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Notes on Dumping Gold Beam in the AGS

C.J. Gardner, L.A. Ahrens, and P. Thieberger

March 25, 2010

Localized losses of gold beam in the AGS during RHIC Run 8 produced
vacuum leaks which required the replacement of several vacuum chambers.
A review of what happened and why was given by Leif Ahrens at the Run
8 Retreat [1]. The following notes trace the subsequent development of
clean dumping of gold beam on the beam dump in the J10 straight. The
novel idea of stripping Au77+ ions in order to put them directly into the
upstream face of the dump was introduced by Leif Ahrens and developed
by all three of us. George Mahler made the actual stripping device and
Dave Gassner developed its control. Leif Ahrens successfully commissioned
the device with gold beam during Run 10 [2]. The reader may find it
helpful to first view the figures herein and then refer to the text for details.
Any errors in the notes are mine (Gardner) alone.
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1 The J10 Beam Dump

The J10 beam dump is documented in several AGS Department drawings.
Its location in the J10 straight is shown schematically in Figure 1. (This
is a reproduction of Figure 3 of Ref. [3] with the addition of the dump
mass.) Here

L1 = 22.12367 inches (1)

Ld = 79.62 inches (2)

L2 = 18.24367 inches (3)

T = 2 × 59.99367 inches (4)

and
L1 + Ld + L2 = T. (5)

The lengths L1 and Ld are derived from drawings D08-M-216 and
D08-M-227. The length T is the drift length in the J10 straight. This is
given by Eq. (183) of Ref. [3].

Drawings D08-M-208, 209, 211, 212, 213 and 214 show details of the dump
mass. The part of the mass that is exposed to beam is made of copper and
is referred to as the “copper block” in the drawings. The copper is water
cooled and is surrounded by stainless steel.

2 The Limiting Aperture

The horizontal and vertical apertures in the AGS are given in Ref. [4]. Let
X(s) be the horizontal half-aperture at longitudinal position s along the
design orbit in AGS, and let βx(s) be the beta function there. We define

Ex(s) =
X2(s)

βx(s)
(6)

and denote by ex the minimum value attained by Ex(s). Then

ex =
X2(s0)

βx(s0)
(7)

where s0 is the position where Ex attains its minimum. We call ex the
horizontal acceptance of the machine. The limiting aperture is

XL = X(s0) (8)
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and the horizontal acceptance envelope is given by

H(s) =
√

exβx(s). (9)

The limiting aperture in AGS occurs at the injection kicker in the A5
straight. Here X = 2.531 inches [5]. Table 1 lists βx at the kicker and the
resulting acceptance ex for various values of the horizontal and vertical
tunes QH and QV . The H(u) and H(d) columns give the acceptance
envelope at the upstream and downstream ends of the J10 dump
respectively.

Table 1: AGS Horizontal Acceptance. The units of βx and ex are meters
and mm mrad respectively; those of H(u) and H(d) are inches.

QH QV βx ex H(u) H(d)

8.83 8.75 24.3749 169.6884 2.2244 1.8500
8.79 8.75 23.8028 173.7668 2.2334 1.8650
8.75 8.75 23.2435 177.9479 2.2441 1.8817
8.75 8.79 23.7258 174.3307 2.2298 1.8635
8.75 8.83 24.2129 170.8239 2.2172 1.8469

8.70 8.75 22.5619 183.3241 2.2599 1.9052
8.70 8.70 21.9710 188.2543 2.2838 1.9337
8.75 8.70 22.6478 182.6288 2.2643 1.9068

8.70 8.90 24.3805 169.6490 2.2052 1.8356

The H(u) numbers show that if the dump mass is positioned so that its
upstream end is less than 2.2052 inches from the OCO then it becomes the
limiting aperture for any of the tunes listed in the table. (The OCO is the
optimum closed orbit shown schematically in Figure 1.) In practice the
downstream end of the dump mass is moved far enough away from the
OCO to ensure that beam hits the upstream end first.

3 The Dump Bump

The dump bump is a three-halves lambda distortion of the closed orbit in
the region of the J10 dump. It is produced by backleg windings on
magnets I10, I11, J4, J5, J18, J19, K12 and K13. The I10, I11, J19, and
K12 magnets are “short” magnets with an iron length of 75 inches. The
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J4, J5, J18, and K13 magnets are “long” magnets with an iron length of 90
inches. The backleg windings on the short and long magnets consist of 6
and 5 turns respectively so that a given current produces the same beam
deflection in each magnet. The windings on all 8 magnets are connected
together in a series string with the I10, I11, K12, and K13 windings having
one polarity and the J4, J5, J18, and J19 windings having the opposite
polarity. This arrangement produces the desired orbit distortion at the
dump and ensures that no net EMF is induced in the string by the main
windings. The series string is connected to a monopolar power supply
capable of delivering up to 700 Amps.

The dump bump is shown in Figure 2. Here the black curve is the bump
and the blue lines show the outline of the dump. Outside the bump region
there is a residual orbit distortion that depends on the horizontal tune.
Here the horizontal and vertical tunes are QH = 8.75 and QV = 8.80.

4 Putting Au77+ Ions into the Dump

Figures 3 through 7 illustrate the “standard” way of putting gold ions
(Au77+) into the dump.

In Figure 3 the black curve is the dump bump and the blue lines show
the outline of the dump. The violet curves show the envelope of a 0.9π
emittance beam. This is the physical size of gold beam in AGS at
extraction assuming a normalized emittance of 10π. Beam is put into the
dump by increasing the amplitude of the bump. The downstream end of
the dump may be moved further to the inside (more negative) than shown
to ensure that beam hits the upstream end. The circulating beam
direction here is from left to right.

In Figure 4 the bump amplitude has been inreased causing beam loss on
the dump and reducing the beam emittance to 0.55π.

In Figure 5 the bump amplitude has been inreased further, again causing
beam loss on the dump and reducing the beam emittance to 0.3π.

In Figure 6 the bump amplitude has been inreased further still, causing
beam loss on the dump and reducing the beam emittance to 0.1π.

In Figure 7 the bump amplitude has been inreased further, causing beam
loss on the dump and reducing the beam emittance to 0.

Experience has shown that this method of putting gold ions into the dump
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produces unwanted losses downstream. This is due to scattering at the
surface of the dump as illustrated by the blue and red arrows in Figure 8.
It is believed that some of the scattered particles are Au79+ ions. Because
the rigidity is reduced by the factor 77/79, the Au79+ ion is no longer
inside the machine acceptance and is eventually lost on an aperture. This
will be illustrated in Section 9.

In order to eliminate scattering at the dump surface, Leif Ahrens proposed
stripping the Au77+ ions at a point upstream so that the resulting Au79+
ions are put directly into the upstream face of the dump. This is
illustrated by the green and purple arrows in Figure 8. Here the scattered
particles are absorbed by the dump.

5 Equations for Transport of Au79+ Ions

So, let us consider a Au77+ ion that has been stripped of its two electrons
at some point in the machine acceptance. Let X0 and X ′

0 be the position
and angle (with respect to the design orbit) of the ion at this point and let
X and X ′ be the position and angle at some point downstream. Let s0 and
s be the coordinates of the corresponding points on the design orbit. As
shown in the Appendix we have

X = MX0 +
∆p

p
(D−MD0) +

(

1 − ∆p

p

)

(d −Md0) (10)

or equivalently

X− ∆p

p
D−

(

1 − ∆p

p

)

d = M

{

X0 −
∆p

p
D0 −

(

1 − ∆p

p

)

d0

}

(11)

where

X =

(

X
X ′

)

, X0 =

(

X0

X ′

0

)

(12)

D =

(

D
D′

)

, D0 =

(

D0

D′

0

)

(13)

d =

(

d
d′

)

, d0 =

(

d0

d′0

)

(14)

and

M =

(

M11 M12

M21 M22

)

. (15)
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Here D0, D′

0 and D, D′ are the periodic dispersion functions at s0 and s
respectively. d0, d′0 and d, d′ are the closed orbit positions and angles at s0

and s respectively. The elements of M are

M11 =
√

β/β0 (C + α0S), M12 =
√

ββ0 S (16)

M21 = −
(

α − α0√
ββ0

)

C −
(

1 + αα0√
ββ0

)

S, M22 =
√

β0/β (C − αS) (17)

where α0, β0 and α, β are the Courant-Snyder parameters at s0 and s
respectively. The parameters C and S are

C = cos µ, S = sinµ (18)

where µ is the betatron phase advance between s0 and s.

The stripping of Au77+ to Au79+ is taken into account by setting

∆p

p
= − 2

77
(19)

in (10) and (11).

