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0.0.1 Nonlinear Dynamics Experiments
W. Fischer, BNL

The goal of nonlinear dynamics experiments is
to improve the understanding of single particle
effects that increase the particle amplitude and
lead to loss. Particle motion in storage rings
is nearly conservative and for transverse dynam-
ics the Hamiltonian in action angle variables
(Ix, Iy, φx, φy) near an isolated resonance kνx +
lνy ≈ p is

H = Ixνx0 + Iyνy0 + g(Ix, Iy) +

+ h(Ix, Iy) cos(kφx + lφy − pθ), (1)
where k, l, p are integers, θ = 2πs/L is the az-
imuth, and s and L are the path length and cir-
cumference respectively. The amplitude depen-
dent tunes are given by

νx,y(Ix, Iy) = νx0,y0 + ∂g(Ix, Iy)/∂Ix,y (2)
and h(Ix, Iy) is the resonance driving term
(RDT). If the motion is governed by multiple res-
onances, h(Ix, Iy) has to be replace by a series of
terms. The particle motion is completely deter-
mined by the terms g and h, which can be calcu-
lated from higher order multipoles (Sec. ??), or
obtained from simulations. Deviations from pure
Hamiltonian motion occur due to synchrotron ra-
diation damping (Sec. ??) in lepton or very high
energy hadron rings, parameter variations, and
diffusion processes such as residual gas and in-
trabeam scattering. The time scale of the non-
Hamiltonian process determines the applicability
of the Hamiltonian analysis.

Transverse nonlinearities are introduced
through sextupoles or higher order multi-
poles and magnetic field errors in dipoles and
quadrupoles. Sextupoles can already drive all
resonances. The beam-beam interaction and
space charge also introduce nonlinear fields.

Intentionally introduced nonlinearities are
used to extract beam on a resonance or through
capture in stable islands [1]. Localization and
minimization of nonlinearities in a ring is a gen-
eral strategy to decrease emittance growth and
increase the beam lifetime. The minimization
of nonlinear effects can be done locally or glob-
ally. Except for resonant extraction, amplitude in-
crease and particle loss is the result of chaotic par-
ticle motion. Large chaotic regions allow particles
to increase their amplitudes, and ensures their ul-
timate loss. However, chaotic particles can, on
average, still survive the time period of interest,
i.e. the storage time.

Nonlinear dynamics experiments aim to de-
termine either the detuning and driving terms g
and h directly, or their effect on other quanti-
ties. Nonlinear phenomena observed in experi-
ments include phase space deformations and res-
onant islands in Poincaré surfaces of section, non-
linear phase advances, amplitude detuning g, de-
coherence (Sec. ??), resonance driving terms h,
smear, halo formation, echoes (Sec. ??), the tune
response matrix [2], dynamic aperture (Sec. ??),
emittance growth, and particle loss. Nonlinear
experiments can also be done in the longitudinal
plane [3].
Surface of section The properties of a nonlin-
ear Hamiltonian system can be visualized by a
Poincaré surface of section, where the phase space
variables of the particle trajectory are plotted turn-
by-turn (TBT). This is the experimental determi-
nation of the 1-turn map. It reveals distortions
of trajectories and resonant islands. Photographs
of synchrotron light from as early as 1968 show
beam trapped in transverse resonance islands [4].
The surface of section can be reconstructed from
two TBT readings of a pair of Beam Position
Monitors (BPMs), where the ideal phase advance
between the 2 BPMs is an odd multiple of π/2.
For Fig. 1 a 45 MeV proton beam was cooled in
the IUCF and kicked to different horizontal am-
plitudes [5].

Figure 1: Experimental Poincaré surface of section
near a third integer resonance obtained from BPM data
after kicking the beam to different betatron amplitudes
in the IUCF (reprinted with permission from [5], copy-
right by APS).
Detuning and RDTs A Hamiltonian system is
completely characterized by the amplitude depen-
dent tune shift, and the resonance driving terms
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(Sec. ??). To measure the amplitude detuning,
the beam is kicked to different amplitudes and the
tune obtained from a spectral analysis of the TBT
data [5–8]. The tune error ∆ν in a Fast Fourier
Transformation (FFT) is proportional to 1/N ,
where N is the number of turns used, and can be
improved to be proportional to 1/N 4 [9, 10]. Fig-
ure 2 shows a detuning measurement in VEPP-
4M, where a 1.8 GeV electron beam was kicked
and observed in BPMs for up to 4096 turns [6].

