitive pairing of stronger and 
weaker magnets to minimize field errors (used as recently 
as 2007 [2]), to multi-objective optimization by Simulated 
Annealing [3] or Genetic Algorithms [4] to minimize 
trajectory and phase error. Optimization by shuffling 
magnets requires constructing a field error model from 
measurements of individual magnets, and then computing 
a “cost function” to be minimized. This may be done to 
good approximation for a pure-PM undulator by 
superposition of measured fields of individual magnets, 
since permeability of PM’s is close to 1. In hybrid-PM 
undulators (HPMU’S) with ferromagnetic poles, linear 
superposition of PM fields is not valid. However, for 
small errors, “field error signatures” [5] can be obtained, 
which characterize the change in undulator field due to a 
small change in a magnetic or mechanical parameter, or of 
a magnetic shim [6]. Field error signatures may be scaled 
by Helmholtz data and convolved linearly with the ideal 
field, then integrated to compute trajectory and phase 
errors for a cost function to be minimized, by iterating 
thousands of times – a computationally intense process. 

In this paper we extend the error signature concept and 
directly obtain trajectory kick, displacement and phase 
error signatures of magnetization errors. We show they are 
essentially decoupled and can then be simply scaled and 
summed to obtain a performance cost function. We outline 
a simple magnet swapping algorithm, written in 
Mathematica, to optimize spectral performance. 

MAGNETIZATION ERROR SIGNATURES 

 Figure 1. (a) Radia model of HPMU. (b) Central magnet pair 
with magnetization error components δMz , My and Mx.
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Figure 2(a). Field error signatures for 
±1% errors in remanence (upper) and 
a ±1% y-component of magnetization 
(lower) in central magnet pair. 

Figure 2(b). X-trajectory signatures 
for ±1% errors in remanence (upper) 
and ±1% y-magnetization component 
(lower) in central magnet pair. 

Figure 2(c). Phase error signatures for  
±1% errors in remanence (upper) and 
±1% y-magnetization (lower) in 
central magnet pair. 

 
 

A short HPMU was modeled in Radia, with parameters 
of the NSLS X9 in-vacuum undulator: period λu=14.5 
mm, 3.4 mm gap, NdFeB with Br=1.3T. (Figure 1a.) On-
axis fields By0(z) and Bx0(z) as well as trajectories x0(z) 
and y0(z) were computed with no errors applied. Nominal 
errors of ±1% in each component of magnetization were 
introduced in turn in the central magnet pair (Figure 1b):  
a δMz/Mz (the principal component) was simulated by 
changing Br by ±1%; (b) My or Mx errors were modeled 
by adding ±0.01 transverse (x or y) components to the 
principal (z) magnetization unit vector. The transverse 
components were oriented to add on-axis. Again, on-axis 
fields and trajectories were computed for each case. 
Subtracting the no-error fields and trajectories, we obtain 
field error signatures and trajectory error signatures for 
each magnetization component. Finally, by computing the 
path length difference δS(z) between the trajectories with 
and without the error, normalized by the resonant optical 
wavelength, times 180°/π, we obtained phase error 
signatures (in degrees) for each error component.  

Magnetization Strength Error 
Figure 2 (upper row) shows the signatures of field error 
(%), X-trajectory error (µm) and phase error (degrees) due 
to ±1% error in Br in the central magnet pair. Although the 
field error “bleeds” into 3 or 4 neighboring poles, it 
produces a net x-displacement of ~0.2 µm (~1/3 of the 
wiggle amplitude) with no steering. This gives us a scale 
factor of δx = ~0.1 µm per 1% δBr/Br per magnet. The 
phase error profile exhibits local over- and undershoots, 
but the net error is ~1.8 °, or δφ = ~0.9°/ 1% δBr/Br per 
magnet. 

Magnetization Angle Errors 
Figure 2 (lower row) shows the signatures of a ±1% y-

component of magnetization in both central magnets. The 
peak y-field error is ~0.3%, mostly localized at the 
magnet, and results in a net steering kick δx’ of -/+0.44µr 
(~2 G.cm), or about -2 µr / 1% My/Mz per magnet. The 
phase error becomes oscillatory after the deflection, but 
the average phase shift is zero. 

Not shown, a ±1% x-component of magnetization 
produces peak Bx field error of only 0.003%, a y-kick of 
0.14µr, or 0.07 µr/1% Mx/Mz per magnet, and negligible 
phase error. 