Writing out the components of (10) we have

X = M11X0 + M12X
′

0

+
∆p

p

(

D − M11D0 − M12D
′

0

)

+

(

1 − ∆p

p

)

(

d − M11d0 − M12d
′

0

)

(20)

X ′ = M21X0 + M22X
′

0

+
∆p

p

(

D′ − M21D0 − M22D
′

0

)

+

(

1 − ∆p

p

)

(

d′ − M21d0 − M22d
′

0

)

(21)

and defining
∆D = D − M11D0 − M12D

′

0 (22)

∆d = d − M11d0 − M12d
′

0 (23)

X = M11X0 + M12X
′

0 + ∆d (24)
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∆D′ = D′ − M21D0 − M22D
′

0 (25)

∆d′ = d′ − M21d0 − M22d
′

0 (26)

X ′ = M21X0 + M22X
′

0 + ∆d′ (27)

we have

X = X +
∆p

p
(∆D − ∆d) (28)

X ′ = X ′ +
∆p

p

(

∆D′ − ∆d′
)

. (29)

Here X and X ′ give the trajectory that a Au77+ ion would have if it were
not stripped at s0. Note that if there are no perturbing dipoles between s0

and s then ∆d = 0 and ∆d′ = 0. Similarly, if there are no dispersive
elements between s0 and s then ∆D = 0 and ∆D′ = 0.

Note also that if the phase advance between s0 and s is a multiple of π
then the M12 matrix element is zero and it follows that X and X are
independent of X ′

0
. This means that Au79+ ions created by stripping at a

given point on the dump surface will all have the same coordinate X at
locations downstream that are a multiple of π in phase advance away from
the dump. If these locations also happen to be at horizontal beta
maximums then one can have localized losses of Au79+ ions.

6 Trajectories of Ions Stripped with a Plunging

Stripper

Au77+ ions can be stripped either by plunging a stripper into the
circulating beam or by moving the circulating beam onto a stationary
stripper. Here we consider the former case which was proposed by Ahrens.

For any Y0 and Y ′

0 we have

M11Y0 + M12Y
′

0 =
√

β/β0

{

CY0 + S
(

α0Y0 + β0Y
′

0

)}

(30)

M21Y0 + M22Y
′

0 =
1√
ββ0

{

(C − αS)
(

α0Y0 + β0Y
′

0

)

− (S + αC)Y0

}

(31)

and it follows that

∆D = D −
√

β/β0

{

CD0 + S
(

α0D0 + β0D
′

0

)}

(32)
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∆d = d −
√

β/β0

{

Cd0 + S
(

α0d0 + β0d
′

0

)}

(33)

X =
√

β/β0

{

CX0 + S
(

α0X0 + β0X
′

0

)}

+ ∆d (34)

and

∆D′ = D′ − 1√
ββ0

{

(C − αS)
(

α0D0 + β0D
′

0

)

− (S + αC)D0

}

(35)

∆d′ = d′ − 1√
ββ0

{

(C − αS)
(

α0d0 + β0d
′

0

)

− (S + αC)d0

}

(36)

X ′ =
1√
ββ0

{

(C − αS)
(

α0X0 + β0X
′

0

)

− (S + αC)X0

}

+ ∆d′. (37)

Now since a stripper moving into the circulating beam at s0 strips the
maximum amplitude ions, we have

α0 (X0 − d0) + β0

(

X ′

0 − d′0
)

= 0 (38)

α0X0 + β0X
′

0 = α0d0 + β0d
′

0 (39)

and it follows from the equations above that

X = d +
√

β/β0 C (X0 − d0) (40)

X ′ = d′ − 1√
ββ0

(S + αC)(X0 − d0). (41)

We shall assume that the stripper is plunged from the inside side of the
ring. Then

X0 = d0 −
√

εβ0 (42)

where πε is the emittance of the circulating beam. Using this in (40) and
(41), and recalling (28) and (29) we obtain

X = d − C
√

εβ +
∆p

p
(∆D − ∆d) (43)

X ′ = d′ +
√

ε/β (S + αC) +
∆p

p

(

∆D′ − ∆d′
)

. (44)

Here we see that the positions of stripped ions at s will cover a range of
width C

√
εβ as the stripper at s0 is plunged into the beam. In order to

deposit the stripped ions on a dump at s with localized heating kept to a
minimum, we must therefore keep the phase advance between s0 and s
away from π/2. In Section 10 we will see that this can be achieved by
putting the stripper in the J7 straight.
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7 Separation between the Au79+ Trajectory and

the Circulating Beam

The inside edge of the circulating beam envelope at s is

Xe = d −
√

εβ (45)

and the separation between the Au79+ trajectory and the envelope at this
point is

Xe − X = −(1 − C)
√

εβ − ∆p

p
(∆D − ∆d) (46)

where
∆D = D −

√

β/β0

{

CD0 + S
(

α0D0 + β0D
′

0

)}

(47)

∆d = d −
√

β/β0

{

Cd0 + S
(

α0d0 + β0d
′

0

)}

. (48)

In Section 10 we will see that a separation of some 7 mm at the J10 dump
is obtained with a stripper in the J7 straight.

8 Trajectories of Ions Stripped with a Stationary

Stripper

Let us now consider the case in which the stripper is held fixed and a
programmable bump is used to move the circulating beam onto the
stripper. We shall assume that the stripper edge is to the outside of the
closed orbit at s0. We then have

X0 = d0 +
√

εβ (49)

where X0 is fixed and

α0X0 + β0X
′

0 = α0d0 + β0d
′

0. (50)

Beam is moved onto the stripper by increasing d0. Using (49) in (40) and
(41), and recalling (28) and (29) we obtain

X = d + C
√

εβ +
∆p

p
(∆D − ∆d) (51)

X ′ = d′ −
√

ε/β (S + αC) +
∆p

p

(

∆D′ − ∆d′
)

(52)
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where
∆D = D −

√

β/β0

{

CD0 + S
(

α0D0 + β0D
′

0

)}

(53)

∆d = d −
√

β/β0

{

Cd0 + S
(

α0d0 + β0d
′

0

)}

. (54)

For the special case in which the phase advance between s0 and s is π/2 we
have

C = 0, S = 1 (55)

and

X = d +
∆p

p
(∆D − ∆d) (56)

where
∆D = D −

√

β/β0

(

α0D0 + β0D
′

0

)

(57)

∆d = d −
√

β/β0

(

α0d0 + β0d
′

0

)

. (58)

The phase advance between the J1 straight and the J10 dump is in fact
very close to π/2. In Section 11 we will see that X = −58 mm can be
obtained at the J10 dump with a fixed stripper in the J1 straight.
Furthermore the closed orbit can be manipulated in a way that produces a
spread of positions X at the dump.

9 Trajectories of Ions Stripped at J10

Figures 9 through 11 illustrate the case in which a Au77+ ion is stripped
to Au79+ by just grazing the surface of the J10 dump. The red curve in
Figure 9 is the trajectory of such an ion. The green curve is the
trajectory of an unstripped Au77+ ion with the same initial conditions.
The black curve is the dump bump. The violet curves show the envelope of
the 0.9 π emittance beam and the blue lines show the outline of the dump.

Figure 10 is a “zoomed out” view of Figure 9 showing the trajectory of
the stripped Au79+ ion. Going from left to right, the local minima of the
trajectory are located in the J13, J17, K1, and K5 straights respectively.
During Run 8 high loss was observed at J17 before the dump position was
optimized and before the dump bump was strengthened.

In Figure 11 we have “zoomed out” further. The solid brown curve is the
equilibrium orbit about which the Au79+ ion is oscillating. The dashed
curve is the periodic dispersion multiplied by ∆p/p = −2/77. The
minimum of the Au79+ trajectory near s = 782 m is in the L13 straight.
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During Run 10 beam loss was observed at L9 when unstripped beam
(Au77+) was put into the dump.

In Figure 12 the red curve is the trajectory of a gold ion that has been
stripped to Au78+ by just grazing the surface of the dump. The solid
brown curve is the equilibrium orbit about which the Au78+ ion is
oscillating. The dashed curve is the periodic dispersion multiplied by
∆p/p = −1/77. The minimum of the Au78+ trajectory near s = 782 m is
in the L13 straight.

10 Trajectories of Ions Stripped at J7

Figures 13 through 19 illustrate the process of dumping beam on the J10
dump by plunging a stripper into the beam in the J7 straight.

In Figure 13 the red curve shows the trajectory of a gold ion that has
been stripped to Au79+ by passing through a stripper located in the J7
straight. The green curve is the trajectory of an unstripped Au77+ ion
with the same initial coordinates. As before, the black curve is the dump
bump, the violet curves show the envelope of the 0.9 π emittance beam,
and the blue lines show the outline of the dump. The stripped ion is lost
on the upstream face of the dump.

In Figure 14 the J7 stripper has been plunged further into the beam
(keeping the dump bump fixed) thereby reducing the circulating beam
emittance while putting the stripped beam into the upstream face of the
dump. The process continues in Figures 15, 16, and 17 with the end
result that all of the circulating beam is deposited into face of the dump.
Figure 18 shows the initial and final Au79+ ion trajectories and
Figure 19 gives a “zoomed out” view of the same.

