LIS in low power density for RHIC-EBIS

Kotaro Kondo
Brookhaven National Laboratory, Upton, NY 11973 USA
RIKEN, Saitama, 351-0198, JAPAN

Takeshi Kanesue
Kyushu University, Fukuoka 819-0395, JAPAN

Robert Dabrowski
City College of New York, NY 10031, USA

Masahiro Okamura
Brookhaven National Laboratory, Upton, NY 11973, USA

Presented at the First International Particle Accelerator Conference (IPAC'10)
Kyoto, Japan
May 23-28, 2010

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
LIS in low power density for RHIC-EBIS

Kotaro Kondo†, Brookhaven National Laboratory, Upton, NY 11973, USA; RIKEN, Saitama, 351-0198, JAPAN
Takeshi Kanesue, Kyushu University, Fukuoka 819-0395, JAPAN
Robert Dabrowski, City College of New York, NY 10031, USA
Masahiro Okamura, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory is a new heavy ion pre-injector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. Laser Ion Source (LIS), which can supply many heavy ion species using solid targets, is a candidate of a primary ion source provider for RHIC-EBIS. LIS experiment with 5 Hz operation, which is required practically in RHIC-EBIS, was demonstrated to understand the beam property for long operation time. High laser power density decayed the peak current and ion yield with operation time and did not keep the surface of target flat. On the contrary, the beam in low laser power density kept the performance in long operation time.

INTRODUCTION

The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory progresses in the place of Tandem Van de Graaff accelerators as the heavy ion pre-injector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL) science programs[1, 2]. It is demanded to supply beams with different ion species to multiple users for 4 ~ 6 months.

Laser Ion Source (LIS) has a powerful potential as a primary ion source provider for RHIC-EBIS because low charge state, low emittance and high ion yield with defocused Nd: YAG laser were shown[3], and the design study with solenoid was reported[4].

Practically, 5 Hz operation in RHIC-EBIS for several months is required; however, there are little information of LIS in long time operation. We investigated beam property and target consumption for the laser power density with 5 Hz repetition rate in 1 hour operation.

EXPERIMENTAL SETUP

Figure 1 shows a picture of the experimental setup with long laser path. In this experiment, an aluminum target (45 mm × 45 mm with 1 mm thickness) in the vacuum chamber was irradiated by a Nd: YAG laser at 1064 nm with 7 ns pulse length. The partially defocused laser by a convex mirror (f = 2500 mm) generated 6 mm spot size on Al target and an incident angle between laser path and beam line was 30°. It is desirable that the location of the optics (window) in LIS is far from the vacuum target chamber to keep from damage by laser ablation. In this experiment, the laser path from window to vacuum chamber was about 2 m as shown in Figure 1.

We had 3 different conditions of laser power density: 2.2×10⁸, 2.8×10⁸, and 3.1×10⁸ W/cm² for this experiment. We can assume that all supplied ions were singly charged in the laser power density based on previous
RESULTS AND DISCUSSION

Beam Current and Ion Number

A relation ship between beam current at FC and the operation time, for laser power density is shown in Figure 2. In high power density of 3.1×10^8 W/cm2, beam current was significantly reduced by 50% with operation time. The decay of beam current were also observed in 2.8×10^8 W/cm2. On the other hand, the beam current kept constant over 1 hour operation in the low power density of 2.2×10^8 W/cm2.

As well as beam current, the ion particle number per 1 laser shot with operation time is shown in Figure 3. The behavior is similar to Figure 2. These experimental results show that low laser power density condition is suitable for supplying constant beam property.

Beam Pulse Width

Figure 4 represents Full Width at Half Maximum (FWHM) of the beam with the operation time. Although the FWHMs of initial operation were shorter length in 2.8×10^8 and 3.1×10^8 W/cm2, they became wider with the operation time.

In low power density of 2.2×10^8 W/cm2, the FWHM seems to keep constant. As well as beam current and total ion number, FWHM in low power density condition is steady for the long operation.

Consumption Target

The weight of Al target for each laser power density was measured before and after the experiment with 1 hour operation. Total plasma particle number, which corresponds to the consumption weight, for the laser power density is shown in Figure 5. These results show that the consumption amount is increasing with the laser power density.

Target Condition

Al target surfaces in 2.2×10^8 and 3.1×10^8 W/cm2 are shown in Figure 6. The surface in high power density is rougher than that in low power density where beam property can keep constant for long operation. The surface condition make ablation plasma condition different, that causes
CONCLUSION

We investigated beam property of laser ion source under 5 Hz laser irradiation in 1 hour. The peak current and ion particle number in high power density were decreased with the operation time. Pulse length (FWHM) in high power density became wider with the long operation. After the experiment, there were many bubbles on Al surface especially in high laser power density. These experimental results show the ablation plasma profile is sensitive to the surface condition. Laser power density is as low as possible, that is significant for RHIC-EBIS.

REFERENCES