Performance Cost Function 
These models reveal a simple scaling from Helmholtz 

or 3-axis far-field data of the magnet blocks: 
• δMz produces displacement δx and phase shift δφ. 
• My produces only an x-kick δx'. 
• Mx produces only a y-kick δy'. 
For small errors the scaling is linear. The models also 

reveal that the three magnetization error components 
produce effects that are essentially decoupled. For any 
arrangement of magnets we can now construct x and y 
error trajectories and phase error profiles by simple 
recursion. (The ± means that the appropriate sign must be 
applied depending on magnet location and orientation.) 

• x'i+1 = x'i ± δx'i+1;   xi+1 = xi ± δxi+1 + x'i+1 λu/2  
• y'i+1 = y'i ± δy'i+1;   yi+1 = yi + y'i+1 λu/2  
• φi+1 = φi + δφi+1  (independent of orientation) 

The results are net error trajectories (minus local details), 
from which we can compute rms values, and combine 
them into a weighted multi-parameter cost function W: 



W =  a [h xrms
2 (upper) + h xrms

2 (lower) + xrms
2 (both)]+ 

 b [h yrms
2 (upper) + h yrms

2 (lower) + yrms
2 (both)]+ 

 c [h φrms
2 (upper) + h φrms

2 (lower) + φrms
2 (both)],  

where a, b, c are relative weights we assign to x, y and 
phase terms. We include cost terms for the upper and 
lower arrays individually (weighted by h) to avoid the 
case of large equal and opposite errors in the upper and 
lower arrays cancelling on-axis. 

A MAGNET SORTING ALGORITHM 
Figure 3 illustrates a simple magnet swapping routine. 

At each iteration two magnets are swapped at random, 
and assigned a random (odd or even) orientation. W is 
computed and the swap is accepted or rejected, based on 
Steepest Descent, Simulated Annealing or other rules. 
Since computation involves just simple running sums, the 
algorithm takes only minutes to test >10,000 swaps and 
reduce W to a small value (limited by data accuracy.) 
Many runs can be done to select the “best-of-the-best”. 

 

 
Figure 3. A simple magnet swapping algorithm. 

Example 
The optimization process described above was applied 

to the 23-period X9 IVU installed in 2008. (At the time 
the cost function only reflected trajectory error.) The 
magnet database consisted of 120 magnets. They were 
measured with a 3-axis Fluxgate Magnetometer in a 
fixture allowing accurate placement of magnets in each of 
4 possible orientations. Sensor and fixture misalignment 
errors are cancelled by averaging. The magnet strength 
variation was within ±1%, while the angle error was 
1.25±0.5°. The systematic error of 1.25° was in the y 
direction. The algorithm in Figure 4 was implemented in 
Mathematica. The code selected 45 magnets at random for 
each array. Some starting arrangements had X walk-offs 
up to twice the wiggle amplitude, and peak phase 
excursions up to 6°. After 10,000 iterations, whether by 
steepest descent or a simplified SA rule, the predicted 
peak X error reduced to <1/10 of a wiggle amplitude, with 
phase error <0.5°. Y trajectories, even random ones, were 
<1/10 of a wiggle amplitude. The X9 IVU, as built, 
achieved a trajectory that needed no shimming (except at 
the terminations) and a phase error of <2° rms. We plan to 
test the algorithm with phase error minimization included, 
on a longer IVU now under construction. 

OTHER MAGNETIC SIGNATURES 
Vertical pole displacement was modeled in a symmetric 

version of our Radia model. The field error is peaked at 
the pole, and produces a kick δx'=-0.044 µr and a phase 
step δφ=~0.01° per µm of displacement. If pole heights in 
each array are first mapped on a coordinate measuring 
machine, it may be possible to compensate these fixed 
trajectory and phase errors by magnet shuffling as well.  

Vertical magnet displacement has an anti-symmetric 
field error signature, which produces a non-steering 
displacement δx=~0.001 µm and a phase step δφ=~0.005° 
per µm of displacement. Pole and magnet vertical 
displacements are frequently used for “virtual shimming”. 

We also modeled two types of inhomogeneity. (1) For a 
vertical gradient in Mz we found the poles effectively 
homogenize the variations. (2) A horizontal gradient in 
Mz, on the other hand, produces small, equal and opposite 
transverse gradients in field at adjacent poles, resulting in 
a small, non-steering, x-dependent x-displacement.  

CONCLUSIONS 
The magnet sorting described here lends itself to the 

“all-at-once” undulator assembly approach. For 
meaningful sorting, magnet measurements should resolve 
the variations in magnetization to at least 3 significant 
figures. Since magnets have tolerances of <1% and <1°, 
measurements should have resolution and relative 
accuracy to a part in 105 (10 ppm). This is a challenging 
requirement, limited mainly by instrument drift. Besides a 
magnetically and thermally stable environment, one needs 
to track the drift by frequently re-measuring a reference 
magnet while characterizing all the magnets. These 
precautions are being applied to our next undulator. 
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