These figures show that the range of trajectory positions at the face of the
dump is some 4 mm wide. Note that the magnet vacuum chamber wall is
at −3.406 inches (−86.5 mm), well away from the trajectories. The figures
also show that if the stripper should fail to plunge, the circulating Au77+
beam still can be put into the dump by increasing the dump bump
amplitude just a small amount. Thus, if the dump bump is programed to
always increase in amplitude just after the plunging time, one is assured
that the beam will be put into the dump one way or the other.
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11 Trajectories of Ions Stripped at J5, J3, J1

Figure 20 shows the initial and final Au79+ trajectories obtained for the
case in which a stripper is plunged into the circulating beam in the J5
straight. Note that in this case the dump bump has to move a greater
distance in order to put the circulating Au77+ beam into the dump should
the stripper fail to plunge.

Figure 21 shows the initial and final Au79+ trajectories for the case in
which a stripper is plunged in the J3 straight. Note that because the phase
advance between J3 and J10 is close to π/2, the trajectories converge to a
point on the upstream face of the dump. This could produce undesirable
localized heating.

Figure 22 shows the initial and final Au79+ trajectories for the case in
which a stripper is plunged (now from the outside) in the J1 straight. The
phase advance between J1 and J10 is still close to π/2, so the trajectories
are again close to one another on the upstream face of the dump.

In Figure 23 the stripper is held fixed in the J1 straight while the
circulating beam is moved into it with a programmable bump. Figure 24

is a “zoomed in” view of Figure 23.

Figure 25 shows the closed orbit and Au79+ trajectory of Figure 24 and
the Au79+ trajectory obtained with the closed orbit moved just to the
point where all circulating beam has been removed. Here we see that a
range of trajectory positions some 6 mm wide is obtained at the face of the
dump. In order to obtain these trajectories the position and angle of the
closed orbit at the J1 stripper need to be programmed. This could be done
with a three-halves lambda position bump and a lambda angle bump. The
position bump would be produced by backleg windings on magnets I1, I2,
I15, I16, J9, J10, K3, and K4 where “long” magnets I15, I16, K3, and K4
would have 5 turns and “short” magnets I1, I2, J9, and J10 would have 6
turns. The angle bump would be produced by the backleg windings on
magnets I8, I9, J16, and J17 where long magnets I8, J16, and J17 would
have 5 turns and short magnet I9 would have 6 turns. For the position
bump the windings on all 8 magnets would be connected together in a
series string with the I1, I2, K3, and K4 windings having one polarity and
the I15, I16, J9, and J10 windings having the opposite polarity. For the
angle bump the windings on all 4 magnets would be connected together in
a series string with the I8 and I9 windings having one polarity and the J16
and J17 windings having the opposite polarity. Figure 26 shows the J1
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position and angle bumps (orange and brown curves) and their
superposition (black curve).

12 Further Comments on Stripping at J7

Figure 27 shows the Au79+ trajectories (red curves) resulting from
plunging the J7 stripper from the inside and from the outside. As before,
the black curve is the dump bump and the violet curves show the envelope
of the nominal 0.9π mm mrad emittance circulating beam. In the
plunging-from-inside case, the Au79+ trajectories hit the upstream face of
the dump. In the plunging-from-outside case, the Au79+ trajectories still
hit the dump but they miss the upstream face. This may result in a dirtier
dump with more debris downstream.

In Figure 28 we see that we can make the plunging-from-outside
trajectories hit the upstream face of the dump, but it requires bringing the
circulating beam very close to the dump. This may make it difficult to set
up the stripping in practice.

Figure 29 shows stripping from the inside at J7 with twice the nominal
circulating beam emittance (2 × 0.9π = 1.8π mm mrad). Here we see that
there is still clearance between the dump and the circulating beam.

Figure 30 shows stripping of Au77+ to Au79+ and Au78+ in the J7
straight. The solid and dashed red curves are the Au79+ and Au78+
trajectories respectively. The circulating beam emittance is 0.9π mm mrad.

Figure 31 is a “zoomed out” view of Figure 30 showing the Au78+
trajectory that survives beyond the J10 dump. The minima of trajectory
near 647 and 768 m are in the J13 and L9 straights respectively.

In Figure 32 we again have stripping from Au77+ to Au79+ and Au78+
in the J7 straight, but now with the dump bump adjusted so that both the
Au79+ and the Au78+ ions hit the dump. The solid and dashed red
curves are the Au79+ and Au78+ trajectories respectively. Note that
there is still clearance between the dump and the circulating beam. The
circulating beam emittance is 0.9π mm mrad.
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13 Simulations of Where Ions Hit the Stripper

As the stripper is plunged into the circulating beam, ions pass through the
stripper material depositing some of their energy as heat. In order to
determine how hot the material gets we need to know the dimensions of
the region where ions hit the material surface. This is illustrated in
Figure 33. Here w is the maximum distance of ion hits from the stripper
edge and h is the smallest distance along the edge that contains the hits.
The hit area is approximately equal to wh. The maximum hit distance is
sensitive to the horizontal tune. Figures 34 and 35 show the result of a
simulation in which a stripper is plunged into circulating beam and the
maximum hit distance is recorded as a function of tune. The distance is
given in units of beam half-width

√
εβ0 where πε is the beam emittance

and β0 is the horizontal beta function at the stripper. The beam
distribution is assumed to be uniform in X, X ′ space. The stripper is
plunged a distance of

√
εβ0 into the beam in steps of 0.002

√
εβ0 per turn.

In Figure 35 the red, blue, and green curves give the maximum hit
distances for plunging steps of 0.0015, 0.001, and 0.0005

√
εβ0 per turn.

Figures 36 and 37 show the distribution of hits on the stripper for
various tunes. Here the red histogram was obtained with horizontal tune
QH = 0.286; the blue with QH = 0.281; and the green with QH = 0.250.
These are again the results of simulations in which a stripper is plunged
into circulating beam and the distance of ion hits from the stripper edge is
recorded. The beam distribution is assumed to be uniform in X, X ′ space
and the stripper is plunged a distance of

√
εβ0 into the beam in steps of

0.002
√

εβ0 per turn. The beam half-width is taken to be
√

εβ0 = 2.7 mm.
Note that the revolution period of gold ions at AGS extraction is 2.7 µs.
This gives a plunging speed of 2.0 m/s which is the maximum capability of
the plunging mechanism.

Figures 38 through 45 are a sequence of figures showing the order in
which particles of the initial beam distribution hit the stripper as it is
plunged into the beam. The stripper step per turn is 0.002 of the beam
half-width and 500 steps are required to strip all particles in the
distribution. The horizontal tune is QH = 0.281.
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14 Energy Deposition in the Stripper

The material chosen for the stripper is tungsten foil. We have the following
numbers:

1. The tungsten foil is d = 0.001 inches thick.

2. The density of tungsten is ρ = 19.3 g/cm3 [6].

3. This gives surface density ρd = 49.022 mg/cm2.

4. The kinetic energy of a gold ion at AGS extraction is 8.86 GeV per
nucleon.

5. The rate of energy loss of a fully stripped gold ion traveling through
tungsten at this energy is

−dE

dx
= 8 MeV cm2/mg. (59)

This number comes from Peter Thieberger’s plot of dE/dx versus E
obtained using Ziegler’s computer code [7].

6. The energy deposited by a single gold ion traversing the foil at AGS
extraction energy is then

E = −dE

dx
ρd = 392 MeV (60)

which gives (using 1 eV = 1.602176462(63) × 10−19 Joules)

E = 6.28 × 10−11 Joules. (61)

7. A single bunch at AGS extraction can have as many as

N = 1.5 × 109 (62)

gold ions.

8. A single bunch traversing the foil deposits energy

NE = 0.09425 Joules. (63)
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9. Each AGS cycle 4 bunches pass through the foil. This gives a total
energy deposition per AGS cycle of

4NE = 0.377 Joules. (64)

10. We assume that the beam half-width at the stripper foil is 2.7 mm
and that the foil is plunged into the beam at 2.0 m/s.