Figure 2: Typical amplitude dependence of betatron
tune measured in VEPP-4M (courtesy V. Sajaev).

Resonance driving terms can also be derived
from turn-by-turn BPM data (Fig. 3). With an
ac dipole a coherent dipole motion of indefinite
length can be induced [11] and thereby the signal-
to-noise ratio increased compared to kick-based
measurement [7]. The length of the turn-by-turn
measurement is then limited by the BPM system.

With the reliable measurement of s-
dependent changes in resonance driving terms,
multipole fields can be inferred and the correc-
tion of single or multiple resonances becomes
possible [12].
Tune and amplitude diffusion Mapping the
frequencies (tunes) as a function of initial con-
ditions (Ix, Iy) is often referred to as Frequency
Map Analysis (FMA) [9]. Precise tune mea-
surements [9,10] allow the experimental determi-
nation of frequency maps that reveal potentially
harmful resonances (Fig. 4). Also accessible is
the tune change over time ∆ν = ν(T1) − ν(T2),
where T1 and T2 are consecutive intervals, which
is a measure of the tune diffusion.

The time evolution of a particle distribution
f(I, t) with amplitude diffusion is given by [13]

∂

∂t
f(I, t) =

∂

∂I
D(I)

∂

∂J
f(I, t) (3)

where D(I) = 〈∆I2〉/(2∆t) is the amplitude de-
pendent diffusion coefficient. Over small ampli-

Figure 3: Measurement of sextupolar local term
|χ3000| in RHIC with an ac dipole. This term is propor-
tional to a driving term h for the resonance 3νx = p.
The bottom plot shows the sextupolar components in
the ring (reprinted with permission from [7], copyright
by APS).

tude ranges, such as those created when a scraper
is moved from position Ic, D(I) can be assumed
constant and the change in the loss rate at the
scraper can be fitted to obtain R = D(Ic)/I
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(Fig. 5). Larger regions of I are sampled when
the time evolution of the transverse profiles are
recorded. To access large amplitudes the beam is
kicked, often creating a hollow beam [8,15]. Dif-
fusion rates, caused by a number of mechanisms,
can span many orders of magnitudes [16].
Dynamic aperture and tune modulation The
dynamic aperture (DA) determined in simulations
is displayed as survival plots (Sec. ??). In an ex-
periment a single large kick places a large number
of particles across the DA. The DA is then deter-
mined as the maximum amplitude where particles
can be observed with a transverse profile monitor,
for example with a wire scanner (Fig. 6). Increas-
ing the emittance with many small kicks is also
possible but requires a higher sensitivity in the
transverse profile monitor. In lepton machines,
where the survival times of particles only need
to be of the same order as the synchrotron radi-
ation damping time, the beam is usually kicked
until beam loss is observed.

Tune modulation is caused by the synchrotron
motion and non-zero chromaticity as well as
power supply ripples in the quadrupoles. Tune
modulation affects the long-term stability of par-
ticle motion. In the presences of an isolated reso-
nance with island tune νI , the modulated tune

ν(N) = ν0 + q sin(2πνMN), (4)
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Figure 4: Experimental frequency map for the ALS.
At a fixed set tune the beam is kicked to different
amplitudes and the beam oscillation frequency is ob-
tained from turn-by-turn BPM data. The dotted lines
are resonances of order≤ 5 (reprinted with permission
from [14], copyright by APS).

Figure 5: Particle loss rate at a HERAp collimator after
retraction by 100 µm, fitted time-dependent loss curve
and diffusion constant R (courtesy M. Seidel [17]).

where N is the turn number, and q and νM are the
modulation depth and tune, leads to four differ-
ent phases in the (νM/νI , q/νI) diagram (Fig. 7).
Massive chaos occurs when sidebands created by
the modulation overlap (Chirikov criterion [18]).
Tune modulation effects have been studied exten-
sively [8, 19, 20].
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