11. This gives energy deposition time

τ = 1.35 ms. (65)

15 Temperature Rise with no Cooling

We have the following numbers:

1. The specific heat of tungsten is [6]

c = 0.132 J/(gK). (66)

2. The melting point is 3414 C = 3687.15 K [6].

Let us assume that the area of foil exposed to beam is

A = 2.0 mm2. (67)

The mass of tungsten exposed to beam is then

ρdA = 0.9804 mg (68)

and, if there is no heat flow from the exposed part of the foil, the rise in
temperature due to 4 bunches passing through the foil is

∆T =
4NE
cρdA

= 2913 K. (69)

Thus if the foil starts out at 300 K, its temperature will increase to 3213 K
which is below but getting close to the melting point. The rate of
temperature rise is

K =
∆T

τ
= 2158 K/ms. (70)
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16 Radiative Cooling during Energy Deposition

We have the following numbers:

1. The emissivity of tungsten at 3600 K is [8]

ε = 0.35. (71)

2. The Stefan-Boltzmann constant is

σ = 5.67 × 10−8 W m−2 K−4. (72)

The rate at which energy is radiated from the foil is given by the
Stefan-Boltzmann law [8]

P = Sεσ
(

T 4 − T 4

W

)

(73)

where T is the foil temperature and TW is the temperature of the vacuum
chamber wall. Here

S = 2A (74)

is the total surface area of the foil. (The foil has two sides of area A. We
neglect the area of the foil edges.) As before, we take A = 2.0 mm2.

Thus, as energy is deposited during collisions with gold ions, the rate of
temperature change of the portion of foil exposed to beam is

dT

dt
= K − P

cρdA
= K − 2εσ

cρd

(

T 4 − T 4

W

)

(75)

where K is given by (70). Defining

C =
2εσ

cρd
, A4 = T 4

W +
K
C (76)

we have
dT

dt
= −C

(

T 4 −A4
)

(77)

and integrating we obtain

∫ T2

T1

dT

T 4 −A4
= −C (t2 − t1) . (78)

19



Using
∫

dx

a4 − x4
=

1

4a3
ln

∣

∣

∣

∣

a + x

a − x

∣

∣

∣

∣

+
1

2a3
arctan

(

x

a

)

(79)

we then have

4A3C (t2 − t1) = ln

∣

∣

∣

∣

A + T2

A− T2

∣

∣

∣

∣

+ 2arctan

(

T2

A

)

− ln

∣

∣

∣

∣

A + T1

A− T1

∣

∣

∣

∣

− 2 arctan

(

T1

A

)

(80)

exp
{

4A3C (t2 − t1)
}

=

∣

∣

∣

∣

A + T2

A− T2

∣

∣

∣

∣

∣

∣

∣

∣

A− T1

A + T1

∣

∣

∣

∣

exp {2(θ2 − θ1)} (81)

and
∣

∣

∣

∣

A + T2

A− T2

∣

∣

∣

∣

exp {2θ2} =

∣

∣

∣

∣

A + T1

A− T1

∣

∣

∣

∣

exp
{

2θ1 + 4A3C (t2 − t1)
}

(82)

where

θ1 = arctan

(

T1

A

)

, θ2 = arctan

(

T2

A

)

. (83)

Given A, T1, C and t2 − t1 we can evaluate the right-hand side of (82) and
then solve for T2. We have

C = 6.13404 × 10−10 (84)

and taking
TW = 300 K, t2 − t1 = τ (85)

we have
A = 7701.35 K. (86)

Then taking
T1 = 539.416 K (87)

we obtain
∣

∣

∣

∣

A + T2

A− T2

∣

∣

∣

∣

exp {2θ2} = 6.00852. (88)

Solving this for T2 gives
T2 = 3425.08 K. (89)

Here we have taken T1 = 539.416 K because, as shown in the next section,
this is the temperature to which the exposed area of the foil will cool
before the next energy deposition. (If an initial lower temperature is taken
for T1 then after a number of heating and radiative cooling cycles, an
equilibrium is reached in which the foil cools to 539.416 K just before the
next deposition of energy.)
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17 Radiative Cooling after Energy Deposition

After the short period (τ = 1.35 ms) of energy deposition, the foil cools
until the next deposition of energy. We shall take the AGS repetition
period to be

T = 3.6 s. (90)

The cooling time is nearly T and during this time we have K = 0. The
second of Eqs. (76) then becomes

A = TW (91)

and Eq. (82) becomes

∣

∣

∣

∣

TW + T2

TW − T2

∣

∣

∣

∣

exp {2θ2} =

∣

∣

∣

∣

TW + T1

TW − T1

∣

∣

∣

∣

exp
{

2θ1 + 4T 3

W C (t2 − t1)
}

(92)

where

θ1 = arctan

(

T1

TW

)

, θ2 = arctan

(

T2

TW

)

. (93)

Taking
TW = 300 K, T1 = 3425.08 K, t2 − t1 = T (94)

we then have
∣

∣

∣

∣

TW + T2

TW − T2

∣

∣

∣

∣

exp {2θ2} = 29.3996 (95)

and solving for T2 we obtain

T2 = 539.416 K. (96)

Thus, for each AGS cycle the foil temperature rises from 539.416 K to
3425.08 K during energy deposition and then cools back down to 539.416
before the next energy deposition. The peak temperature here is below but
close to the melting point. This shows that the part of the foil that is
exposed to beam can easily melt (assuming only radiative cooling) if the
area A is much smaller than the assumed 2.0 mm2. We must therefore
consider cooling due to conduction of heat in the foil.

18 Heat Flow in the Foil

We have the following numbers:
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1. The thermal conductivity of tungsten at 300 K is K = 174 W/(mK).

2. The thermal conductivity at 1800 K is K = 100 W/(mK).

3. The foil thickness is d = 0.0254 mm.

4. The beam width on the foil is w = 0.05 mm.

5. The beam height on the foil is h = 10 mm.

6. The foil area exposed to beam is A = wh.

7. The corresponding area of the foil edge is a = dh.

8. The time interval of energy deposition is τ = 1.35 ms.

9. The instantaneous power is P = 4NE/τ = 279 watts.

The fundamental equation for heat flow is [9]

∇ · h +
∂u

∂t
= S (97)

where u is the internal energy per unit volume, h is the heat energy flowing
per unit time through a unit area perpendicular to the flow, and S is the
heat generated per unit volume per unit time. (This equation is simply a
statement of the conservation of energy.) The heat flow vector h and the
change in internal energy u are related to the change in temperature by

h = −K∇T (98)

and
∂u

∂t
= cρ

∂T

∂t
(99)

where K is the thermal conductivity, c is the specific heat, and ρ is the
material density. The temperature T is a function of coordinates x, y, z
and time t. We shall assume that K is constant throughout the foil. This
gives

∇ · h = −K∇2T (100)

and we have

∇2T − cρ

K

∂T

∂t
= − S

K
. (101)
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We assume further that the temperature depends only on x and t. This
gives the one-dimensional equations

∂2T

∂x2
− 1

α

∂T

∂t
= − S

K
(102)

and

h(x, t) = −K
∂T

∂x
(103)

where

α =
K

cρ
. (104)

Here x is the distance into the foil from the foil edge. The source term S is
nonzero only for 0 ≤ x ≤ w and 0 ≤ t ≤ τ , where w is the hit width on the
foil and τ is the energy deposition time. We shall assume that the foil has
uniform temperature T0 at time t = 0. We assume further that there is no
heat flow into the foil edge. Thus

T (x, 0) = T0, h(0, t) = 0. (105)

For the numbers given above we have

S =
P

dA
=

4NE
dAτ

= 22000 W/mm3. (106)

19 Solution of the Heat Flow Equations

The analytical solution of (102) that satisfies the desired boundary
conditions is given by Carslaw and Jaeger [10]. For 0 < x < w the
temperature of the foil is

T (x, t) = T0 +
αSt

K

{

1 − 2 i2erfc

(

w − x√
4αt

)

− 2 i2erfc

(

w + x√
4αt

)}

(107)

and for x > w,

T (x, t) = T0 +
αSt

K

{

2 i2erfc

(

x − w√
4αt

)

− 2 i2erfc

(

x + w√
4αt

)}

. (108)

Here

i2erfc y =
1

4

{

(1 + 2y2)erfc y − 2√
π

y exp(−y2)

}

(109)
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where
erfc y = 1 − erf y (110)

and

erf y =
2√
π

∫ y

0

exp(−s2) ds. (111)

Note that

i2erfc 0 =
1

4
(112)

which shows that T (x, t) is continuous at x = w.

The functions inerfc y are defined by

inerfc y =

∫

∞

y
in−1erfc s ds, n = 1, 2, 3, . . . (113)

with
i0erfc y = erfc y. (114)

These satisfy the recurrence formula

2n inerfc y = in−2erfc y − 2y in−1erfc y (115)

and the differential equation

d2F

dy2
+ 2y

dF

dy
− 2nF = 0 (116)

where F = inerfc y. For the case n = 2 we have

F (y) = i2erfc y (117)

and
F ′′ + 2yF ′ − 4F = 0 (118)

where

F ′′ =
d2F

dy2
, F ′ =

dF

dy
. (119)

To verify that (107) and (108) satisfy (102), we define

G(x, t) = T0 +
Sαt

K
+ αtF (g(x, t)) (120)

where

g(x, t) =
a + bx√

4αt
, b2 = 1. (121)
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Then
∂g

∂x
=

b√
4αt

,
∂2g

∂x2
= 0,

∂g

∂t
= − g

2t
(122)

∂G

∂x
= αt

∂g

∂x
F ′ =

bF ′

√
4αt

αt (123)

∂2G

∂x2
= αt

(

∂g

∂x

)2

F ′′ =
b2αt

4αt
F ′′ =

1

4
F ′′ (124)

∂G

∂t
=

αS

K
+ αF + αt

∂g

∂t
F ′ = α

{

S

K
+ F − g

2
F ′

}

(125)

and we have

∂2G

∂x2
− 1

α

∂G

∂t
=

1

4

{

F ′′ − 4F + 2gF ′
}

− S

K
. (126)

Thus using (118) we have

∂2G

∂x2
− 1

α

∂G

∂t
= − S

K
(127)

and it follows that (107) and (108) satisfy (102).

Now the heat flow in the foil is given by (103), and using (123) and

F ′(y) = −ierfc(y) (128)

we have, for 0 ≤ x ≤ w,

h(x, t) = S(αt)3/2

{

ierfc

(

w − x√
4αt

)

− ierfc

(

w + x√
4αt

)}

(129)

where

ierfc(y) =
1√
π

exp(−y2) − y erfc y. (130)

Here we see that h(0, t) = 0 as required.

For w ≤ x we have

h(x, t) = S(αt)3/2

{

ierfc

(

x − w√
4αt

)

− ierfc

(

x + w√
4αt

)}

. (131)

This shows that h(x, t) is continuous at x = w as required.
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Figure 46 shows T (x, τ) obtained from (107) and (108) with w = 0.05
mm, h = 10 mm and initial temperature T0 = 300 K. The energy
deposition time τ is 1.35, 2.7, and 5.4 ms respectively for the upper,
middle, and lower curves. Figures 47, 48, and 49 show curves with the
same h, T0 and energy deposition times, but with hit widths w = 0.01,
0.005, and 0.001 mm respectively. Note that even as the width w becomes
very small, the temperature at the foil edge stays below the melting point
of 3687 K.

20 Temperature at the Foil Edge

The analytical expression for the temperature at the foil edge is obtained
by setting x = 0 in (107). This gives

T (0, t) = T0 +
αSt

K

{

1 − 4 i2erfc

(

w√
4αt

)}

(132)

where

4 i2erfc y = (1 + 2y2) erfc y − 2√
π

y exp(−y2) (133)

and

erfc y = 1 − 2√
π

∫ y

0

exp(−s2) ds. (134)

Table 2 lists the temperatures T (0, τ) at the foil edge for the curves in
Figures 46, 47, 48, and 49. Temperatures T1, T2, T3 and T4 are those
obtained with w = 0.05, 0.01, 0.005, and 0.001 mm respectively.

Table 2: Temperature at the Foil Edge

τ
√

4ατ T1(0, τ) T2(0, τ) T3(0, τ) T4(0, τ)

ms mm ◦K ◦K ◦K ◦K

1.35 0.460 2892 3101 3128 3150
2.70 0.651 2186 2292 2306 2317
5.40 0.921 1661 1714 1721 1727

There are two important features here. The first is that for each value of w
the temperature is significantly reduced by increasing the time τ over
which the fixed energy 4NE is deposited. The second is that for each value
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of τ the temperature increases toward an upper limit as w gets smaller.
This will be shown rigorously in the next section.

21 The Limit of very Small Hit Width

For |y| � 1 we have

1 − 4 i2erfc y =
4√
π

y − 2y2 (135)

and therefore for
w �

√
4αt (136)

the temperature at the foil edge becomes

T (0, t) = T0 +
Sw

K

{
√

4αt

π
− w

2

}

. (137)

Here
Sw

K
=

Pw

dAK
=

P

aK
=

4NE
aτK

(138)

which is independent of w. For t = τ we then have

T (0, τ) = T0 +
4NE
aK

{

√

4α

πτ
− w

2τ

}

(139)

which we can write as

T (0, τ) = T0 +
4NE
aK

4α√
π

{
√

1

4ατ
−

√
π

2

w

4ατ

}

(140)

T (0, τ) = T0 +
4NE
aK

4α√
π

√

1

4ατ

{

1 −
√

π

2

w√
4ατ

}

. (141)

In the limit of vanishingly small w this becomes simply

T (0, τ) = T0 +
4NE
aK

4α√
π

√

1

4ατ
(142)

which shows that the temperature increase at the foil edge goes like 1/
√

τ .
Putting in numbers

1. 4NE = 0.377 Joules
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2. a = dh = 0.254 mm2

3. K = 100 W/(mK)

4. τ = 1.35 ms

5. T0 = 300 K

we obtain
4NE
aK

4α√
π

= 1314.8 mmK (143)

√
4ατ = 0.4604 mm (144)

4NE
aK

4α√
π

√

1

4ατ
= 2855.8 K (145)

and

T (0, τ) = T0 +
4NE
aK

4α√
π

√

1

4ατ
= 3155.8 K. (146)

Thus, for energy deposition times τ greater than or equal to 1.35 ms, the
foil edge stays below the melting point of 3687 K even in the extreme case
of the hit width going to zero.

22 The Case of Heat Flowing into the Foil Edge

Instead of considering the problem in which heat is generated between
x = 0 and x = w, we consider the problem in which an equivalent amount
of heat flows into the foil through the edge at x = 0. Following the
treatment of Eckert and Drake [11] we have

h(x, t) = −K
∂T

∂x
(147)

∂h

∂t
= −K

∂2T

∂t∂x
(148)

∂2T

∂x2
− cρ

K

∂T

∂t
= 0 (149)
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∂h

∂x
= −K

∂2T

∂x2
= −cρ

∂T

∂t
(150)

∂2h

∂x2
= −cρ

∂2T

∂x∂t
=

cρ

K

∂h

∂t
(151)

and
∂h

∂t
− α

∂2h

∂x2
= 0 (152)

where

α =
K

cρ
. (153)

We wish to find a solution of (152) subject to the boundary conditions

h(x, t) = 0, x > 0, t = 0 (154)

h(x, t) = h0, x = 0, 0 < t ≤ τ (155)

where

h0 =
P

a
=

4NE
aτ

. (156)

The solution is

h(x, t) = h0

{

1 − erf
x√
4αt

}

(157)

where

erf y =
2√
π

∫ y

0

exp(−s2) ds. (158)

This can be verified using

d

dy
erf y =

2√
π

exp(−y2). (159)

We have
∂h

∂x
= − 2h0√

4παt
exp

(

− x2

4αt

)

(160)

∂2h

∂x2
=

2h0√
4παt

2x

4αt
exp

(

− x2

4αt

)

(161)

α
∂2h

∂x2
=

h0x

t
√

4παt
exp

(

− x2

4αt

)

(162)
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∂h

∂t
= − h0x√

4α

{

−1

2
t−3/2

}

2√
π

exp

(

− x2

4αt

)

(163)

and
∂h

∂t
=

h0x

t
√

4παt
exp

(

− x2

4αt

)

= α
∂2h

∂x2
(164)

as desired. Furthermore, using

erf(0) = 0, erf(∞) = 1 (165)

we have
h(0, t) = h0, h(x, 0) = 0 (166)

which are the desired boundary conditions.

Now, integrating (147) we have

−K {T0 − T (x, t)} =

∫

∞

x
h(s, t) ds (167)

T (x, t) = T0 +
h0

K

∫

∞

x
erfc

(

s√
4αt

)

ds (168)

where
T0 = T (∞, t) (169)

and
erfc y = 1 − erf y. (170)

Defining

u =
s√
4αt

(171)

we have
ds = du

√
4αt (172)

and

T (x, t) = T0 +
h0

K

√
4αt

∫

∞

y
erfc u du (173)

where
y =

x√
4αt

. (174)

Using
∫

∞

y
erfc u du =

1√
π

exp(−y2) − y erfc y (175)
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we then have

T (x, t) = T0 +
h0

K

√

4αt

π
F (x, t) (176)

where

F (x, t) = exp

(

− x2

4αt

)

−
√

πx2

4αt
erfc

(

x√
4αt

)

. (177)

Here
h0

K
=

P

aK
=

4NE
aτK

(178)

and we have
h0

K

√

4ατ

π
=

4NE
aK

4α√
π

√

1

4ατ
. (179)

We also have
F (0, t) = 1. (180)

The temperature at the foil edge (x = 0) at time t = τ is then

T (0, τ) = T0 +
4NE
aK

4α√
π

√

1

4ατ
(181)

in agreement with (142).

23 Inclined Plunging Stripper

In the above work we assumed that the stripper edge makes an angle
θ = 90◦ with respect to the direction of the plunging motion. We took the
vertical extent of the beam on the stripper to be h = 10 mm as illustrated
in Figure 33. However, if the angle of the edge is not exactly 90◦ then,
because of the vertical oscillations of the beam particles, the particles will
hit just half of the length of the projection of the beam onto the edge. The
extent of particle hits along the edge is then h/(2 sin θ). This is illustrated
in Figures 50 and 51 where θ = 60◦ and 30◦ respectively. For the case in
which θ = 30◦ we have h/(2 sin θ) = h and we recover h as the extent of
hits along the edge.

To verify that these ideas are correct, a simulation was done in which the
initial distribution of beam particles was the largest ball (in normalized X,
X ′, Y , Y ′ coordinates) contained in a four-dimensional cube uniformly
populated with 404 particles. Beam half widths were taken to be

√
εβ = 2.7

and 5.0 mm in the horizontal and vertical planes respectively. The stripper
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was moved into the circulating beam in horizontal steps of 0.002
√

εβ per
turn (2.7 µs) which gives a speed of 2.0 mm/ms. The times over which hits
occur on the stripper are then 1.35, 1.98, and 4.54 ms for θ = 90, 60, and
30 degrees respectively. During these times the stripper moves 2.70, 3.95
and 9.07 mm respectively in the horizontal direction. The horizontal and
vertical tunes were taken to be QH = 0.281 and QV = 0.221. As shown in
the previous sections, the longer energy deposition times obtained for
θ = 60 and 30 degrees give a lower temperature at the foil edge.

Figures 52 and 53 show the distribution of hits on the stripper. The Red,
Blue and Green histograms were obtained with θ = 90, 60, and 30 degrees
respectively. Note that for the red histogram in Figure 52, θ was exactly
90 degrees, so the extent of the particle hits along the edge is h = 10 mm
(not h/2 = 5 mm). For the green histogram, the extent of hits along the
edge is h/(2 sin θ) = h as expected for θ = 30 degrees. In Figure 53 we see
that the hits are spread over a significantly greater distance from the foil
edge for θ = 60 and 30 degrees. This again gives a lower temperature at
the foil edge.

The use of an inclined stripper was proposed and advocated by Peter
Thieberger. His design with θ = 30 degrees is shown in Figures 54 and
55. This is the design that was built by George Mahler and installed in
the J7 straight. There are two plunging strippers here; one is plunged from
the inside side of the ring and the other from the outside. This allows for a
working spare in the event that one of the strippers or plunging
mechanisms fails. Each stripper is driven by a programmable linear motor
as described in [12].

An added advantage of the inclined stripper is that the foil edge can be
viewed from above with a camera. With 6.0 × 109 gold ions circulating in
the machine at extraction energy, a bright flash is seen as the stripper is
plunged into the beam. Figures 56 and 57 show the inside plunging
stripper after several weeks of running. Here one clearly sees a gouged out
area where the beam has hit the foil. As of this writing it is not known
whether this is due to melting or evaporation of the tungsten or to some
other process.

24 Stay-Clear Region in the J7 Straight

The horizontal limiting aperture in AGS occurs at the A5 injection kicker
which has a half-aperture of 2.532 inches [5]. Taking βx = 23 m at the
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kicker gives horizontal acceptance πex = 180π mm mrad.

The vertical limiting aperture is in the number 11 magnet of each
superperiod. Here the vertical half-aperture is 1.531 inches [4]. Taking
βy = 23 here gives vertical acceptance πey = 66π mm mrad.

Thus when the J7 stripper is not being plunged into the aperture, it must
stay clear of the region defined by

−
√

exβH ≤ X ≤
√

exβH (182)

and
−
√

eyβV ≤ Y ≤
√

eyβV (183)

where βH and βV are the horizontal and vertical beta functions at the
stripper. Taking

βH = 11 m, βV = 21 m (184)

and using the values of ex and ey given above we then have

|X| ≤ 44 mm, |Y | ≤ 37 mm. (185)

25 Observed Loss Patterns with and without the

Plunging Stripper.

Figures 58 and 59 show the loss pattern in the AGS with some 3.5 × 109

gold ions being put into the J10 dump at extraction energy. (These are
images taken from the 11 Dec 2009 Booster-Ags-Au-2010 elog.)

In Figure 58 the J7 stripper is not being plunged into the circulating
beam. Here the loss has a peak value of about 1100 at the J12 loss monitor
and a shoulder value of about 200 at J16 and J18. There is also a small
loss registering at the L10 loss monitor. The Au79+ trajectory shown in
Figures 9, 10, and 11 suggests a possible explanation for losses in the L9
straight.

In Figure 59 the J7 stripper is being plunged into the beam. Here the
peak loss at the J12 monitor has been reduced to about 600 and the
shoulder at J16 and J18 has come down to 50 or so. The loss at the L10
monitor has completely disappeared.
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26 Energy Deposition in the J10 Dump

We have the following numbers:

1. The kinetic energy of a single fully stripped gold ion at AGS
extraction is

W = 197 × 8.86 = 1745.42 GeV. (186)

2. The kinetic energy of a proton with the same velocity as the gold ion
is

Wp = 8.93 GeV. (187)

3. The rate of energy loss of a proton passing through copper with
kinetic energy Wp is [13]

−dEp

dx
= 1.534 MeV cm2/g. (188)

4. The rate of energy loss of a fully stripped gold ion (Z = 79) passing
through copper with kinetic energy 8.86 GeV per nucleon can then
be obtained by scaling the Bethe-Bloch result for protons [14]. This
gives

−dE

dx
= −Z2

dEp

dx
= 9574 MeV cm2/g. (189)

5. This agrees fairly well with

−dE

dx
= 9624 MeV cm2/g (190)

obtained from the computer code of J.P. Biersack and J.F.
Ziegler [7]. The projected range obtained by the code is 207.29 mm.

6. The density of copper is [6]

ρ = 8.96 g/cm3. (191)

7. The specific heat of copper is [6]

c = 0.385 J/(gK). (192)

8. We assume that
N = 6.0 × 109 (193)

gold ions are put into the dump at extraction energy each AGS cycle.
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9. The total energy deposited into the dump per AGS cycle is then

E = NW = 1678 Joules. (194)

10. We take the AGS cycle time to be

T = 3.6 s. (195)

11. This gives average power

P = E/T = 466 watts. (196)

The energy lost as N fully stripped gold ions travel a small distance d in
copper is

E = −N
dE

dx
ρd. (197)

If the ions are incident on surface area A, the energy is deposited in mass

M = ρAd (198)

and the resulting temperature increase (assuming no cooling) is

∆T =
E

cM
= − N

cA

dE

dx
. (199)

In Section 10 we found that the trajectories of Au79+ ions that hit the
upstream face of the dump are spread over a region that is some 4 mm
wide. The beam height here is about 7 mm. This gives A = 0.28 cm2 and

∆T = 86◦ K. (200)

Note that for Np protons moving at the same velocity as the gold ions we
would have temperature increase

∆Tp = −Np

cA

dEp

dx
=

Np

NZ2
∆T. (201)

During the 1998 SEB Run [15] the peak intensity in AGS was

Np = 7.1 × 1013 (202)

protons per AGS cycle, which gives

Np

NZ2
= 1.9. (203)

This shows that the heating due to peak-intensity protons incident on the
dump is only a factor of two higher than that due to peak-intensity gold
ions.
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27 Appendix

Let

X0 =

(

X0

X ′

0

)

(204)

where X0 and X ′

0 are the horizontal position and angle of a beam particle
at position s0 along the reference orbit. Similarly let

X =

(

X
X ′

)

(205)

where X and X ′ are the position and angle at s. Let ∆p/p be the
momentum deviation parameter of the particle. We assume that a local
orbit bump is produced by a series of point dipole kicks φi at positions si

along the reference orbit. Let

Ti =







ai bi ei

fi gi e′i
0 0 1






=

(

Mi ei

0 1

)

(206)

be the transfer matrix from si−1 to si. Here Mi and ei are the submatrices

Mi =

(

ai bi

fi gi

)

, ei =

(

ei

e′i

)

. (207)

Let

Z =







X
X ′

∆p/p






=

(

X

∆p/p

)

(208)

Z0 =







X0

X ′

0

∆p/p






=

(

X0

∆p/p

)

(209)

and

Θi = K







0
φi

0






= K

(

Φi

0

)

(210)

where

Φi =

(

0
φi

)

(211)
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and

K = 1 − ∆p

p
. (212)

We then have

Z = TNTN−1 · · ·T1Z0

+ TNTN−1 · · ·T2Θ1

+ TNTN−1 · · ·T3Θ2

+ TNTN−1 · · ·T4Θ3

...

+ TNΘN−1 (213)

T2T1 =

(

M2 e2

0 1

)(

M1 e1

0 1

)

(214)

T2T1 =

(

M2M1 M2e1 + e2

0 1

)

(215)

T3T2T1 =

(

M3 e3

0 1

)(

M2M1 M2e1 + e2

0 1

)

(216)

T3T2T1 =

(

M3M2M1 M3M2e1 + M3e2 + e3

0 1

)

(217)

and it follows that

X = MNMN−1 · · ·M1X0

+ MNMN−1 · · ·M2

(

∆p

p
e1 + KΦ1

)

+ MNMN−1 · · ·M3

(

∆p

p
e2 + KΦ2

)

+ MNMN−1 · · ·M4

(

∆p

p
e3 + KΦ3

)

...

+ MN

(

∆p

p
eN−1 + KΦN−1

)

+
∆p

p
eN . (218)
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Let

d0 =

(

d0

d′0

)

, d =

(

d
d′

)

(219)

where d0, d′0 and d, d′ are the closed orbit positions and angles at s0 and s
respectively. Then

d = MNMN−1 · · ·M1d0

+ MNMN−1 · · ·M2Φ1

+ MNMN−1 · · ·M3Φ2

+ MNMN−1 · · ·M4Φ3

...

+ MNΦN−1. (220)

Similarly, let

D0 =

(

D0

D′

0

)

, D =

(

D
D′

)

(221)

where D0, D′

0 and D, D′ are the periodic dispersion functions at s0 and s
respectively. Then

D = MNMN−1 · · ·M1D0

+ MNMN−1 · · ·M2e1

+ MNMN−1 · · ·M3e2

+ MNMN−1 · · ·M4e3

...

+ MNeN−1 + eN . (222)

Thus

X = MX0 +
∆p

p
(D −MD0) + K (d−Md0) (223)

where
M = MNMN−1 · · ·M1. (224)

Rearranging terms we also have

X− ∆p

p
D − Kd = M

{

X0 −
∆p

p
D0 − Kd0

}

(225)

which shows that the particle simply oscillates about the perturbed orbit
(∆p/p)D + Kd.
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AGS J10 Dump Bump

Figure 2: The black curve is the J10 dump bump. This is a standard AGS
three-halves lambda bump obtained by exciting the backleg windings on
four pairs of main dipole magnets. (In this case the I10, I11, J4, J5, J18,
J19, K12, and K13 magnets.) Outside the bump region there is a residual
orbit distortion that depends on the horizontal tune. The Blue lines show
the outline of the J10 dump.
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with 0.9 pi envelope

Figure 3: This is a “zoomed in” view of Figure 2. Here again the black
curve is the J10 dump bump and the blue lines show the outline of the
dump. The violet curves show the envelope of a 0.9π emittance beam. This
is the actual size of gold beam in AGS at extraction assuming a normalized
emittance of 10π. Beam is put into the dump by increasing the amplitude of
the bump. The downstream end of the dump may be moved further to the
inside (more negative) than shown to ensure that beam hits the upstream
end. The circulating beam direction here is from left to right.
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Figure 4: Here the bump amplitude has been inreased causing beam loss
on the dump and reducing the beam emittance to 0.55π.
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Figure 5: Here the bump amplitude has been inreased further, again
causing beam loss on the dump and reducing the beam emittance to 0.3π.
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Figure 6: Here the bump amplitude has been inreased further still, causing
beam loss on the dump and reducing the beam emittance to 0.1π.

46



625 630 635 640 645 650 655
S (meters)

−60

−50

−40

−30

−20

H
or

iz
on

ta
l C

O
D

 (
m

m
)

AGS J10 Dump Bump
with 0.0 pi envelope

Figure 7: Here the bump amplitude has been inreased further, causing
beam loss on the dump and reducing the beam emittance to 0.0π.
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Au77+

Au79+
J10 Dump

Figure 8: Here the blue and red arrows illustrate scattering of Au77+ ions
at the surface of the dump. Some of the scattered particles continue down-
stream. This is the “standard” way of putting gold ions into the dump. The
green and purple arrows illustrate the result of putting Au79+ ions into the
upstream face of the dump. In this case the scattered particles are absorbed
by the dump.
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Stripping to Au79+ on the Dump

Figure 9: Here the red curve is the trajectory of a gold ion that has been
stripped to Au79+ by just grazing the surface of the dump. The green
curve is the trajectory of an unstripped Au77+ ion with the same initial
coordinates. As before, the black curve is the dump bump, the violet curves
show the envelope of the 0.9 π emittance beam and the blue lines show the
outline of the dump.
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Stripping to Au79+ on the Dump

Figure 10: This a “zoomed out” view of Figure 9 showing the trajectory of
the stripped Au79+ ion. Going from left to right, the local minima of the
trajectory are located in the J13, J17, K1, and K5 straights respectively.
During Run 8 high loss was observed at J17 before the dump position was
optimized and before the dump bump was strengthened.
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Stripping to Au79+ on the Dump

Figure 11: Here we have “zoomed out” further. The solid brown curve is
the equilibrium orbit about which the Au79+ ion is oscillating. The dashed
curve is the periodic dispersion multiplied by ∆p/p = −2/77. The minimum
of the Au79+ trajectory near s = 782 m is in the L13 straight. During Run
10 beam loss was observed at L9 when unstripped beam (Au77+) was put
into the dump.
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Stripping to Au78+ on the Dump

Figure 12: Here the red curve is the trajectory of a gold ion that has been
stripped to Au78+ by just grazing the surface of the dump. The solid brown
curve is the equilibrium orbit about which the Au78+ ion is oscillating. The
dashed curve is the periodic dispersion multiplied by ∆p/p = −1/77. The
minimum of the Au78+ trajectory near s = 782 m is in the L13 straight.
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Stripping to Au79+ in J7 Straight

Figure 13: Here the red curve shows the trajectory of a gold ion that has
been stripped to Au79+ by passing through a stripper located in the J7
straight. The green curve is the trajectory of an unstripped Au77+ ion with
the same initial coordinates. As before, the black curve is the dump bump,
the violet curves show the envelope of the 0.9 π emittance beam, and the
blue lines show the outline of the dump. The stripped ion is lost on the
upstream face of the dump.
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Stripping to Au79+ in J7 Straight

Figure 14: Holding the dump bump fixed the J7 stripper is plunged further
into the beam thereby reducing the circulating beam emittance while
putting the stripped beam into the upstream face of the dump.
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Stripping to Au79+ in J7 Straight

Figure 15: The J7 stripper is plunged still further into the beam. The
circulating beam emittance is reduced further while the stripped beam
continues to be put into the upstream face of the dump.
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Stripping to Au79+ in J7 straight

Figure 16: The J7 stripper is plunged further into the beam. The circulating
beam emittance is reduced further while the stripped beam continues to be
put into the upstream face of the dump.
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Stripping to Au79+ in J7 Straight

Figure 17: The J7 stripper is plunged into the the last bit of circulating
beam. The stripped beam is put into the upstream face of the dump.
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Stripping to Au79+ in J7 Straight

Figure 18: Here are the initial and final Au79+ ion trajectories obtained
as the J7 stripper is plunged into the circulating beam. Note that the ions
are lost at different locations on the face of the dump as the stripper moves
into the beam. Note also that no beam hits the magnet vacuum chamber
wall which sits at −3.406 inches (−86.5 mm).
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Stripping to Au79+ in J7 Straight

Figure 19: Here is a “zoomed out” view of the initial and final trajectories
obtained as the J7 stripper is plunged into the circulating beam.
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Stripping to Au79+ in J5 Straight

Figure 20: Here are the initial and final Au79+ trajectories obtained for
the case in which a stripper is plunged into the circulating beam in the J5
straight.
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Stripping to Au79+ in J3 Straight

Figure 21: Here are the initial and final Au79+ trajectories obtained for
the case in which a stripper is plunged into the circulating beam in the J3
straight. Note that because the phase advance between J3 and J10 is close
to π/2, the trajectories converge to a point on the upstream face of the
dump.
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Stripping to Au79+ in J1 Straight

Figure 22: Here are the initial and final Au79+ trajectories obtained for the
case in which a stripper is plunged into the circulating beam (now from the
outside) in the J1 straight. Note that because the phase advance between
J1 and J10 is still close to π/2, the trajectories are close to one another on
the upstream face of the dump.
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Stripping to Au79+ in J1 Straight

Figure 23: Here is the Au79+ trajectory obtained for the case in which a
stripper is held fixed in the J1 straight while the circulating beam is moved
into it with a programmable bump.
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Stripping to Au79+ in J1 Straight

Figure 24: “Zoomed in” view of Figure 23.
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Stripping to Au79+ in J1 Straight

Figure 25: Closed orbit and Au79+ trajectory of Figure 24 and the Au79+
trajectory obtained with the orbit moved just to the point where all circu-
lating beam has been removed.
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Figure 26: J1 Position and Angle Bumps (orange and brown curves) and
their Superposition (black curve).
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Figure 27: Here we see the Au79+ trajectories (red curves) resulting from
plunging the J7 stripper from the inside and from the outside. The black
curve is, as before, the dump bump and the violet curves show the envelope
of the 0.9π mm mrad emittance circulating beam. In the plunging-from-
inside case, the Au79+ trajectories hit the upstream face of the dump. In
the plunging-from-outside case, the Au79+ trajectories still hit the dump
but they miss the upstream face. This may result in a dirtier dump with
more debris downstream.
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Figure 28: Here we see that we can make the plunging-from-outside
trajectories hit the upstream face of the dump, but it requires bringing the
circulating beam very close to the dump. This may make it difficult to set
up the stripping in practice.
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Figure 29: Stripping from the inside at J7 with twice the nominal circulating
beam emittance (2 × 0.9π = 1.8π). Here we see that there is still clearance
between the dump and the circulating beam.
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Stripping to Au79+ and Au78+ in J7 Straight
Au79+ trajectory is solid red; Au78+ is dashed red

Figure 30: Stripping from Au77+ to Au79+ and Au78+ in the J7 straight.
The solid and dashed red curves are the Au79+ and Au78+ trajectories
respectively. Circulating beam emittance is 0.9π mm mrad.
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Trajectory of Au78+ Produced in J7 Straight

Figure 31: This is a “zoomed out” view of Figure 30 showing the Au78+
trajectory that survives beyond the J10 dump. The minima of trajectory
near 647 and 768 m are in the J13 and L9 straights respectively.
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Stripping to Au79+ and Au78+ in J7 Straight
Au79+ trajectory is solid red; Au78+ is dashed red

Figure 32: Here we again have stripping from Au77+ to Au79+ and Au78+
in the J7 straight, but now with the dump bump adjusted so that both the
Au79+ and the Au78+ ions hit the dump. The solid and dashed red curves
are the Au79+ and Au78+ trajectories respectively. Note that there is still
clearance between the dump and the circulating beam. The circulating beam
emittance is 0.9π mm mrad.
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Plunging Stripper h

w

Figure 33: Plunging Stripper. The stripper is plunged into the beam from
left to right. The area of ion hits is shown in red. Here w is the maximum
distance of hits from the stripper edge and h is the smallest distance along
the edge that contains the hits. The area of hits is approximately equal to
wh.
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Figure 34: Maximum hit distance from stripper edge versus horizontal tune.
This is the result of a simulation in which a stripper is plunged into circu-
lating beam and the maximum distance of ion hits from the stripper edge is
recorded as a function of tune. The distance is given in units of beam half-
width

√
εβ0 where πε is the beam emittance and β0 is the horizontal beta

function at the stripper. The beam distribution is assumed to be uniform
in X, X ′ space. The stripper is plunged a distance of

√
εβ0 into the beam

in steps of 0.002
√

εβ0 per turn.
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Figure 35: The black curve here is a “zoomed in” view of Figure 34 where
the stripper was plunged into the circulating beam in steps of 0.002

√
εβ0

per turn. The Red, Blue, and Green curves were obtained with the stripper
plunged in steps of 0.0015, 0.001, and 0.0005

√
εβ0 per turn.
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Figure 36: Distribution of hits on the stripper for various tunes. Here the red
histogram was obtained with horizontal tune QH = 0.286 and the blue with
QH = 0.281. This is again the result of a simulation in which a stripper is
plunged into circulating beam and the distance of ion hits from the stripper
edge is recorded. The beam distribution is assumed to be uniform in X, X ′

space. The beam half-width is taken to be
√

εβ0 = 2.7 mm where πε is the
beam emittance and β0 is the horizontal beta function at the stripper. The
stripper is plunged a distance of

√
εβ0 into the beam in steps of 0.002

√
εβ0

per turn.
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Figure 37: This is just Figure 36 with the addition of a green histogram
for the case in which QH = 0.250.
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Figure 38: Initial beam distribution in the normalized X,X ′ plane showing
all particles (red circles) that have hit the stripper after 3 turns. The stripper
step per turn is 0.002 of the beam half-width and 500 steps are required to
strip all particles in the distribution. The horizontal tune is QH = 0.281.
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Figure 39: Same as Figure 38 but showing all particles (red circles) that
have hit the stripper after 4 turns.
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Figure 40: Same as Figure 38 but showing all particles (red circles) that
have hit the stripper after 7 turns.
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Figure 41: Same as Figure 38 but showing all particles (red circles) that
have hit the stripper after 28 turns.
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Figure 42: Same as Figure 38 but showing all particles (red circles) that
have hit the stripper after 56 turns. The black line is the rotated image of
the stripper edge after 56 turns.
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Figure 43: Same as Figure 42 but with the addition of black circles showing
the particles that hit the stripper on the 56th turn.
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Figure 44: Initial beam distribution showing all particles (red circles) that
have hit the stripper after 112 turns. The black line is the rotated image of
the stripper edge after 112 turns. The black circles show the particles that
hit the stripper on the 112th turn. The blue circles show all particles that
hit the stripper at greater than 90% of the maximum hit distance.
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Figure 45: Initial beam distribution showing all particles (red circles) that
have hit the stripper after 350 turns. The black line is the rotated image of
the stripper edge after 350 turns. The black circles show the particles that
hit the stripper on the 350th turn. The blue circles show all particles that
hit the stripper at greater than 90% of the maximum hit distance.
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Figure 46: Foil temperature T (x, τ) obtained from (107) and (108) with
w = 0.05 mm, h = 10 mm and initial temperature T0 = 300 K. The energy
deposition time τ is 1.35, 2.7, and 5.4 ms respectively for the upper, middle,
and lower curves. The red portion of each curve extends from x = 0 to
x = w.
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Figure 47: Foil temperature T (x, τ) obtained from (107) and (108) with
w = 0.01 mm, h = 10 mm and initial temperature T0 = 300 K. The energy
deposition time τ is 1.35, 2.7, and 5.4 ms respectively for the upper, middle,
and lower curves. The red portion of each curve extends from x = 0 to
x = w.
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Figure 48: Foil temperature T (x, τ) obtained from (107) and (108) with
w = 0.005 mm, h = 10 mm and initial temperature T0 = 300 K. The energy
deposition time τ is 1.35, 2.7, and 5.4 ms respectively for the upper, middle,
and lower curves. The red portion of each curve extends from x = 0 to
x = w.
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Figure 49: Foil temperature T (x, τ) obtained from (107) and (108) with
w = 0.001 mm, h = 10 mm and initial temperature T0 = 300 K. The energy
deposition time τ is 1.35, 2.7, and 5.4 ms respectively for the upper, middle,
and lower curves. The red portion of each curve extends from x = 0 to
x = w.
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Figure 50: Plunging Stripper Edge at θ = 60 degrees. Width of projection
of circle of radius R on edge is W = 2R/ sin θ. Because of vertical motion,
particles hit the lower half of the inclined edge first. As a result, the distance
along the edge that is hit by beam is just W/2.

Figure 51: Plunging Stripper Edge at 30 degrees.
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Figure 52: Distribution of hits on stripper. Red, Blue and Green histograms
were obtained from simulations with stripper edge at θ = 90, 60, and 30 de-
grees respectively. θ is the angle the edge makes with respect to the direction
of stripper motion. Initial distribution was largest ball (in normalized coor-
dinates) contained in a four-dimensional cube uniformly populated with 404

particles. We assumed
√

εβ = 2.7 and 5.0 mm in the horizontal and vertical
planes respectively. The stripper was moved into the circulating beam in
horizontal steps of 0.002

√
εβ per turn (2.7 µs) which gives a speed of 2.0

mm/ms. The times over which hits occur on the stripper are then 1.35, 1.98,
and 4.54 ms for θ = 90, 60, and 30 degrees respectively. During these times
the stripper moves 2.70, 3.95 and 9.07 mm respectively in the horizontal
direction. The horizontal and vertical tunes were taken to be QH = 0.281
and QV = 0.221.
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Figure 53: Same simulation as in Figure 52, but showing the fraction of hits
as a function of distance from the stripper edge. The Red, Blue and Green
histograms were obtained with θ = 90, 60, and 30 degrees respectively.
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Figure 54: Peter Thieberger’s plunging stripper design with the tungsten
stripping foil plunged from the inside side of the ring.
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Figure 55: Peter Thieberger’s plunging stripper design with the tungsten
stripping foil plunged from the outside.
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Figure 56: Inside plunging stripper after several weeks of running.
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Figure 57: Slightly magnified view of Figure 56.
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Figure 58: Loss pattern in AGS with some 3.5 × 109 gold ions being put
into the J10 dump at extraction energy. Here the J7 stripper is not being
plunged into the circulating beam.
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Figure 59: Loss pattern in AGS with some 3.5×109 gold ions being put into
the J10 dump at extraction energy. Here the J7 stripper is being plunged
into the circulating beam.
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